CMOS IC


## Digital Display of Clock/Receiving Frequency

 for Radio Set Applications
## Functions

- Capable of selecting receiving frequency display/time display.
- Display of receiving frequency at each band of FM/MW/LW Display element: LED
Static/dynamic: Static
Withstand voltage at output pin: 15 V
Maximum current:
18 mA $\left(\mathrm{V}_{\mathrm{DD}}=6.0\right.$ to 10.0 V$)$
- Number of display digits:

FM: 5 digits, MW, LW: 4 digits

- Covers intermediate frequencies shown below.
$\mathrm{FM}: \quad+10.700,+10.725,+10.750,+10.675 \mathrm{MHz}$

$$
-10.700,-10.725,-10.675,-10.650 \mathrm{MHz}
$$

MW, LW: $\quad+450 \mathrm{kHz}(1): 10 \mathrm{kHz}$-step display
$+450 \mathrm{kHz}(2): 1 \mathrm{kHz}$-step display
$+455 \mathrm{kHz} \quad: 1 \mathrm{kHz}$-step display $+469 \mathrm{kHz} \quad: 1 \mathrm{kHz}$-step display

- In FM reception applications, the LB3500 ( $\div 8$ prescaler) is used jointly.
- Two selections of display system (12-hour system with PM sign, 24-hour system).
- Easy to set time by the time signal.
- Inhibit pin for inhibiting time setting with display unlighted.
- 7.2 MHz crystal oscillator for reference frequency.
- Supply voltage $\mathrm{V}_{\mathrm{DD}}: 4.5$ to 10.0 V .


## Package Dimensions

unit : mm
3025B-DIP42S
[LC7267]


SANYO : DIP42S

## Specifications

## Absolute Maximum Ratings at $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Maximum supply voltage | $\mathrm{V}_{\text {DD }}$ max |  | -0.3 to +11 | V |
| Input voltage | $V_{\text {IN }}$ |  | -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
| Output voltage | $\mathrm{V}_{\mathrm{O}} 1$ | X OUT | -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
|  | $\mathrm{V}_{\mathrm{O}} 2$ | Output pins other than $\mathrm{X}_{\text {OUT }}$, output : off | 0 to 15 | V |
| Allowable power dissipation | Pd max | $\mathrm{Ta} \leqq 65^{\circ} \mathrm{C}$ | 550 | mW |
| Allowable power dissipation of segment outputs | Pd seg 1 | $\overline{\mathrm{PM}} \mathrm{V}_{\mathrm{DD}}=4.5$ to 6 V , $\mathrm{I}_{\mathrm{OL}}=50 \mathrm{~mA}$ | 35 | mW |
|  | Pd seg 2 | $\overline{\mathrm{b} \& \mathrm{e}} \mathrm{V}_{\mathrm{DD}}=4.5$ to 6 V , $\mathrm{I}_{\mathrm{OL}}=33 \mathrm{~mA}$ | 30 | mW |
|  | Pd seg 3 | Other outputs $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.5 V , $\mathrm{I}_{\mathrm{OL}}=16.5 \mathrm{~mA}$ | 15 | mW |
|  | Pd seg 4 | $\overline{\mathrm{PM}} \mathrm{V}_{\mathrm{DD}}=6.0$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=54 \mathrm{~mA}$ | 38 | mW |
|  | Pd seg 5 | $\overline{\mathrm{b} \& \mathrm{e}} \mathrm{V} \mathrm{DD}=6.0$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=36 \mathrm{~mA}$ | 25 | mW |
|  | Pd seg 6 | Other outputs $\mathrm{V}_{\mathrm{DD}}=6.0$ to 10 V , $\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}$ | 13 | mW |
| Operating temperature | Topr |  | -30 to +65 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg |  | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |

## Allowable Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5$ to 10 V

| Parameter | Symbol | Conditions | min | typ | max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage | $\mathrm{V}_{\mathrm{DD}}$ |  | 4.5 |  | 10 | V |
| Input high-level voltage | $\mathrm{V}_{1 H}{ }^{1}$ | INHI, CTR/CLK, DEMAND | $0.8 \mathrm{~V}_{\text {DD }}$ |  | $\mathrm{V}_{\mathrm{DD}}$ | V |
|  | $\mathrm{V}_{1 \mathrm{H}^{2}}$ | SET, FM/AM | $0.85 \mathrm{~V}_{\text {DD }}$ |  | $\mathrm{V}_{\mathrm{DD}}$ | V |
|  | $\mathrm{V}_{1 \mathrm{H}^{3}}$ | FIF1, FIF2, FIF3 <br> AIF1, AIF2, 12H/24H | $0.9 V_{\text {DD }}$ |  | $V_{D D}$ | V |
| Input low-level voltage | $\mathrm{V}_{\text {IL }} 1$ | INHI, CTR/CLK, DEMAND | 0 |  | $0.2 \mathrm{~V}_{\mathrm{DD}}$ | V |
|  | $\mathrm{V}_{\text {IL }}{ }^{2}$ | SET, FM/AM | 0 |  | $0.15 \mathrm{~V}_{\mathrm{DD}}$ | V |
|  | $\mathrm{V}_{\text {IL }} 3$ | FIF1, FIF2, FIF3 <br> AIF1, AIF2, 12H/24H | 0 |  | $0.1 \mathrm{~V}_{\mathrm{DD}}$ | V |
| Input medium-level voltage | VIM | SET | $0.45 \mathrm{~V}_{\text {DD }}$ |  | $0.55 \mathrm{~V}_{\mathrm{DD}}$ | V |
| Input frequency | $\mathrm{f}_{\text {IN }} 1$ | FMI, sine wave, capacitive coupling, $\mathrm{V}_{\text {IN }} 1=0.7 \mathrm{Vp}-\mathrm{p}$ | 1 |  | 18 | MHz |
|  | $\mathrm{f}_{\mathrm{IN}}{ }^{2}$ | AMI, sine wave, capacitive coupling, $\mathrm{V}_{\mathrm{IN}} 2=0.5 \mathrm{Vp}-\mathrm{p}$ | 0.5 |  | 3 | MHz |
|  | $\mathrm{f}_{\mathrm{IN}} 3$ | XIN, sine wave, capacitive coupling, $\mathrm{V}_{\mathrm{IN}} 3=1 \mathrm{Vp}-\mathrm{p}$ | 0.2 |  | 7.5 | MHz |
| Input amplitude | $\mathrm{V}_{\text {IN }} 1$ | FMI, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}} 1=1$ to 18 MHz | 0.7 |  | $0.9 V_{\text {DD }}$ | Vp-p |
|  | $\mathrm{V}_{1 \mathrm{~N}^{2}}$ | AMI, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}} 2=0.5$ to 3 MHz | 0.5 |  | $0.9 \mathrm{~V}_{\text {DD }}$ | Vp-p |
|  | $\mathrm{V}_{1 \times} 3$ | XIN, sine wave, capacitive coupling, $\mathrm{f}_{\mathrm{IN}} 3=0.2$ to 7.5 MHz | 1.0 |  | $0.9 V_{\text {DD }}$ | Vp-p |
| Segment current | Iseg 1 | $\overline{\text { PM }}$ |  |  | 45 | mA |
|  | Iseg 2 | $\overline{\mathrm{b} \& \mathrm{e}}$ |  |  | 30 | mA |
|  | Iseg 3 | Other outputs seg |  |  | 15 | mA |

Electrical Characteristics at $\mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | min | typ | max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input high-level current | $\mathrm{l}_{1 \mathrm{H}} 1$ | FIF1 to FIF3, AIF1 to AIF2, SET, FM/AM, $12 \mathrm{H} / 24 \mathrm{H}$ CTR/CLK, $V_{I}=V_{D D}$ | 0 |  | 10 | $\mu \mathrm{A}$ |
|  | $\mathrm{I}_{\mathrm{IH} 2}$ | $\overline{\mathrm{INHI}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ | 40 |  | 1000 | $\mu \mathrm{A}$ |
|  | $\mathrm{I}_{1 \mathrm{H}^{3}}$ | DEMAND, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ | 40 |  | 1000 | $\mu \mathrm{A}$ |
| Input low-level current | IIL | FIF1 to FIF3, AIF1 to AIF2, SET, FM/AM, 12H/24H, CTR/CLK, $V_{1}=V_{S S}$ | -10 |  | 0 | $\mu \mathrm{A}$ |
| Input floating voltage | $\mathrm{V}_{\text {IF }} 1$ | $\overline{\text { INHI, }}$, $=$ open | 0 |  | 0.2 | V |
|  | $\mathrm{V}_{\mathrm{IF}} 2$ | DEMAND, $\mathrm{V}_{\mathrm{I}}=$ open | 0 |  | 0.1V VDD | V |

Continued next page.

Continued from preceding page.

| Parameter | Symbol | Conditions | min | typ | max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output low-level voltage | $\mathrm{V}_{\mathrm{OL}} 1$ | $\overline{\mathrm{PM}} \mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=45 \mathrm{~mA}$ | 0 |  | 1.0 | V |
|  | $\mathrm{V}_{\mathrm{OL}}{ }^{2}$ | $\overline{\mathrm{b} \& \mathrm{e}} \mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA}$ | 0 |  | 1.0 | V |
|  | $\mathrm{V}_{\mathrm{OL}}{ }^{3}$ | Other outputs seg, $\mathrm{V}_{\mathrm{DD}}=4.5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$ | 0 |  | 1.0 | V |
| Output off leakage current | IOFF | All segments output pins, $\mathrm{V}_{\text {OUT }}=13 \mathrm{~V}$ | 0 |  | 10 | $\mu \mathrm{A}$ |
| Current drain | IDD | FM mode, $\mathrm{FM} / \mathrm{AM}=\mathrm{V}_{\mathrm{DD}}, \mathrm{f}_{\mathrm{IN}}{ }^{1}=18 \mathrm{MHz}, 0.7 \mathrm{Vp}-\mathrm{p}$ (or AM mode, $\mathrm{FM} / \mathrm{AM}=\mathrm{V}_{\mathrm{SS}}, \mathrm{f}_{\mathrm{IN}} 2=3 \mathrm{MHz}, 0.5 \mathrm{Vp}-\mathrm{p}$ ) $\mathrm{f}_{\mathrm{I}} 3=7.2 \mathrm{MHz}, 1 \mathrm{Vp}-\mathrm{p}$, <br> FIF1, FIF2, FIF3 $=V_{D D}$ <br> AIF1, AIF2 = VDD <br> $12 \mathrm{H} / 24 \mathrm{H}, \mathrm{CTR} / \mathrm{CLK}$, INHI, DEMAND $=\mathrm{V}_{\mathrm{DD}}$ |  |  | 18 | mA |

## Pin Assignment



## Configuration and Display Font

4 or 4-1/2-digit segment LED's are used to display time and frequency in the display font shown below.

$$
\text { Font } 1 \text { 上 }
$$

## Lighting System

Static lighting

## Display Range

- Frequency (MW, LW)
- Frequency (FM)
- Clock (12-hour)
- Clock (24-hour)

000 kHz to 1999 kHz (The highest-order digit " 0 '" is blanked out.) 00.00 MHz to 199.95 MHz (The highest-order digit " 0 " is blanked out.)

PM 12:00 to PM 11:59 $\rightarrow$ 12:00 to 11:59
$\uparrow \quad$

0:00 to 23:59 (The highest-order digit " 0 " is blanked out.)

## Pin Description

- $\overline{\mathrm{a}}$ to $\overline{\mathrm{g}}, \overline{\mathrm{PM}}, \overline{\mathrm{b} \& \mathrm{e}}$ : LED driver pin

- $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ : Power supply pin
- $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$ : Crystal oscillator, input amplifier pin

- FIF1, FIF2, FIF3: FM IF offset value select pin

| FIF1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FIF2 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| FIF3 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| IF (MHz) | +10.700 | +10.725 | +10.675 | +10.750 | -10.700 | -10.725 | -10.675 | -10.650 |

- AIF1, AIF2: AM IF offset value select pin

| AIF1 | 0 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| AIF2 | 1 | 0 | 0 | 1 |
| IF $(\mathrm{kHz})$ | $+450(1)$ | $+450(2)$ | +455 | +469 |
| Display step | 10 kHz | 1 kHz step |  |  |

1: High level
0: Low level
(Note) 450 kHz (1): 10 kHz -step display, others: 1 kHz -step display

- FMI, AMI: Local OSC signal input pin

FMI: For FM
AMI: For MW, LW

- FM/AM: FM/MW, LW select pin

FM: High level
MW, LW: Low level

- CTR/CLK: Frequency display/time display select pin CTR (Counter): High level CLK (Clock): Low level
- DEMAND: Input pin for instructing execution of setting

| CTR/CLK | DEMAND | MODE |
| :---: | :---: | :--- |
| 0 | 1 | Mode of setting by the time signal and hours-minutes setting mode |
| 0 | 0 | Time display mode |

- SET: Input pin for setting hours-minutes

This pin is set at "M" level normally. The input signal of "H"/"L" level acts as follows:
When in the mode of setting by the time signal and hours-minutes setting mode (CTR/CLK = "L", DEMAND = "H")
High level: Execution of hours setting
Advance at a 2 Hz rate 1.2 seconds after the pin is set to " H " level.
Low level: Execution of setting by the time signal and minutes setting
Advance at a 2 Hz rate 1.2 seconds after the pin is set to "L" level.
Setting by the time signal is executed when the pin is set off within 1.0 second after set to " $L$ " level. No carry to high-order digit occurs.

- $\overline{\mathrm{INHI}}$ : Input pin for turning OFF the segment pins, inhibiting the SET/DEMAND pin from functioning, and preventing the AMI amp from operating

High level: Normal operation
Low level: Segment pin OFF, SET/DEMAND pin function inhibit

- $12 \mathrm{H} / 24 \mathrm{H}$ : Input pin for selecting 12 -hour system with PM sign/24-hour system

High level: 12-hour system with PM sign
Low level: 24-hour system

## LC7267

Make connection of the highest-order digit as shown below.


Timing Chart
Time setting (CTR/CLK = "L")


## Sample Display at Each Display

(Setting by the time signal, hours-minutes display, hours-minutes setting)
Setting by the time signal: Setting to PM 12:00


Execute setting by the time signal with the SET pin.
Flashing at a 2 Hz rate when in the mode of setting by the time signal


When setting by the time signal is executed, minutes become 00. If the minutes display is at 30 to 59 , hours are incremented by 1 (counting 30 or more as 1 hr . and disregarding 29 or less).

Hours-minutes display: Display of PM 12:34


The PM sign flashes in the afternoon when in the mode of setting by the time signal, hours-minutes display, hours-minutes setting
(for 12-hour system).

Hours-minutes setting: Setting to PM 11:45 from PM 11:23


## Equivalent Circuit Block Diagram



## Sample Application Circuit 1

5-digit display in FM use


## Sample Application Circuit 2

4-digit display in FM use

(Note) How to reduce current dissipation when display is turned off
To reduce current dissipation when display is turned off ( $\overline{\mathrm{INHI}}$ : "L"), the circuit shown below must be connected to the FMI pin.





■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1998. Specifications and information herein are subject to change without notice.

