

6-Pin DIP Optoisolators Transistor Output

The M4N37 device consists of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector.

- Current Transfer Ratio 100% Minimum @ Specified Conditions
- · Guaranteed Switching Speeds
- · Meets or Exceeds All JEDEC Registered Specifications

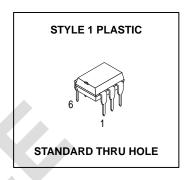
Applications

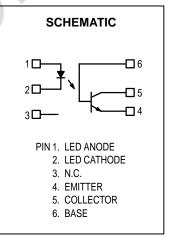
- · General Purpose Switching Circuits
- Interfacing and coupling systems of different potentials and impedances
- · Regulation Feedback Circuits
- · Monitor & Detection Circuits
- Solid State Relays

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
INPUT LED			
Reverse Voltage	VR	6	Volts
Forward Current — Continuous	lF	60	mA
LED Power Dissipation @ T _A = 25°C with Negligible Power in Output Detector Derate above 25°C	PD	100 1.41	mW mW/°C

OUTPUT TRANSISTOR


VCEO	30	Volts
VEBO	7	Volts
VCBO	70	Volts
IC	50	mA
PD	150 1.76	mW mW/°C
	VEBO VCBO IC	VEBO 7 VCBO 70 IC 50 PD 150


TOTAL DEVICE

Isolation Source Voltage ⁽¹⁾ (Peak ac Voltage, 60 Hz, 1 sec Duration)	VISO	7500	Vac(pk)
Total Device Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 2.94	mW mW/°C
Ambient Operating Temperature Range(2)	T _A	-55 to +100	°C
Storage Temperature Range(2)	T _{stg}	-55 to +150	°C
Soldering Temperature (10 sec, 1/16" from case)	TL	260	°C

- 1. Isolation surge voltage is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
- 2. Refer to Quality and Reliability Section in Opto Data Book for information on test conditions.

M4N37

M4N37

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)(1)

	Characteristic	Symbol	Min	Typ (1)	Max	Unit
INPUT LED						
Forward Voltage (I _F = 1	0 mA) $ T_{A} = 25^{\circ}C $ $ T_{A} = -55^{\circ}C $ $ T_{A} = 100^{\circ}C $	VF	0.8 0.9 0.7	1.15 1.3 1.05	1.5 1.7 1.4	Volts
Reverse Leakage Curre	ent (V _R = 6 V)	IR	_	_	10	μΑ
Capacitance (V = 0 V, f	= 1 MHz)	CJ	_	18	_	pF
OUTPUT TRANSISTOR						
Collector–Emitter Dark	Current $(V_{CE} = 10 \text{ V}, T_A = 25^{\circ}\text{C})$ $(V_{CE} = 30 \text{ V}, T_A = 100^{\circ}\text{C})$	ICEO	_	1 —	50 500	nA μA
Collector–Base Dark Current ($V_{CB} = 10 \text{ V}$) $T_A = 25^{\circ}\text{C}$ $T_A = 100^{\circ}\text{C}$		ІСВО	_	0.2 100	20 —	nA
Collector–Emitter Breakdown Voltage (I _C = 1 mA)		V(BR)CEO	30	45	_	Volts
Collector–Base Breakdown Voltage (I _C = 100 μA)		V(BR)CBO	70	100	_	Volts
Emitter–Base Breakdov	vn Voltage (I _E = 100 μA)	V(BR)EBO	7	7.8	_	Volts
DC Current Gain (I _C = 2 mA, V _{CE} = 5 V)		hFE	_	400	_	_
Collector–Emitter Capacitance (f = 1 MHz, V _{CE} = 0)		CCE	_	7	_	pF
Collector–Base Capacitance (f = 1 MHz, V _{CB} = 0)		C _{CB}	_	19	_	pF
Emitter-Base Capacitance (f = 1 MHz, V _{EB} = 0)		C _{EB}	_	9	1	pF
COUPLED						
Output Collector Currer (I _F = 10 mA, V _{CE} = 1		I _C (CTR) ⁽²⁾	10 (100) 4 (40) 4 (40)	30 (300) — —		mA (%)
Collector–Emitter Satur	ation Voltage (I _C = 0.5 mA, I _F = 10 mA)	V _{CE(sat)}	_	0.14	0.3	Volts
Turn-On Time		t _{on}	_	7.5	10	μs
Turn-Off Time	$(I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V},$	toff	_	5.7	10	
Rise Time	$R_{L} = 100 \Omega)(3)$	t _r	_	3.2	_	
Fall Time		t _f		4.7		
Isolation Voltage (f = 60 Hz, t = 1 sec)		VISO	7500	_	_	Vac(pk)
Isolation Current ⁽⁴⁾ (V _{I–O} = 1500 Vpk)		IISO	_	8	100	μΑ
Isolation Resistance (V = 500 V)(4)		R _{ISO}	10 ¹¹	_	_	Ω
Isolation Capacitance (V = 0 V, f = 1 MHz)(4)		C _{ISO}	_	0.2	2	pF

^{1.} Always design to the specified minimum/maximum electrical limits (where applicable).

^{2.} Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.

^{3.} For test circuit setup and waveforms, refer to Figure 14.

^{4.} For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

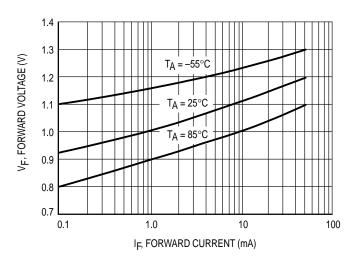


Figure 1. Forward Voltage vs. Forward Current

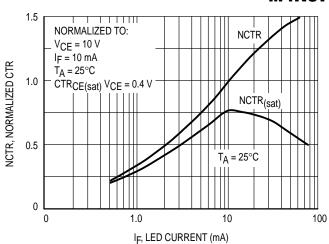


Figure 2. Normalized Non-Saturated and Saturated CTR, T_A = 25°C vs. LED Current

Figure 3. Normalized Non–Saturated and Saturated CTR, $T_A = 50^{\circ}C$ vs. LED Current

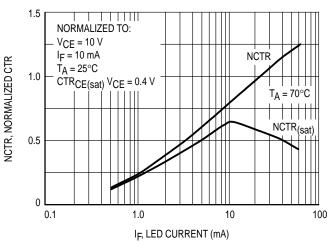


Figure 4. Normalized Non–Saturated and Saturated CTR, T_A = 70°C vs. LED Current

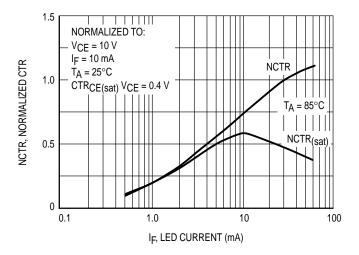


Figure 5. Normalized Non–Saturated and Saturated CTR, TA = 85°C vs. LED Current

M4N37

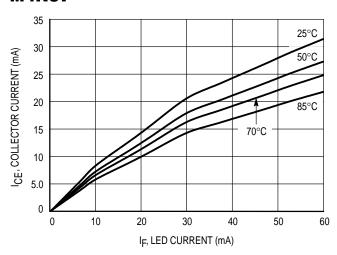


Figure 6. Collector–Emitter Current vs. Temperature and LED Current

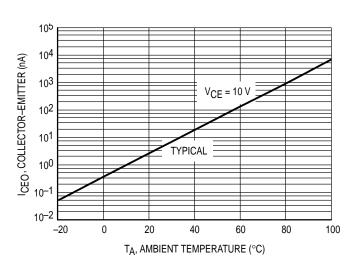


Figure 7. Collector–Emitter Leakage Current vs. Temperature

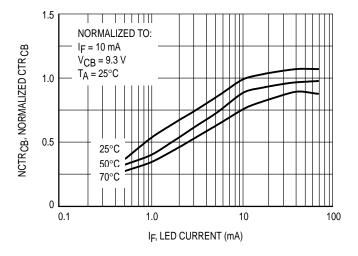


Figure 8. Normalized CTRcb vs. LED Current and Temperature

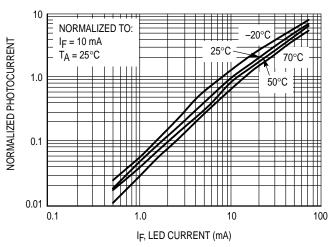


Figure 9. Normalized Photocurrent vs. IF and Temperature

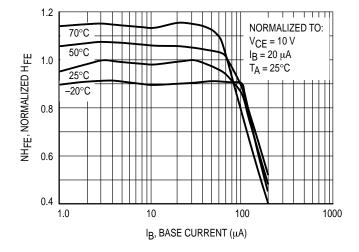


Figure 10. Normalized Non–Saturated H_{FE} vs. Base Current and Temperature

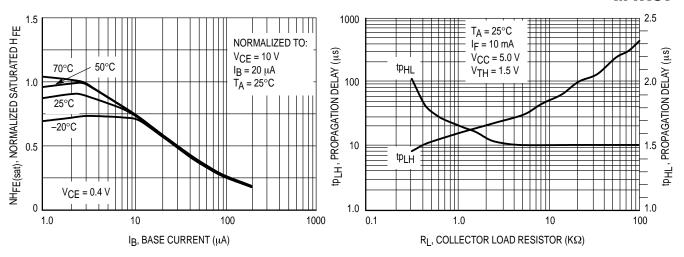


Figure 11. Normalized HFE vs. Base Current and Temperature

Figure 12. Propagation Delay vs. Collector Load Resistor

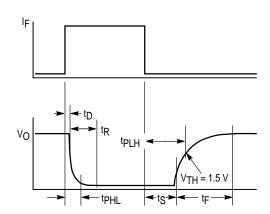


Figure 13. Switching Timing

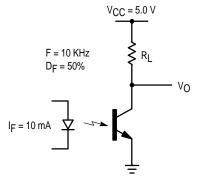
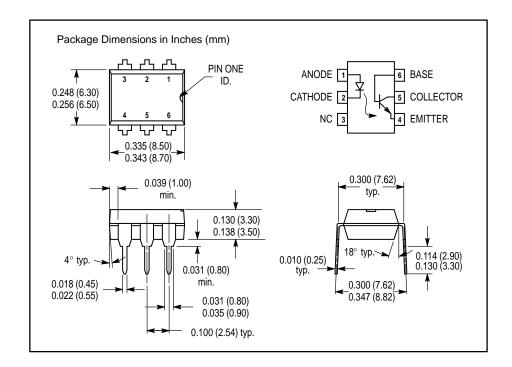



Figure 14. Switching Schematic

M4N37

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

INTERNET: http://www.mot.com/SPS/

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

M4N37/D