

Overview

The LC723481W, 723482W, and 723483W are lowvoltage electronic tuning radio microcontrollers that include a PLL that operates up to 250 MHz and a $1 / 4$ duty $1 / 2$ bias LCD driver on chip. These ICs include an on-chip DC-DC converter, making it is easy to create the supply voltages required for tuning and allowing cost reductions in end products.
These ICs are optimal for use in low-voltage portable audio equipment that includes a radio receiver.

Function

- Program memory (ROM):

$$
\begin{array}{ll}
-2048 \times 16 \text { bits }(4 \mathrm{~K} \text { bytes }) & \text { LC723481W } \\
-3072 \times 16 \text { bits }(6 \mathrm{~K} \text { bytes }) & \text { LC723482W } \\
-4096 \times 16 \text { bits }(8 \mathrm{~K} \text { bytes }) & \text { LC723483W }
\end{array}
$$

- Data memory (RAM):
- 128×4 bits
LC723481W
- 192×4 bits
LC723482W
- 256×4 bits
LC723483W
- Cycle time: $40 \mu \mathrm{~s}$ (all 1-word instructions) at 75 kHz
crystal oscillation
- Stack: 4 levels (8 levels)
LC723481W(LC723482W/3W)
- LCD driver: 48 to 80 segments (1/4 duty, $1 / 2$ bias drive)
- Interrupts: One external interrupt

Timer interrupts ($1,5,10$, and 50 ms)

- A/D converter: Three input channels
(5-bit successive approximation conversion)
- Input ports: 7 ports (of which 3 can be switched for use as A/D converter inputs)
- Output ports: 6 ports (of which 1 can be switched for use as the beep tone output and 2 are opendrain ports)

Continued on next page

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
\square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Continued from preceding page.
I/O ports: 16 pins (Of these 8 can be switched over to function as LCD ports as a mask options.)

- PLL: Dead band control is supported. (Four types)

Reference frequencies: $1,3,3.125,5,6.25,12.5$, and 25 kHz

- Input frequencies: FM band: 10 to 250 MHz

AM band: 0.5 to 40 MHz

- Input sensitivity:

FM band: $35 \mathrm{mVrms}(50 \mathrm{mVrms}$ at 130 MHz or higher frequency)
AM band: 35 mVrms

- IF counting: Using the HCTR input pin for 0.4 to 12 MHz signals
- External reset input: During CPU and PLL operations, instruction execution is started from location 0 .
- Built-in power-on reset circuit:

The CPU starts execution from location 0 when power is first applied.

- Halt mode: The controller-operating clock is stopped.
- Backup mode: The crystal oscillator is stopped.
- Static power-on function: Backup state is cleared with the PF port
- Beep tone: 1.5625 and 3.125 kHz
- Built-in low-pass filter amplifier: This circuit obviates the need for an external amplifier for the PLL circuit and contributes to reduced end product costs.
- Built-in DC/DC converter:

Cost reduced in tuner-use power supply circuit

- Memory retention voltage: 0.9 V at least
- V_{DD} voltage
- PLL: 1.8 to 3.6 V
- CPU: 1.4 to 3.6 V
- ADC: 1.6 to 3.6 V
- Optional function switches:
- PH0 to PH3/S13 to S16
- PG0 to PG3/S17 to S20
- PG0 to PG3 (open-drain output/general-purpose output)
- PH0 to PH3 (open-drain output/general-purpose output)
- FM DC/DC clock (75 kHz or 1/256 times the local FM oscillator frequency)
- AM DC/DC clock ($1 / 2,1 / 4,1 / 8$, or $1 / 16$ times the AM local oscillator frequency)
- Package: SQFP-64 (0.5-mm pitch)

Pin Assignment

Specifications
Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{DD} max		-0.3 to +4.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	All input pins	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}(1)$	AOUT, PE, TU	-0.3 to +15	V
	$\mathrm{V}_{\text {OUT }}(2)$	All output pins except $\mathrm{V}_{\text {OUT }}(1)$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current	lout(1)	PC, PD, PG, PH, EO	0 to 3	mA
	Iout(2)	PB	0 to 1	mA
	Iout(3)	AOUT, PE, TU	0 to 2	mA
	lout(4)	S1 to S20	300	$\mu \mathrm{A}$
	lout(5)	COM1 to COM4	3	mA
Allowable power dissipation	Pdmax	$\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$	300	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-45 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 2 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$\mathrm{V}_{\mathrm{DD}}(1)$	PLL operating voltage	1.8	3.0	3.6	V
	$\mathrm{V}_{\mathrm{DD}}(2)$	Memory retention voltage	1.0			
	$\mathrm{V}_{\mathrm{DD}}(3)$	CPU operating voltage	1.4	3.0	3.6	
	$\mathrm{V}_{\mathrm{DD}}(4)$	A/D converter operating voltage	1.6	3.0	3.6	
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	Input ports other than $\mathrm{V}_{\mathrm{IH}}(2), \mathrm{V}_{\mathrm{IH}}(3)$, AMIN, FMIN, HCTR, and XIN	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{IH}}(2)$	BRES port	0.8 V DD		$V_{D D}$	V
	$\mathrm{V}_{\mathrm{IH}}(3)$	Port PF	$0.6 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}(1)$	Input ports other than $\mathrm{V}_{\mathrm{IL}}(2), \mathrm{V}_{\mathrm{IL}}(3)$, AMIN, FMIN, HCTR, and XIN	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}(2)$	BRES port	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL}}(3)$	Port PF	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Input amplitude	$\mathrm{V}_{\text {IN }}(1)$	XIN	0.5		0.6	Vrms
	$\mathrm{V}_{\text {IN }}(2)$	FMIN, AMIN	0.035		0.35	Vrms
	$\mathrm{V}_{\text {IN }}(3)$	FMIN	0.05		0.35	Vrms
	$\mathrm{V}_{\text {IN }}(4)$	HCTR	0.035		0.35	Vrms
Input voltage range	$\mathrm{V}_{\text {IN }}(5)$	ADIO, ADI1, ADI3	0		$V_{\text {DD }}$	V
Input frequency	$\mathrm{F}_{\text {IN }}(1)$	$\mathrm{XIN}: \mathrm{Cl} \leq 35 \mathrm{k} \Omega$	70	75	80	kHz
	$\mathrm{F}_{\text {IN }}(2)$	FMIN: $\mathrm{V}_{\text {IN }}(2), \mathrm{V}_{\mathrm{DD}}(1)$	10		130	MHz
	FIN(3)	FMIN: $\mathrm{V}_{\text {IN }}(3), \mathrm{V}_{\text {DD }}(1)$	130		250	MHz
	$\mathrm{F}_{\text {IN }}(4)$	$\operatorname{AMIN}(\mathrm{H}): \mathrm{V}_{\text {IN }}(2), \mathrm{V}_{\mathrm{DD}}(1)$	2		40	MHz
	$\mathrm{F}_{\text {IN }}(5)$	$\operatorname{AMIN}(\mathrm{L}): \mathrm{V}_{\text {IN }}(2), \mathrm{V}_{\text {DD }}(1)$	0.5		10	MHz
	FIN(6)	HCTR: $\mathrm{V}_{\text {IN }}(4), \mathrm{V}_{\mathrm{DD}}(1)$	0.4		12	MHz

Electrical Characteristics within the allowable operating ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high-level current	$\mathrm{IIH}^{(1)}$	$\mathrm{XIN}: \mathrm{V}_{\text {I }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			3	$\mu \mathrm{A}$
	$\mathrm{IIH}^{(2)}$	FMIN, AMIN, HCTR: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	3	8	20	$\mu \mathrm{A}$
	$\mathrm{IIH}^{(3)}$	PA/PF (without pull-down resistors), the PC, PD, PG, PH, ports, and BRES: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			3	$\mu \mathrm{A}$
Input low-level current	ILL(1)	XIN: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$			-3	$\mu \mathrm{A}$
	IIL(2)	FMIN, AMIN, HCTR: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$	-3	-8	-20	$\mu \mathrm{A}$
	IIL(3)	PA/PF (without pull-down resistors), the PC, PD, PG, PH, ports, and BRES: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}$			-3	$\mu \mathrm{A}$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	PA/PF (with pull-down resistors)			$0.05 \mathrm{~V}_{\mathrm{DD}}$	V
Pull-down resistor values	R $\mathrm{PD}^{(1)}$	PA/PF (with pull-down resistors), $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	75	100	200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\mathrm{PD}}(2)$	TEST1, TEST2		10		$\mathrm{k} \Omega$
Hysteresis	V_{H}	BRES	$0.1 \mathrm{~V}_{\mathrm{DD}}$	$0.2 \mathrm{~V}_{\mathrm{DD}}$		V
Voltage doubler reference voltage	DBR4	$\begin{aligned} & \text { Referenced to } \mathrm{V}_{\mathrm{DD}}, \mathrm{C}(3)=0.47 \mu \mathrm{~F}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} * 1 \end{aligned}$	1.3	1.5	1.7	V
Voltage doubler step-up voltage	DBR1, 2, 3	$\begin{aligned} & \mathrm{C}(1)=0.47 \mu \mathrm{~F} \\ & \mathrm{C}(2)=0.47 \mu \mathrm{~F} \text {, without loading, } \mathrm{Ta}=25^{\circ} \mathrm{C} * 1 \end{aligned}$	2.7	3.0	3.3	V
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\mathrm{PB}: \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}- \\ 0.7 \mathrm{~V}_{\mathrm{DD}} \end{array}$		$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \mathrm{~V}_{\mathrm{DD}} \end{array}$	V
	$\mathrm{V}_{\mathrm{OH}}(2)$	PC, PD, PG, PH, : $\mathrm{l}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \mathrm{~V}_{\mathrm{DD}} \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}}(3)$	EO: $\mathrm{I}_{\mathrm{O}}=-500 \mu \mathrm{~A}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \mathrm{~V}_{\mathrm{DD}} \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}}(4)$	XOUT: $\mathrm{I}_{0}=200 \mu \mathrm{~A}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \mathrm{~V}_{\mathrm{DD}} \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}}(5)$	S1 to S20: $\mathrm{I}_{0}=-20 \mu \mathrm{~A} * 1$	2.0			V
	$\mathrm{V}_{\mathrm{OH}}(6)$	COM1, COM2, COM3, COM4: $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} * 1$	2.0			V
Output low-level voltage	$\mathrm{V}_{\text {OL }}(1)$	PB: $\mathrm{I}_{0}=-50 \mu \mathrm{~A}$	$0.3 \mathrm{~V}_{\mathrm{DD}}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {OL }}(2)$	PC, PD, PG, PH, PE: $\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$			0.3 VDD	V
	$\mathrm{V}_{\text {OL }}(3)$	EO: $\mathrm{I} \mathrm{O}=-500 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {OL }}(4)$	XOUT: $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {OL }}(5)$	S1 to S20: $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} * 1$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}(6)$	COM1, COM2, COM3, COM4: $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} * 1$			1.0	V
	$\mathrm{V}_{\text {OL }}(7)$	PE: $\mathrm{IO}=2 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\text {OL }}(8)$	AOUT (AIN = 1.3 V), TU: $\mathrm{I}_{0}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}$			0.5	V
Output off leakage current	IofF(1)	Ports PB, PC, PD, PG, PH and EO	-3		+3	$\mu \mathrm{A}$
	IOFF(2)	AOUT, PE and port TU	-100		+100	nA
A/D converter error		ADIO, ADI1, ADI3, $\mathrm{V}_{\mathrm{DD}}(4)$	-1/2		+1/2	LSB
Current drain	IDD(1)	$\mathrm{V}_{\text {DD }}(1): \mathrm{F}_{\text {IN }}(2) 130 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		5		mA
	IDD(2)	$\mathrm{V}_{\mathrm{DD}}(2)$: In HALT mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ *2		0.1		mA
	$\mathrm{ldD}(3)$	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, with the oscillator stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 3$		1		$\mu \mathrm{A}$
	IDD(4)	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$, with the oscillator stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 3$		0.5		$\mu \mathrm{A}$

Note: The halt mode current is due to the CPU executing 20 instruction steps every 125 ms .

Note: * $\mathrm{C}(1), \mathrm{C}(2)$, and $\mathrm{C}(3)$ must be connected even if an LCD is not used.

Notes: *1. The capacitors $\mathrm{C}(1), \mathrm{C}(2)$, and $\mathrm{C}(3)$ must be connected to the DBR pins.
*2. Halt mode current measurement circuit

With all ports other than those specified above left open.
With output mode selected for PC and PD.
With segments S13 to S20 selected.
*3. Backup mode current measurement circuit

With all ports other than those specified above left open. With output mode selected for PC and PD.
With segments S13 to S20 selected.

Block Diagram

Pin Functions

Pin No.	Pin	I/O	Function	I/O circuit
64 1	$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	75 kHz oscillator connections	
$\begin{gathered} 63 \\ 2 \end{gathered}$	$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \end{aligned}$	IC testing. These pins must be connected to ground during normal operation.	-
$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PA0 } \\ & \text { PA1 } \\ & \text { PA2 } \\ & \text { PA3 } \end{aligned}$	1	Special-purpose key return signal input ports designed with a low threshold voltage. When used in conjunction with port PB to form a key matrix, up to 3 simultaneous key presses can be detected. The four pull-down resistors are selected together in a single operation using the IOS instruction ($\mathrm{PWn}=2$, b1); they cannot be specified individually. Input is disabled in backup mode, and the pull-down resistors are disabled after a reset.	Input with built-in pull-down resistor
$\begin{gathered} 10 \\ 9 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & \text { PB0 } \\ & \text { PB1 } \\ & \text { PB2 } \\ & \text { PB3 } \end{aligned}$	0	General-purpose CMOS and n-channel open-drain output shared-function ports. The IOS instruction (Pwn = 2) is used for function switching. (b0: PB0, b2: PB1, b3: PB2, PB3) (0: general-purpose CMOS, 1: n-channel opendrain) Special-purpose key source signal output ports. Since unbalanced CMOS output transistor circuits are used, diodes to prevent short-circuits when multiple keys are pressed are not required. These ports go to the output high-impedance state in backup mode. These ports go to the output high-impedance state after a reset and remain in that state until an output instruction (OUT, SPB, or RPB) is executed. *: Verify the output impedance conditions carefully if these pins are used for functions other than key source outputs.	Unbalanced CMOS push-pull
$\begin{aligned} & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 18 \\ & 17 \\ & 16 \\ & 15 \end{aligned}$	PC0 PC1 PC2 PC3 $\overline{\mathrm{INT0} / P D 0}$ PD1 PD2 PD3 $* 2$	I/O	General-purpose I/O ports. PDO can be used as an external interrupt port. Input or output mode can be set individually using the IOS instruction ($\mathrm{Pwn}=4,5$) by the bit. A value of 0 specifies input, and 1 specifies output. These ports go to the input disabled high-impedance state in backup mode. They are set to function as general-purpose input ports after a reset.	CMOS push-pull
$\begin{aligned} & 20 \\ & 19 \end{aligned}$	BEEP/PEO PE1	O	General-purpose output and BEEP output (PEO shared function ports). The BEEP instruction is used to switch the BEEP/PEO port between the generalpurpose output port and the BEEP output functions. A BEEP instruction with $\mathrm{b} 2=0$ will set the BEEP/PE0 port to function as a generalpurpose output port. If b2 is set to 1 , the instruction will select the BEEP output function. Bits b0 and b1 switch the frequency of the BEEP output. This IC supports two BEEP frequencies. *: When the PEO port is set to function as the BEEP output, executing an output instruction for PE0 will only change the value of the internal output latch; it will have no effect on the output. Only the PEO pin can be switched between the generalpurpose output port and BEEP output functions; the PE1 pin is a dedicated generalpurpose output port. In backup mode, these ports go to the high-impedance state. These ports will remain in that state until either an output instruction or a BEEP instruction is executed. Since these ports are open drain ports, a resistor must be inserted between each port and VDD. At reset, they are set to the general-purpose output port function.	N -channel open-drain

Continued on next page

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
23 22 21	PFO/ADIO PF1/ADI1 PF2/ADI3	1	General-purpose input and A/D converter input shared function ports. The IOS instruction $(P w n=F H)$ is used to switch between the general-purpose input and A / D converter port functions. The general-purpose input and A / D converter port functions can be switched by the bit, with 0 specifying general-purpose input, and 1 specifying the A / D converter input function. To select the A / D converter function, set up the A / D converter pin with an IOS instruction with Pwn set to 1. The A/D converter is started with the UCC instruction ($\mathrm{b} 3=1, \mathrm{~b} 2=1$). The ADCE flag is set when the conversion completes. The INR instruction is used to read in the data. *: If an input instruction is executed for one of these pins which is set up for analog input, the read in data will be at the low level since CMOS input is disabled. In backup mode these pins go to the input disabled high-impedance state. These ports are set to their general-purpose input port function after a reset. The A/D converter is a 5 -bit successive approximation type converter, and features a conversion time of 1.28 ms . Note that the full-scale A/D converter voltage $(1 \mathrm{FH})$ is (62/96) $V_{D D}$.	CMOS input/analog input
25 26 27 28 29 30 31 32	$\begin{gathered} \text { PG3/S20 } \\ \text { PG2/S19 } \\ \text { PG1/S18 } \\ \text { PG0/S17 } \\ \text { PH3/S16 } \\ \text { PH2/S15 } \\ \text { PH1/S14 } \\ \text { PH0/S13 } \\ \text { *2 } \end{gathered}$	0	Shared function ports that function either as LCD driver segment outputs or generalpurpose I/O ports. The IOS instruction is used to switch between the segment output and the generalpurpose I/O port functions. - When used as segment output ports The IOS (Pwn=8) instruction is used to set the general-purpose I/O port. b0 to $3=$ S17 to S20/PG0 to PG3 (0: Segment output, 1: PG0 to PG3) The IOS (Pwn=9) instruction is used to set the general-purpose I/O port. b0 to $3=\mathrm{S} 13$ to S16/PH0 to PH 3 (0: Segment output, 1: PH0 to PH3) - When used as general-purpose I/O ports The IOS instruction (Pwn=6,7) is used to switch the I/O direction. The directions of these pins can be set individually in 1-bit units. $\left(\begin{array} { l } { \mathrm { b } 0 = \mathrm { PG } 0 } \\ { \mathrm { b } 1 = \mathrm { PG } 1 } \\ { \mathrm { b } 2 = \mathrm { PG } 2 } \\ { \mathrm { b } 3 = \mathrm { PG } 3 } \end{array} \quad (\begin{array} { l } { 0 : \text { Input } } \\ { 1 : \text { Output } } \end{array}) \left(\begin{array}{l} \mathrm{b} 0=\mathrm{PH} 0 \\ \mathrm{~b} 1=\mathrm{PH} 1 \\ \mathrm{~b} 2=\mathrm{PH} 2 \\ \mathrm{~b} 3=\mathrm{PH} 3 \end{array} \quad\binom{0: \text { Input }}{1: \text { Output }}\right.\right.$ In backup mode, if used as general-purpose I/O ports, they will be in the input disabled high-impedance state. If used as segment outputs, they will be held fixed at the low level. Although the general-purpose port/LCD port setting is a mask option, the setup with the IOS instruction described above is also necessary.	CMOS push-pull
$\begin{gathered} 33 \text { to } \\ 44 \end{gathered}$	S12 to S1	O	LCD driver segment output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, the outputs are fixed at the low level. After a reset, the outputs are fixed at the low level.	CMOS push-pull
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$	COM4 COM3 COM2 COM1	O	LCD driver common output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, the outputs are fixed at the low level. After a reset, the outputs are fixed at the low level.	
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \end{aligned}$	DBR4 DBR3 DBR2 DBR1	1	LCD power supply step-up voltage inputs.	

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
54	BRES	I	System reset input. In CPU operating mode or halt mode, applications must apply a low level for at least one full machine cycle to reset the system and restart execution with the PC set to location 0 . This pin is connected in parallel with the internal power on reset circuit.	
49	TU	0	Tuning voltage generation circuit outputs. These pins include a n-ch transistor, and a tuning voltage can be generated by connecting external coil, diode, and capacitor components.	N -channel open-drain
55	HCTR	1	Special-purpose universal counter input port - To measure a frequency, set up HCTR frequency measurement mode and the measurement time with a UCS instruction $(\mathrm{b} 3=0, \mathrm{~b} 2=0)$ and start the count with a UCC instruction. The CNTEND flag is set when the count completes. Since the input circuit functions as an AC amplifier in this mode, the input must be capacitance coupled. This pin goes to the input disabled state in backup mode, halt mode, PLL stop mode, and after a reset.	CMOS amplifier input
57	FMIN	1	FM VCO (local oscillator) input. This pin is selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input
58	AMIN	1	AM VCO (local oscillator) input. This pin and the bandwidth are selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input

Continued on next page

Continued from preceding page.

Pin No.	Pin	I/O	Function	1/O circuit
60	EO	0	Main charge pump output. When the local oscillator frequency divided by N is higher than the reference frequency a high level is output, when lower, a low level is output. The pin is set to the high-impedance state when the frequencies match. Output goes to the high-impedance state in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS push-pull
$\begin{aligned} & 61 \\ & 62 \end{aligned}$	$\begin{gathered} \text { AIN } \\ \text { AOUT } \end{gathered}$	0	Connections for the built-in transistor used to form a low-pass filter.	
$\begin{aligned} & 24 \\ & 59 \\ & 56 \end{aligned}$	$\begin{aligned} & V_{S S} \\ & V_{S S} \\ & V_{D D} \end{aligned}$	-	Power supply pin. This pin must be connected to ground. This pin must be connected to ground. This pin must be connected to V_{DD}.	-

Note 2: When a pin in an I/O switching port is used as an output, applications must first set up the data with an OUT, SPB, or RPB instruction and then set up output mode with an IOS instruction.

Sample Application for Tuning Voltage Generation Circuit

Sample Application for Low-Pass Filter Amplifier

LC723481 DC-DC converter load = $100 \mathrm{~kW}($ When VDD $=1.8 \mathrm{~V})$

LC723481W, 723482W and 723483W Series Instruction Set

Terminology

ADDR : Program memory address
b : Borrow
C : Carry
DH : Data memory address High (Row address) [2 bits]
DL : Data memory address Low (Column address) [4 bits]
I : Immediate data [4 bits]
M : Data memory address
$\mathrm{N} \quad$: Bit position [4 bits]
Rn : Resister number [4 bits]
Pn : Port number [4 bits]
PW : Port control word number [4 bits]
r : General register (One of the addresses from 00H to 0FH of BANK0)
(), [] : Contents of register or memory
M (DH, DL) : Data memory specified by DH, DL

$\begin{array}{\|l} \text { Instruc- } \\ \text { tions } \end{array}$	Mnemonic	Operand		Function	Operations function	Instruction format												
		1st	2nd			f	e	d	c	b	a	98	7	65	4	3	21	0
	AD	r	M	Add M to r	$r \leftarrow(\mathrm{r})+(\mathrm{M})$	0	1	0	0	0	0	DH		DL			r	
	ADS	r	M	Add M to r , then skip if carry	$r \leftarrow(r)+(M)$, skip if carry	0	1	0	0	0	1	DH		DL			r	
	AC	r	M	Add M to r with carry	$r \leftarrow(r)+(M)+C$	0	1	0	0	1	0	DH		DL			r	
	ACS	r	M	Add M to r with carry, then skip if carry	$\mathrm{r} \leftarrow(\mathrm{r})+(\mathrm{M})+\mathrm{C}$ skip if carry	0	1	0	0	1	1	DH		DL			r	
	AI	M	1	Add I to M	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$	0	1	0	1	0	0	DH		DL			I	
	AIS	M	1	Add I to M, then skip if carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$, skip if carry	0	1	0	1	0	1	DH		DL			1	
	AIC	M	1	Add I to M with carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}$	0	1	0	1	1	0	DH		DL			1	
	AICS	M	1	Add I to M with carry, then skip if carry	$\begin{aligned} & \mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}, \\ & \text { skip if carry } \end{aligned}$	0	1	0	1	1	1	DH		DL			1	
	SU	r	M	Subtract M from r	$r \leftarrow(\mathrm{r})-(\mathrm{M})$	0	1	1	0	0	0	DH		DL			r	
	SUS	r	M	Subtract M from r, then skip if borrow	$r \leftarrow(r)-(M),$ skip if borrow	0	1	1	0	0	1	DH		DL			r	
	SB	r	M	Subtract M from r with borrow	$r \leftarrow(\mathrm{r})-(\mathrm{M})-\mathrm{b}$	0	1	1	0	1	0	DH		DL			r	
	SBS	r	M	Subtract M from r with borrow, then skip if borrow	$\mathrm{r} \leftarrow(\mathrm{r})-(\mathrm{M})-\mathrm{b},$ skip if borrow	0	1	1	0	1	1	DH		DL			r	
	SI	M	1	Subtract I from M	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}$	0	1	1	1	0	0	DH		DL			1	
	SIS	M	I	Subtract I from M, then skip if borrow	$\begin{aligned} & \mathrm{M} \leftarrow(\mathrm{M})-\mathrm{I}, \\ & \text { skip if borrow } \end{aligned}$	0	1	1	1	0	1	DH		DL			1	
	SIB	M	1	Subtract I from M with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}-\mathrm{b}$	0	1	1	1	1	0	DH		DL			1	
	SIBS	M	1	Subtract I from M with borrow, then skip if borrow	$\begin{aligned} & \mathrm{M} \leftarrow(\mathrm{M})-\mathrm{I}-\mathrm{b}, \\ & \text { skip if borrow } \\ & \hline \end{aligned}$	0	1	1	1	1	1	DH		DL			1	

Continued on next page

Continued from preceding page.

Instructions	Mnemonic	Operand		Function	Operations function	Instruction format													
		1st	2nd			f	e	d	c	b	a	98	7	6	5	4			0
	SEQ	r	M	Skip if r equal to M	(r) - (M), skip if zero	0	0	0	1	0	0	DH		DL				r	
	SEQI	M	1	Skip if M equal to I	(M) - I, skip if zero	0	0	0	1	1	0	DH		DL				1	
	SNEI	M	1	Skip if M not equal to I	(M) - I, skip if not zero	0	0	0	0	0	1	DH		DL				1	
	SGE	r	M	Skip if r is greater than or equal to M	$\begin{aligned} & \hline(\mathrm{r})-(\mathrm{M}), \\ & \text { skip if not borrow } \end{aligned}$	0	0	0	1	1	0	DH		DL				r	
	SGEI	M	1	Skip if M is greater than equal to I	(M) - I, skip if not borrow	0	0	0	1	1	1	DH		DL				1	
	SLEI	M	1	Skip if M is less than I	(M) - I, skip if borrow	0	0	0	0	1	1	DH		DL				1	
	AND	r	M	AND M with r	$\mathrm{r} \leftarrow(\mathrm{r})$ AND (M)	0	0	1	0	0	0	DH		DL				r	
	ANDI	M	1	AND I with M	$\mathrm{M} \leftarrow(\mathrm{M})$ AND I	0	0	1	0	0	1	DH		DL				1	
	OR	r	M	OR M with r	$r \leftarrow(\mathrm{r}) \mathrm{OR}(\mathrm{M})$	0	0	1	0	1	0	DH		DL				r	
	ORI	M	1	OR I with M	$\mathrm{M} \leftarrow(\mathrm{M})$ OR I	0	0	1	0	1	1	DH		DL				1	
	EXL	r	M	Exclusive OR M with r	$\mathrm{r} \leftarrow(\mathrm{r}) \mathrm{XOR}(\mathrm{M})$	0	0	1	1	0	0	DH		DL				r	
	EXLI	M	1	Exclusive OR M with M	$\mathrm{M} \leftarrow(\mathrm{M})$ XOR I	0	0	1	1	1	0	DH		DL				1	
	SHR	r		Shift r right with carry	$\square_{(\mathrm{r})}^{\square}$ carry \square	0	0	0	0	0	0	00	1	1	1	0		r	
	LD	r	M	Load M to r	$\mathrm{r} \leftarrow(\mathrm{M})$	1	1	0	1	0	0	DH		DL				r	
	ST	M	r	Store r to M	$\mathrm{M} \leftarrow(\mathrm{r})$	1	1	0	1	0	1	DH		DL				r	
	MVRD	r	M	Move M to destination M referring to r in the same row	$[\mathrm{DH}, \mathrm{Rn}] \leftarrow(\mathrm{M})$	1	1	0	1	1	0	DH		DL				r	
	MVRS	M	r	Move source M referring to r to M in the same row	$\mathrm{M} \leftarrow[\mathrm{DH}, \mathrm{Rn}]$	1	1	0	1	1	1	DH		DL				r	
	MVSR	M1	M2	Move M to M in the same row	[DH, DL1] $\leftarrow[\mathrm{DH}, \mathrm{DL2}$]	1	1	1	0	0	0	DH		DL				DL2	
	MVI	M	1	Move I to M	$\mathrm{M} \leftarrow \mathrm{I}$	1	1	1	0	0	1	DH		DL				I	
	TMT	M	N	Test M bits, then skip if all bits specified are true	if $\mathrm{M}(\mathrm{N})=$ all 1 s , then skip	1	1	1	1	0	0	DH		DL				N	
	TMF	M	N	Test M bits, then skip if all bits specified are false	if $\mathrm{M}(\mathrm{N})=$ all 0 s, then skip	1	1	1	1	0	1	DH		DL				N	
	JMP	ADDR		Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$	1	0	0	ADDR (13 bits)										
	CAL	ADDR		Call subroutine	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{ADDR} \\ & \text { Stack } \leftarrow(\mathrm{PC})+1 \end{aligned}$	1	0	1	ADDR (13 bits)										
	RT			Return from subroutine	$\mathrm{PC} \leftarrow$ Stack	0	0	0	0	0	0	00	1	0	0	0			
	RTI			Return from interrupt	PC \leftarrow Stack, BANK \leftarrow Stack, CARRY \leftarrow Stack	0	0	0	0	0	0	00	1	0	0				

Continued on next page.

Continued from preceding page.

$\begin{aligned} & \text { Instruc- } \\ & \text { fions } \end{aligned}$	Mnemonic	Operand		Function	Operations function	Instruction format													
		1st	2nd			f	e	d	c	b	a	98	7	6	5			21	0
	SS	SWR	N	Set status register	(Status W-reg) $\mathrm{N} \leftarrow 1$	1	1	1	1	1	1	1	0	0	SWR			N	
	RS	SWR	N	Reset status register	(Status W-reg) $\mathrm{N} \leftarrow 0$	1	1	1	1	1	1	1	0		SWR			N	
	TST	SRR	N	Test status register true	if (Status R-reg) $\mathrm{N}=$ all	1	1	1	1	1	0	0	0		SRR			N	
	TSF	SRR	N	Test status register false	if (Status R-reg) $\mathrm{N}=$ all	1	1	1	1	1	0	00	1		SRR			N	
	TUL	N		Test Unlock F/F	if Unlock F/F (N) = all Os, then skip	0	0	0	0	0	0	0	1		0			N	
	PLL	M		Load M to PLL register	PLL reg \leftarrow PLL data	1	1	1	1	1	0	DH			DL			r	
	UCS	I		Set I to UCCW1	UCCW1 $\leftarrow 1$	0	0	0	0	0	0	00	0	0	0			I	
	UCC	1		Set I to UCCW2	UCCW2 \leftarrow I	0	0	0	0	0	0	0	0	0	1			1	
	BEEP	1		Beep control	BEEP reg $\leftarrow 1$	0	0	0	0	0	0	0	0	1	1			I	
	DZC	1		Dead zone control	DZC reg \leftarrow !	0	0	0	0	0	0	0	1	0	1			1	
	TMS	1		Set timer register	Timer reg $\leftarrow 1$	0	0	0	0	0	0	0	1	1	0			I	
	IOS	PWn	N	Set port control word	IOS reg PWn $\leftarrow \mathrm{N}$	1	1	1	1	1	1	10			Wn			N	
	IN	M	Pn	Input port data to M	$\mathrm{M} \leftarrow(\mathrm{Pn})$	1	1	1	0	1	0	DH			DL			Pn	
	OUT	M	Pn	Output contents of M to port	$\mathrm{P} 1 \mathrm{n} \leftarrow \mathrm{M}$	1	1	1	0	1	1	DH			DL			Pn	
	INR	M	Pn	Input port data to M	$\mathrm{M} \leftarrow(\mathrm{Pn})$	0	0	1	1	1	0	DH			DL			Pn	
	SPB	P1n	N	Set port1 bits	$(\mathrm{Pn}) \mathrm{N} \leftarrow 1$	0	0	0	0	0	0	10			P			N	
	RPB	P1n	N	Reset port1 bits	$(\mathrm{Pn}) \mathrm{N} \leftarrow 0$	0	0	0	0	0	0	11			Pn			N	
	TPT	P1n	N	Test port1 bits, then skip if all bits specified are true	if $(\mathrm{Pn}) \mathrm{N}=$ all 1s, then skip	1	1	1	1	1	1				Pn			N	
	TPF	P1n	N	Test port1 bits, then skip if all bits specified are false	if $(\mathrm{Pn}) \mathrm{N}=$ all 0 s , then skip	1	1	1	1	1	1				Pn			N	
	BANK	1		Select Bank	BANK $\leftarrow 1$	0	0	0	0	0	0	00	0	1				1	
	LCDA	M	1	Output segment pattern to LCD digit direct	LCD (DIGIT) $\leftarrow \mathrm{M}$	1	1	0	0	0	0	DH			DL			DIGIT	
	LCDB	M	1			1	1	0	0	0	1	DH			DL			DIGIT	
	LCPA	M	1	Output segment pattern to LCD digit through LA	$\mathrm{LCD}(\mathrm{DIGIT}) \leftarrow \mathrm{LA} \leftarrow \mathrm{M}$	1	1	0	0	1	0	DH			DL			DIGIT	
	LCPB	M	1			1	1	0	0	1	1	DH			DL			DIGIT	
	HALT	I		Halt mode control	HALT reg $\leftarrow \mathrm{I}$, then CPU clock stop	0	0	0	0	0	0	0	0	1	0			1	
	CKSTP			Clock stop	Stop x'tal OSC	0	0	0	0	0	0	0	0	1	0				
	NOP			No operation	No operation	0	0	0	0	0	0	0	0		0				

■ Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2002. Specifications and information herein are subject to change without notice.

