Description

LM2575 of regulators provides all the active functions for a step- down (buck) switching regulator, and drives 1 A load with excellent line and load regulation.
$\boldsymbol{L M 2 5 7 5}$ is available in fixed output volt ages of 3.3 V , $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ and a versatile Adjustable output version. These regulators are simple to use and require a minimum number of external components.
Features include internal frequency compensation and a fixed- frequency oscillator. LM2575 high-efficiency replacement for popular three-terminal linear regulators, and is requiring a smaller heat sink or even no heat sink. LM2575 performs well with standard inductors from several manufacturers, and simplifying the design of switch-mode power supplies. LM2575 guarantee $+/-4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency.
External shutdown is included with 50 uA(typical) standby current. The output switch has cycle-by-cycle current limiting as well as thermal shutdown for full protection under fault conditions.

Features

-3.3V, 5V, 12V, 15V and Adjustable output versions

- Adjustable version output voltage range 1.23 V to $37 \mathrm{~V} \pm 4 \%$ max over line and load conditions
- 1A output current
- Requires Only 4 External Components
- High Efficiency
- TTL shutdown capability and low power standby mode
- Thermal shutdown, current limit protection
- Uses standard inductors
- 52 kHz fixed frequency internal oscillator

Application

Pre-regulator for linear regulators
High-efficiency step-down buck regulator

On-card/ board switching regulators
Positive to negative converter (buck-boost)

TYPICAL APPLICATION

LM2575 1.0A Step - Down Voltage Switching Regulators

MARKING INFORMATION \& PIN CONFIGURATIONS

- ORDERING INFORMATION

Ordering Number	Output Voltage	Package	Shipping
LM2575-ATB5T	Adj	TO-220-5	50 Units / Tube
LM2575-ATB5BT	Adj	TO-220-5B	50 Units / Tube
LM2575-ATA5R	Adj	TO-263-5	800 Units/ Tape \& Reel
LM2575 -ATA5T	Adj	TO-263-5	50 Units / Tube
LM2575-3.3TB5T	3.3	TO-220-5	50 Units / Tube
LM2575-3.3TB5BT	3.3	TO-220-5B	50 Units / Tube
LM2575-3.3TA5R	3.3	TO-263-5	800 Units/ Tape \& Reel
LM2575-3.3TA5T	3.3	TO-263-5	50 Units / Tube
LM2575-5.0TB5T	5.0	TO-220-5	50 Units / Tube
LM2575-5.0TB5BT	5.0	TO-220-5B	50 Units / Tube
LM2575-5.0TA5R	5.0	TO-263-5	800 Units/ Tape \& Reel
LM2575-5.0TA5T	5.0	TO-263-5	50 Units / Tube
LM2575-5.0TC5T	5.0	TO-252-5	80 Units/Tube
LM2575-5.0TC5R	5.0	TO-252-5	2,500 Units/ Tape \& Reel
LM2575-12TB5T	12	TO-220-5	50 Units / Tube
LM2575-12TB5BT	12	TO-220-5B	50 Units / Tube
LM2575-12TA5R	12	TO-263-5	800 Units/ Tape \& Reel
LM2575-12TA5T	12	TO-263-5	50 Units / Tube
LM2575-15TB5T	15	TO-220-5	50 Units / Tube
LM2575-15TB5BT	15	TO-220-5B	50 Units/ Tube
LM2575-15TA5R	15	TO-263-5	800 Units/ Tape \& Reel
LM2575-15TA5T	15	TO-263-5	50 Units / Tube

[^0]
- ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE	UNIT
Maximum Supply Voltage	45	V
$\overline{\text { ON/OFF Pin Input Voltage }}$	$-0.3 \leq \mathrm{V} \leq \mathrm{V}_{\text {IN }}$	V
Output Voltage to Ground (Steady State)	-1.0	V
Power Dissipation	Internally Limited	-65 to +150
Storage Temperature Range	+150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	+260	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)		${ }^{\circ} \mathrm{C}$

- RECOMMENDED OPERATING CONDITIONS

PARAMETER	VALUE	UNIT
Temperature Range	$-40 \leq T_{J} \leq 125$	${ }^{\circ} \mathrm{C}$
Supply Voltage	40	V

- BLOCK DIAGRAM

- ELECTRICAL CHARACTERISTICS: LM2575-3.3
(Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Output Voltage	$\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	3.234	3.3	3.366	V
Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	$3.168 / 3.135$	3.3	$3.432 / 3.465$	V
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		-	75	-	$\%$

- ELECTRICAL CHARACTERISTICS: LM2575-5.0
(Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	4.900	5.0	5.100	V
Output Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	$4.800 / 4.750$	5.0	$5.200 / 5.250$	V
Efficiency	$\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		-	77	-	$\%$

- ELECTRICAL CHARACTERISTICS: LM2575-12
(Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Output Voltage	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	11.76	12.0	12.24	V
Output Voltage	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	$11.52 / 11.40$	12.0	$12.48 / 12.60$	V
Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		-	88	-	$\%$

- ELECTRICAL CHARACTERISTICS: LM2575-15
(Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Feedback Voltage	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	14.70	15.0	15.30	V
Feedback Voltage	$18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}$	$14.40 / 14.25$	15.0	$15.60 / 15.75$	V
Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		-	88	-	$\%$

- ELECTRICAL CHARACTERISTICS: LM2575-adj
(Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Feedback Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	$\mathrm{~V}_{\text {OUT }}$	1.217	1.230	1.243	V
Feedback Voltage	$8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$					
$\mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	$\mathrm{~V}_{\text {OUT }}$	$1.193 / 1.180$	1.230	$1.267 / 1.280$	V	
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1.0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		-	77	-	$\%$

LM2575 1.0A Step - Down Voltage Switching Regulators

- ELECTRICAL CHARACTERISTICS: All Output Voltage Versions
(Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ and ADJ version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for 12 V version. and $\mathrm{V}_{I N}=30 \mathrm{~V}$ for 15 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ (Adjustable Version Only)	$I_{\text {FB }}$	-	50	100 / 500	nA
Oscillator Frequency	(Note 11)	F_{O}	47 / 42	52	$58 / 63$	kHz
Saturation Voltage	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}($ Notes 4$)$	$\mathrm{V}_{\text {SAT }}$	-	0.9	1.2 / 1.4	V
Max Duty Cycle (ON)	(Note 5)	T_{DC}	93	98	-	\%
Current Limit	(Note 4, 11)	I_{CL}	$1.7 / 1.3$	2.2	3.0 / 3.2	A
Output Leakage Current	$\begin{array}{ll} (\text { Notes } 6,7) & \text { Output }=0 \vee \\ & \text { Output }=-1 \mathrm{~V} \end{array}$	I_{OL}		7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
Quiescent Current	(Note 6)	I_{Q}	-	5	10	mA
Standby Quiescent Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	$\mathrm{I}_{\text {StBY }}$	-	50	200	A
Thermal Resistance	TO-220 Package, Junction to Ambient (Note 8) TO-220 Package, Junction to Ambient (Note 8) TO-220,TO-263, Package, Junction to Case TO-252 Package, Junction to Case TO-263 Package, Junction to Ambient (Note 10)	$\begin{aligned} & \text { JA } \\ & \text { JA } \\ & \text { JC } \\ & \text { JC } \\ & \text { JA } \end{aligned}$		$\begin{array}{r} 65 \\ 45 \\ 2 \\ 6 \\ 37 \end{array}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	V_{IH}	$2.2 / 2.4$	1.4	-	V
Logic Input Level	$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	$\mathrm{V}_{\text {IL }}$	-	1.2	1.0 / 0.8	V
$\overline{\text { ON/OFF Pin Input Current }}$	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	V_{IH}	-	12	30	A
	$\overline{\mathrm{ON}} /$ OFF Pin $=0 \mathrm{~V}(\mathrm{ON})$	$I_{\text {IL }}$	-	0	10	A

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indic ate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. Guaranteed specifications and Test conditions are shown in Electrical Characteristics.
Note 2: All limits guaranteed at $25^{\circ} \mathrm{C}$ (standard type face) and over full operating temperature range (bold type face). All $25^{\circ} \mathrm{C}$ limits are 100% production tested. All limits over full operating temperature range are guaranteed via correlation using standard Statistics Quality Control methods.
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2575 is used as show in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback pin removed from output and connected to 0V.
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$
Note 8: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
Note 9: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 4$ inch leads soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.
Note 10: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board Copper area thermally connected to the package. Using 0.5 square inches of copper area, JA is $50^{\circ} \mathrm{C} / / \mathrm{W}$, with 1 square inch of copper area, JA is $37^{\circ} \mathrm{C} / \mathrm{W}$, and with 1.6 or more square inches of copper area, jA is $32^{\circ} \mathrm{C} / \mathrm{W}$.
Note 11: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an Overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This selfprotection feature lowers the Average power dissipation of LM2575 By lowering the minimum duty cycle from 5% down to approximately 2%.

- TEST CIRCUIT AND LAYOUT GUIDELINES

Careful layout is important with any switching regulator. Rapidly switching currents associated with wiring inductance generate voltage transients, which can cause problems. To minimize inductance and ground loops, the lengths of the leads indicated by heavy lines in Figure 1 below should be kept as short as possible. Singlepoint grounding (as indicated in Figure 1) or ground plane construction should be used for best results. When using the Adjustable version, place the programming resistors as close as possible to LM2575, to keep the sensitive feedback wiring short.

Figure 1(a). Fixed Output Voltage Versions

$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
$C_{\text {out }}-330 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, MBR360
L1-330 $\mu \mathrm{H}$, 3L Electronic Corp. TC-331M-1.0A-5026
R1-2k, 0.1\%
R2-6.12k, 0.1\%

Figure 1(b).Adjustable Output Voltage Versions

- Typical Performance Characteristics

Figure 2. Switch Saturation Voltage

Figure 3. Dropout Voltage

- Typical Performance Characteristics

Figure 4. Quiescent Current

Figure 6. Minimum Operating Voltage

Figure 5. Maximum Power Dissipation(TO-263)

Figure 7. $\overline{O N} /$ OFF Pin Current (Sinking)

,TO-220-5 PACKAGE OUTLINE DIMENSIONS

- TO-263-5 PACKAGE OUTLINE DIMENSIONS

- TO-220-5B PACKAGE OUTLINE DIMENSIONS

$$
\left(\frac{\text { Inches }}{\mathrm{mm}}\right)
$$

- TO-252-5 PACKAGE OUTLINE DIMENSIONS

$$
\left(\frac{\text { Inches }}{\mathrm{mm}}\right)
$$

[^0]: * TB5B: Bent and Staggered Leads of TO-220 package
 ** For detail Ordering Number identification, please see last page.

