

LM79XX Series 3-Terminal Negative Regulators

General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of -5V, -8V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current drain of

these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

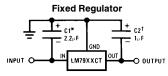
For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

Connection Diagrams

TO-220 Package INPUT OUTPUT INPUT


Front View

GROUND

TL/H/7340-14

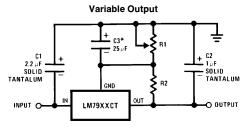
Order Number LM7905CT, LM7912CT or LM7915CT See NS Package Number TO3B

Typical Applications

TL/H/7340-3

- *Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25 μ F aluminum electrolytic may be substituted.
- †Required for stability. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100 μ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.


Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 Electrical Characteristics Conditions unless otherwise noted: $I_{OUT}=500$ mA, $C_{IN}=2.2$ μ F, $C_{OUT}=1$ μ F, $0^{\circ}C \leq T_{J} \leq +125^{\circ}C$, Power Dissipation ≤ 1.5 W.

	Part Nu			_			
Output Voltage				_5 V			
	Input Voltage (unless	otherwise specified)	- 10V			_	
Symbol	Parameter	Conditions	Min	Тур	Max		
V _O	Output Voltage	$T_J = 25^{\circ}C$ $5 \text{ mA} \le I_{OUT} \le 1A$, $P \le 15W$			-5.2 -5.25	V V	
ΔV _O	Line Regulation	T _J = 25°C, (Note 3)			50 -7) 15	mV V mV V	
Δ۷Ο	Load Regulation	$T_J = 25^{\circ}\text{C}$, (Note 3) 5 mA $\leq I_{OUT} \leq 1.5\text{A}$ 250 mA $\leq I_{OUT} \leq 750$ mA		15 5	100 50	mV mV	
IQ	Quiescent Current	T _J = 25°C		1	2	mA	
ΔIQ	Quiescent Current Change	With Line $\label{eq:WithLoad} \mbox{With Load, 5 mA} \leq \mbox{I_{OUT}} \leq \mbox{$1A$}$		$(-25 \le V_{IN} \le -$	0.5 -7) 0.5	mA V mA	
V _n	Output Noise Voltage	$T_A=25^{\circ}C$, 10 Hz $\leq f \leq$ 100 Hz		125		μ٧	
	Ripple Rejection	f = 120 Hz	54	66 (−18 ≤ V _{IN} ≤ −	-8)	dB V	
	Dropout Voltage	T _J = 25°C, I _{OUT} = 1A		1.1		V	
I _{OMAX}	Peak Output Current	$T_J = 25^{\circ}C$		2.2		А	
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ $0 \text{ C} \le T_J \le 100^{\circ}\text{C}$		0.4		mV/°C	

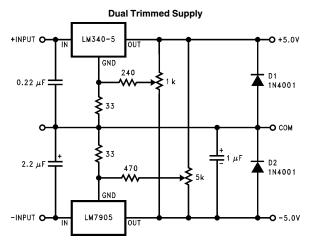
Typical Applications (Continued)

TL/H/7340-2

*Improves transient response and ripple rejection. Do not increase beyond 50 $\mu\text{F}.$

 $V_{OUT} = V_{SET} \left(\frac{R1 + R2}{R2} \right)$

Select R2 as follows: LM7905CT 300Ω LM7912CT 750Ω LM7915CT 1k **Electrical Characteristics** (Continued) Conditions unless otherwise noted: $I_{OUT}=500$ mA, $C_{IN}=2.2~\mu F$, $C_{OUT}=1~\mu F$, $0^{\circ}C \leq T_{J} \leq +125^{\circ}C$, Power Dissipation = 1.5W.


Part Number Output Voltage Input Voltage (unless otherwise specified)			LM7912C		LM7915C				
				−12V −19V		−15 V			Units
						-23V			
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	ı
Vo	Output Voltage	$\begin{split} T_J &= 25^{\circ}C \\ 5 \text{ mA} &\leq I_{OUT} \leq 1\text{A}, \\ P &\leq 15\text{W} \end{split}$	-11.4		12.5 12.6 14.5)	-14.25		-15.75	V V V
ΔVΟ	Line Regulation	T _J = 25°C, (Note 3)		3	30	(-30 (-26	3	50	mV V mV V
ΔV _O	Load Regulation	$\begin{split} T_J &= 25^{\circ}\text{C, (Note 3)} \\ 5 \text{ mA} &\leq I_{OUT} \leq 1.5\text{A} \\ 250 \text{ mA} &\leq I_{OUT} \leq 750 \text{ mA} \end{split}$		15 5	200 75		15 5	200 75	mV mV
lQ	Quiescent Current	$T_{J} = 25^{\circ}C$		1.5	3		1.5	3	mA
ΔI_Q	Quiescent Current Change	With Line With Load, 5 mA \leq I _{OUT} \leq 1A	(-30	$\leq V_{IN} \leq$	0.5 14.5) 0.5	(-30	$\leq V_{IN} \leq 1$	0.5 17.5) 0.5	mA V mA
V _n	Output Noise Voltage	$T_A = 25$ °C, 10 Hz $\leq f \leq 100$ Hz		300			375		μ٧
	Ripple Rejection	f = 120 Hz	54 (-25	70 ≤ V _{IN} ≤	–15)	54 (-30	70 ≤ V _{IN} ≤ -	– 17.5)	dB V
	Dropout Voltage	$T_J = 25^{\circ}C$, $I_{OUT} = 1A$		1.1			1.1		V
I _{OMAX}	Peak Output Current	$T_J = 25^{\circ}C$		2.2			2.2		Α
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ $0 \text{ C} \le T_J \le 100^{\circ}\text{C}$		-0.8			-1.0		mV/°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee Specific Performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Typical Applications (Continued)

TL/H/7340-4

Design Considerations

The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ ^θ JC °C/W	Max ^θ JC °C/W	Typ θJA °C/W	Max ^θ JA °C/W	
TO-220	3.0	5.0	60	40	

$$\mathsf{P}_{\mathsf{D}\,\mathsf{MAX}} = \frac{\mathsf{T}_{\mathsf{J}\,\mathsf{Max}} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JC}} + \theta_{\mathsf{CA}}}\,\mathsf{or}\,\frac{\mathsf{T}_{\mathsf{J}\,\mathsf{Max}}\,\mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JA}}}$$

 $heta_{ extsf{CA}} = heta_{ extsf{CS}} + heta_{ extsf{SA}}$ (without heat sink)

Solving for T_J:

$$\begin{split} T_{J} &= T_{A} + P_{D} \left(\theta_{JC} + \theta_{CA} \right) \text{ or} \\ &= T_{A} + P_{D} \theta_{JA} \left(\text{without heat sink} \right) \end{split}$$

Where:

 T_J = Junction Temperature

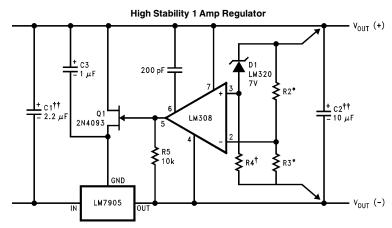
T_A = Ambient Temperature

P_D = Power Dissipation

 $\theta_{
m JA}~=$ Junction-to-Ambient Thermal Resistance

 $\theta_{
m JC} =$ Junction-to-Case Thermal Resistance

 $\theta_{\text{CA}} = \text{Case-to-Ambient Thermal Resistance}$

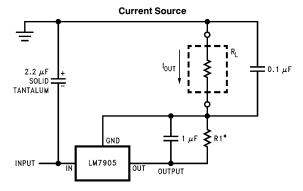

 $\theta_{\text{CS}} = \text{Case-to-Heat Sink Thermal Resistance}$

 $\theta_{\mathsf{SA}} = \mathsf{Heat} \; \mathsf{Sink}\text{-to-Ambient Thermal Resistance}$

Typical Applications (Continued)

Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.

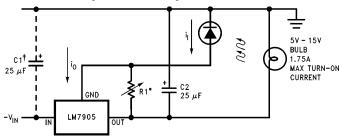
The bypass capacitors, (2.2 μF on the input, 1.0 μF on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 μF or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.



TL/H/7340-5

Load and line regulation \leq 0.01% temperature stability \leq 0.2%

- †Determine Zener current
- ††Solid tantalum
- *Select resistors to set output voltage. 2 ppm/°C tracking suggested


Typical Applications (Continued)

 $*I_{OUT} = 1 \text{ mA} + \frac{5V}{R1}$

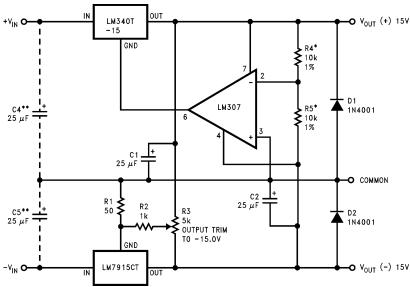
TL/H/7340-7

Light Controller Using Silicon Photo Cell

TL/H/7340-8

^{*}Lamp brightness increase until i_I = i_Q ($\approx\,$ 1 mA) + 5V/R1.

 $[\]dagger$ Necessary only if raw supply filter capacitor is more than 2" from LM7905CT

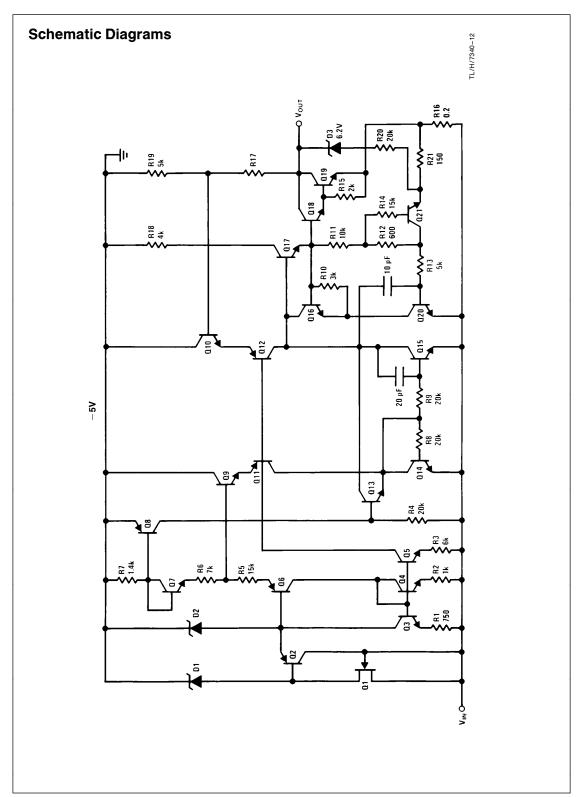

Typical Applications (Continued)

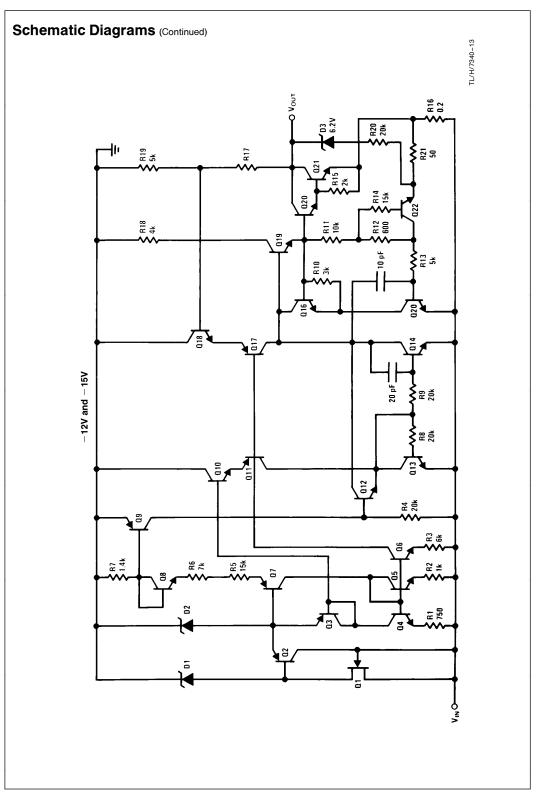
High-Sensitivity Light Controller R2 100k 2N4143 Q1 2N4143 Q2 2N4141 LM7905 OUT High-Sensitivity Light Controller 8V - 15V BULB 1.75A MAX TURN-ON CURRENT

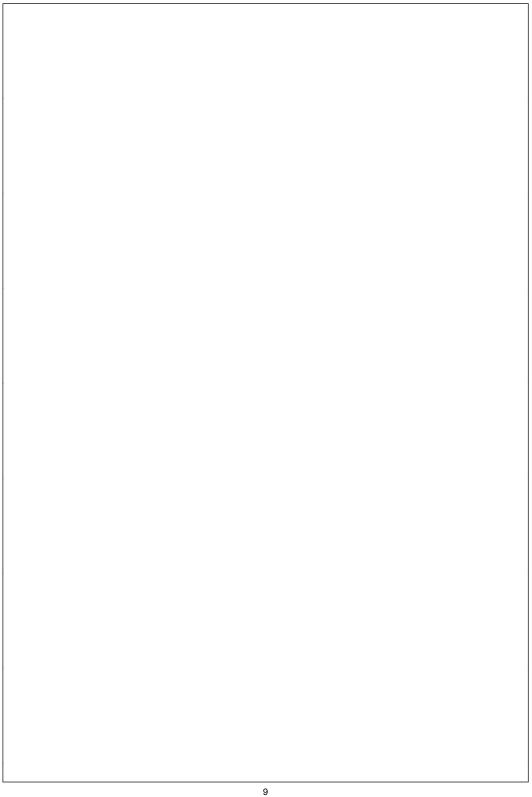
TL/H/7340-9

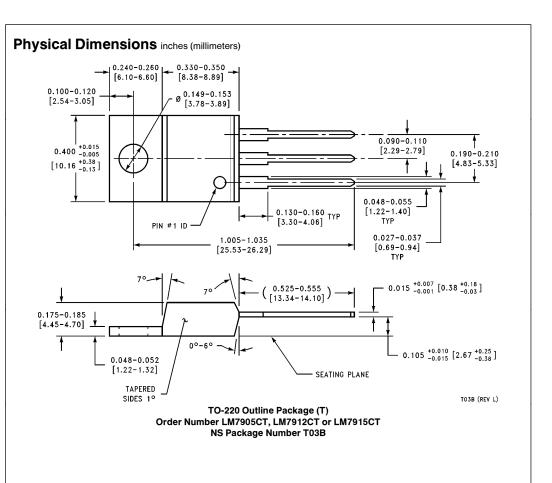
†Necessary only if raw supply filter capacitor is more than 2" from LM7905

\pm 15V, 1 Amp Tracking Regulators


TL/H/7340-1


 $\begin{array}{c|ccccc} & & & & & & & & & & & & \\ \text{Load Regulation at } \Delta I_L = 1 A & & & & & & 40 \text{ mV} & 2 \text{ mV} \\ \text{Output Ripple, } C_{\text{IN}} = 3000 \text{ } \mu\text{F, } I_L = 1 A & & 100 \text{ } \mu\text{Vrms} \\ \text{Temperature Stability} & & 50 \text{ mV} \\ \text{Output Noise } 10 \text{ Hz} \leq f \leq 10 \text{ kHz} & & 150 \text{ } \mu\text{Vrms} \\ \end{array}$


^{*}Lamp brightness increases until i $_{\rm i} =$ 5V/R1 (I $_{\rm i}$ can be set as low as 1 μ A)


^{*}Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.

^{**}Necessary only if raw supply filter capacitors are more than 3" from regulators.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (652) 2737-1600 Fax: (652) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408