

LC89901V

CMOS Driver IC for 1/5 and 1/6 Inch Image Sensors

Overview

The LC89901V is a high breakdown voltage CMOS vertical driver IC for 1/5 and 1/6 inch image sensors. Provision of a built-in level shifter means that an external clamp circuit is no longer required.

Applications

Surveillance cameras and image input equipment

Functions

CMOS driver IC for 1/5 and 1/6 inch image sensors

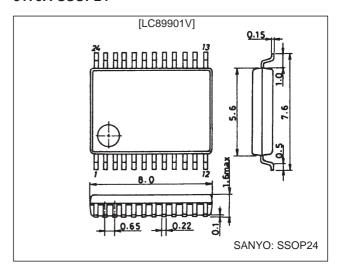
Features

- CMOS process fabrication for low power dissipation
- Built-in level shifter circuits to reduce the number of required peripheral circuits.
- Miniature package (SSOP-24)

Structure

• Inverter type drivers: 8 channels Input pulses are converted to $V_{CC}1$, $V_{CC}2$ and $V_{EE}1$, $V_{EE}2$ levels (inversion).

These are drivers for image sensor imaging and storage sections.


• Inverter type driver: 1 channel Input pulses are converted to $V_{CC}N$ and $V_{EE}1$, $V_{EE}2$ levels (inversion).

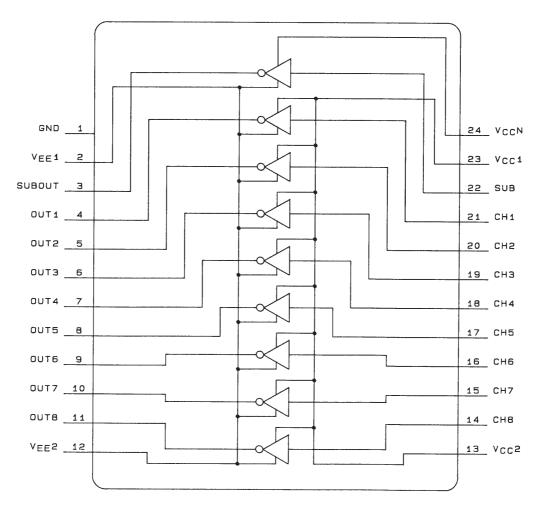
This circuit is an image sensor NSUB driver.

Package Dimensions

unit: mm

3175A-SSOP24

Specifications


Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions Ratings		Unit
Maximum supply voltage	V _{CC} max	V _{CC} 1, V _{CC} 2, V _{CC} N	-0.3 to +6.0	V
Waximam supply voltage	V _{EE} max	V _{EE} 1, V _{EE} 2	+0.3 to -11.0	V
Input voltage	V _{IN}	All input pins	-0.3 to V _{CC} + 0.3	V
Allowable power dissipation	Pd max		350	mA
Operating temperature	Topr		-10 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit	
Supply voltage	V _{CC}	V _{CC} 1, V _{CC} 2, V _{CC} N: *V _{CC} N ≤ V _{CC} 1, V _{CC} 2	4.5 to 5.5	V	
Supply voltage	V _{EE}	V _{EE} 1, V _{EE} 2	0 to -10.5	5 V	
Input voltage range	V _{IN}	All input pins	0 to V _{CC}	V	

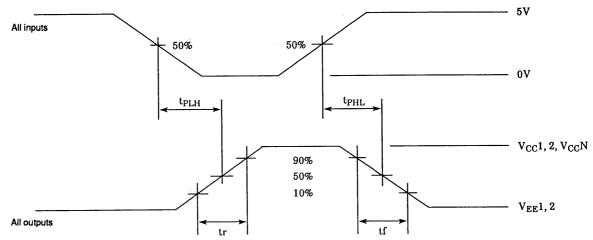
Block Diagram

A03742

Electrical Characteristics at Ta = 25°C, $V_{CC}1$, $V_{CC}2$, $V_{CC}N$ = 5.0 V, $V_{EE}1$, $V_{EE}2$ = -10.0 V

Parameter	Symbol	Conditions min typ r		max	Unit	
Input high level current	I _{IH}	All input pins, V _{IN} = 5.0 V			μA	
Input low level current	I _{IL}	All input pins, V _{IN} = 0 V		5		nA
	I _{CCH} +	$V_{CC}1$, $V_{CC}2$, $V_{CC}N$, all input pins, $V_{IN} = 5.0 \text{ V}$		1		μA
Current drain	I _{CCH} -	V _{EE} 1, V _{EE} 2, all input pins, V _{IN} = 5.0 V		-10		μA
Current drain	I _{CCL} +	$V_{CC}1$, $V_{CC}2$, $V_{CC}N$, all input pins, $V_{IN} = 0 \text{ V}$		7		μA
	I _{CCH} -	V _{EE} 1, V _{EE} 2, all input pins, V _{IN} = 0 V		-2		μA
Output voltage	V _{OH}	All inputs, V _{IN} = 0 V		5.0		V
	V _{OL}	All inputs, V _{IN} = 5.0 V		-10.0		V
Operating output voltage*		5.0		V		
Operating output voltage*	V _{OL} 2	Load = LC9997, input = LC99052		-10.0		V
Operating current drain*	I _{CC} 2+	Load = LC9997, input = LC99052		1.62		mA
	I _{CC} 2-	Load = LC9997, input = LC99052		1.61		mA

Note: Load conditions Load circuit


 R_L = 18 $\Omega,\,C_L$ = 780 pF

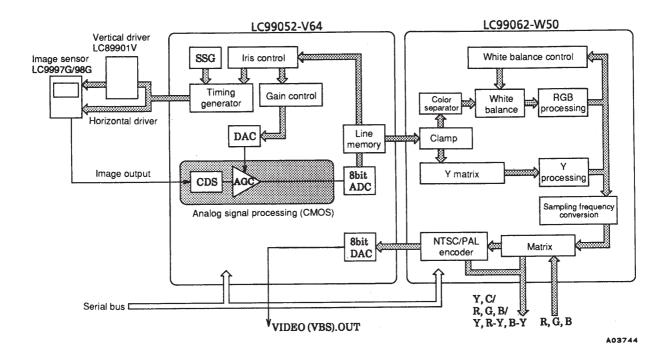
^{*} Reference values for driving an LC9997 image sensor with pulses input from an LC99052 timing LSI.

Switching Characteristics at Ta = 25 °C, $V_{CC}1$, $V_{CC}2$, $V_{CC}N$ = 5.0 V, $V_{EE}1$, $V_{EE}2$ = -10.0 V, f_{IN} = 3.58 MHz

Parameter	Symbol	Conditions	min	typ	max	Unit
Propagation delay Low level → high level tpLH	t _{PLH}	All output pins		23		ns
Propagation delay High level → low level tpHL	t _{PHL}	All output pins		31		ns
Rise time	t _r	All output pins		47		ns
Fall time	t _f	All output pins		42		ns

Switching Waveforms

Truth table


		Output	
Input	Н	V _{OL}	
	L	V _{OH}	

Pin Functions

Pin No.	Pin	Function
1	GND	Ground
2	V _{EE} 1	Negative power supply for setting the low level
3	SUBOUT	NSUB driver output
4	OUT1	Channel 1 driver output
5	OUT2	Channel 2 driver output
6	OUT3	Channel 3 driver output
7	OUT4	Channel 4 driver output
8	OUT5	Channel 5 driver output
9	OUT6	Channel 6 driver output
10	OUT7	Channel 7 driver output
11	OUT8	Channel 8 driver output
12	V _{EE} 2	Negative power supply for setting the low level
13	V _{CC} 2	Positive power supply for setting the high level
14	CH8	Channel 8 driver input
15	CH7	Channel 7 driver input
16	CH6	Channel 6 driver input
17	CH5	Channel 5 driver input
18	CH4	Channel 4 driver input
19	CH3	Channel 3 driver input
20	CH2	Channel 2 driver input
21	CH1	Channel 1 driver input
22	SUB	NSUB driver input
23	V _{CC} 1	Positive power supply for setting the high level
24	V _{CC} N	NSUB driver positive power supply

Sample Application Circuit

This figure shows the block diagram of an image sensor based digital camera using the Sanyo LC99052–V64, LC99062–W50 and LC89901V.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provide information as of June, 1997. Specifications and information herein are subject to change without notice.