

M52743BSP

I²C BUS Controlled 3-Channel Video Preamplifier

REJ03F0193-0201 Rev.2.01 Mar 31, 2008

Description

M52743BSP is semiconductor integrated circuit for CRT display monitor.

It includes OSD blanking, OSD mixing, retrace blanking, wide band amplifier, brightness control.

Main/sub contrast and OSD adjust function can be controlled by I²C BUS.

Features

Frequency band width: RGB OSD Input: RGB OSD BLK (for OSD) Retrace BLK Output: RGB

OSD

150 MHz (at -3 dB) 80 MHz $0.7 V_{P-P}$ (typ.) 3 V_{P-P} min. (positive) $3 V_{P-P}$ min. (positive) 3 V_{P-P} min. (positive) 5.5 V_{P-P} (max.) 5 V_{P-P} (max.) Main contrast and sub contrast can be controlled by I²C BUS.

Include internal and external pedestal clamp circuit.

Application

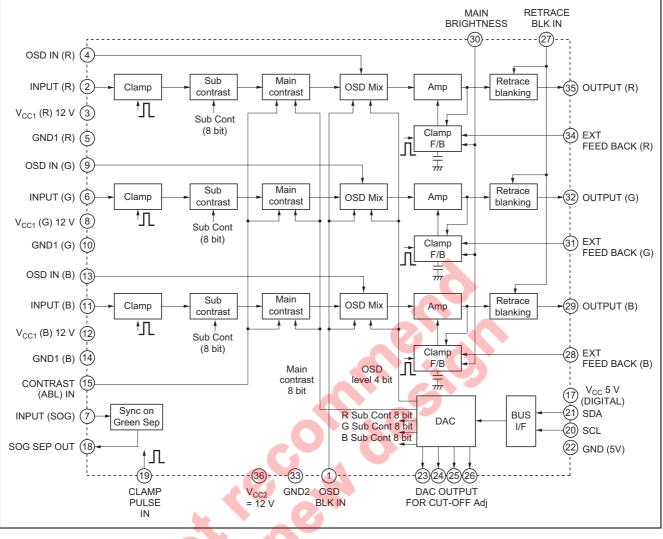
CRT display monitor

Recommended Operating Condition

Supply voltage range:

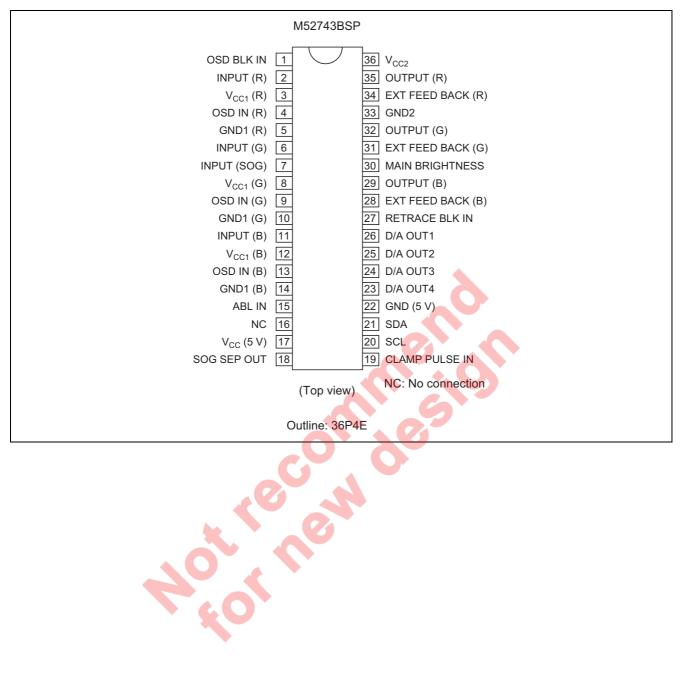
11.5 to 12.5 V (V3, V8, V12, V36)

Rated supply voltage:


4.5 to 4.4 V (V17) 12.0 V (V3, V8, V12, V36)

5.0 V (V17)

Major Specification


BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function

Block Diagram

20,0

Pin Arrangement

Absolute Maximum Ratings

			(Ta = 25°C)
Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	13.0	V
Power dissipation	Pd	2403	mW
Ambient temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-40 to +150	°C
Recommended supply	Vopr	12.0	V
Voltage range	Vopr	10.5 to 12.5	V
Case temperature	θјс	22	°C/W

Electrical Characteristics

$(V_{CC} = 12 \text{ V}, 5 \text{ V}, \text{Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted})$

	1												~	T 1												
			Limits	6		Test			Inp	out				TL tage					BUS	s c	TL	(H)				
Item	Symbol	Min.	Тур.	Max.	Unit	Point (s)	2, 6, 11 RGB in	1 OSD BLK	4, 9 13 OSD in	19 CP in	27 ReT BLK	7 SOG in	30 Bri- ght	15 ABL	00H Main Cont	01H Sub Cont	02H Sub Cont 2	03H Sub Cont 3	04H OSE Adj	BL	кļ	06H D/A OUT 1	07H D/A OUT 2	08H D/A OUT 3	D/A	0BH INT EXT
Circuit current1	I _{CC1}		110	130	mA	Ι _Α	а	а	а	b SG5	а	а	4.0	5.0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0	1 00 0		FFH 255	FFH 255	FFF 255		00H 0
Circuit current2	I _{CC2}	_	18	22	mA	Ι _Β	а	а	а	b SG5	а	а	4.0	5.0												
Output dynamic range	Vomax	6.0	8.0	_	V_{P-P}	OUT	b SG2	а	а	b SG5	а	а	Vari able	5.0												
Maximum input	Vimax	1.6	—	—	V _{P-P}	IN OUT	b SG2 Variable	а	а	b SG5	а	а	2.0	5.0	64H 100											
Maximum gain	Gv	16.5	17.7	19.7	dB	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255											
Relative max- imum gain	ΔGv	0.8	1.0	1.2	—		-	7		—	—	Ξ	-	—	—											
Main contrast control characteristics1	V _{C1}	14.5	16.0	17.5	dB	OUT	b SG1	а	a	b SG5	а	а	2.0	5.0	C8H 200											
Main contrast control relative characteristics1	ΔV_{C1}	0.8	1.0	1.2	-		-	-	7		-	—														
Main contrast control characteristics2	V _{C2}	8.5	10.0	11.5	dB	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	64H 100											
Main contrast control relative characteristics2	ΔV_{C2}	0.8	1.0	1.2	-		_	—				_	—													
Main contrast control characteristics3	V _{C3}	0.2	0.4	0.6	V _{P-P}	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	14H 20											
Main contrast control relative characteristics3	ΔV_{C3}	0.8	1.0	1.2	_		_	_		_				-	_											
Sub contrast control characteristics1	V _{SC1}	14.8	16.3	17.8	dB	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	C8H 200	C8H 200	C8H 200								
Sub contrast control relative characteristics1	ΔV_{SC1}	0.8	1.0	1.2	—		—	—	—	—	_	_	—	-	_	—	—	—								
Sub contrast control characteristics2	V _{SC2}	11.1	12.6	14.1	dB	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	64H 100	64H 100	64H 100								
Sub contrast control relative characteristics2	ΔV_{SC2}	0.8	1.0	1.2	—		_	_	—	—	_	—	—	-	—	_	-	-							\parallel	
Sub contrast control characteristics3	V _{SC3}	1.4	1.7	2.0	V _{P-P}	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	FFH 255	14H 20	14H 20	14H 20								
Sub contrast control relative characteristics3	ΔV_{SC3}	0.8	1.0	1.2	—		—	—	_	—	_	_	—	-	_	_	—	-			,	Ţ				

REJ03F0193-0201 Rev.2.01 Mar 31, 2008 Page 4 of 25

Electrical Characteristics (cont.)

		L	imits						Inp	ut			C ⁻ Volt	TL age					BU	IS C	CTL	. (H)				
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point (s)	2, 6, 11 RGB in	1 OSD BLK	4, 9 13 OSD in	19 CP in	27 ReT BLK	7 SOG in	30 Bri- ght	15 ABL	00H Main Cont	01H Sub Cont 1	02H Sub Cont 2	03H Sub Cont 3		SD E	05H BLK Adj	06H D/A OUT 1	07H D/A OUT 2	08H D/A OUT 3	09H D/A OUT 4	0BH INT EXT
Main/sub contrast control characteristics2	VMSC	3.2	3.8	4.4	V _{P-P}	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0	C8H 200	C8H 200	C8H 200	C8H 200	00H 0		он 0	FFH 255	FFH 255	FFH 255	4 FFH 255	00H 0
Main/sub contrast control relative characteristics2	∆VMSC	0.8	1.0	1.2	—			_	_	-	—	—	—		—	—		-			Τ					
ABL control characteristics1	ABL1	3.8	4.6	5.4	V _{P-P}	OUT	b SG1	а	а	b SG5	а	а	2.0	4.0	FFH 255	FFH 255	FFH 255	FFH 255			T					
ABL control relative	∆ABL1	0.8	1.0	1.2	—	—	_	—		-	—		—	—					Π							
characteristics1 ABL control	ABL2	2.2	2.7	3.2	V _{P-P}	OUT	b	а	а	b	а	а	2.0	2.0					\square		\top					┼┼┤
characteristics2 ABL control relative	∆ABL2	0.8	1.0	1.2	—	—	<u>SG1</u>	—	—	SG5			—	—					Ħ							
characteristics2 Brightness control	V _{B1}	3.3	3.7	4.1	V	OUT	а	а	а	b SG5	а	а	4.0	5.0												
characteristics1 Brightness control relative	ΔV_{B1}	-0.3	0	0.3	—				—	-	—		—													
characteristics1 Brightness control characteristics2	V _{B2}	1.5	1.8	2.1	V	OUT	а	а	а	b SG5	а	а	2.0	5.0					Ħ							
Brightness control relative characteristics2	ΔV_{B2}	-0.3	0	0.3	—		—			_		-	E	5							T					
Brightness control characteristics3	V _{B3}	0.7	0.9	1.1	V	OUT	а	а	а	b SG5	а	а	1.0	5.0												
Brightness control relative characteristics3	ΔV_{B3}	-0.3	0	0.3	—	—	—			F		—	-	Ę												
Frequency characteristics1 (f = 50 MHz)	F _{C1}	-2.0	0	2.5	dB	OUT	b SG3	а	a	a 5 V	а	a	Vari able	5.0	Vari able											
Frequency relative characteristics1	ΔF_{C1}	-1.0	0	1.0	dB	-		9	—	~	-	-			—					,	Ţ					
(f = 50 MHz) Frequency characteristics1	F _{C1} '	-3.0	0	3.0	dB	OUT	b SG3	а	а	а 5 V	а	а	Vari able	5.0	Vari able	FFH 255	FFH 255	FFH 255	00H		♥ 00Н 0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0
(f = 150 MHz) Frequency relative characteristics1 (f = 150 MHz)	∆F _{C1} '	-1.0	0	1.0	dB	-	₹	-		-		—														
Frequency characteristics2 (f = 150 MHz)	F _{C2}	-3.0	3.0	5.0	dB	OUT	b SG3	а	а	a 5 V	а	а	Vari able	5.0												
Frequency relative characteristics2 (f = 150 MHz)	ΔF_{C2}	-1.0	0	1.0	dB	P	—	—	—	-	—	—	—	—												
Crosstalk1 (f = 50 MHz)	C.T.1	—	-25	-20		OUT (29) OUT (32) OUT (29)	2bSG3 6a 11a	а	а	a 5 V	а	а	Vari able	5.0	FFH 255											
Crosstalk1 (f = 150 MHz)	C.T.1'	_	-15	-10		OUT (32)	6a 11a	а	а	а 5 V	а	а	Vari able													
Crosstalk2 (f = 50 MHz)	C.T.2		-25	-20		OUT (29) OUT (35) OUT (29)	6bSG3 11a	a	a	a 5 V	a	a	Vari able	5.0 5.0												
Crosstalk2 (f = 150 MHz) Crosstalk3	C.T.2'		-15 -25	-10 -20	dB	OUT (35)	6bSG3 11a	a	a	a 5 V	a	a	Vari able Vari	5.0												
(f = 50 MHz) Crosstalk3	C.T.3		-25	-20		OUT (32) OUT (35) OUT (32)	11bSG3	a	a	a 5 V	a	a	vari able Vari	5.0												
(f = 150 MHz)	C.T.3'		-15	-10	uВ	OUT (32) OUT (35)	6a 11bSG3	а	а	а 5 V	а	а	vari able	5.0							ł					

Electrical Characteristics (cont.)

		L	.imits						Inpu	ıt			C Volt						BU	S C1		I)			
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point (s)	2, 6, 11 RGB in	1 OSD BLK	4, 9 13 OSD	19 CP in	27 ReT BLK	7 SOG in	30 Bri- ght	15 ABL	00H Main Cont	01H Sub Cont	02H Sub Cont	03H Sub Cont	04H OSD Adj	05H BLK Adj	OUT	D/A		09H D/A OUT 4	INT
Pulse characteristics1 (4 V _{P-P})	Tr		1.7		ns	OUT	b SG1	а	a	b SG5	а	а	Vari able	5.0	Vari able	1 FFH 255	2 FFH 255	3 FFH 255	00H 0	00H 0	1 FFH 255	FFH 255	3 FFH 255	4 FFH 255	
Pulse characteristics2 (4 V _{P-P})	Tf		3.0	—	ns	OUT	b SG1	а	а	b SG5	а	а	Vari able	5.0	Vari able										
Clamp pulse threshold voltage	VthCP	1.0	1.5	2.0	V	OUT	b SG1	а	а	b SG5 Variable	а	а	2.0	5.0	FFH 255										
Clamp pulse minimum width	WCP	0.2	0.5	-	μs	OUT	b SG1	а	а	b SG5 Variable	а	а	2.0	5.0											
characteristics1	P _{DCH}	-3.0	0	0.3	V	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0											
Pedestal voltage temperature characteristics2	P _{DCL}	-3.0	0	0.3	V	OUT	b SG1	а	а	b SG5	а	а	2.0	5.0											
OSD pulse characteristics1	OTr	—	3.0	6.0	ns	OUT	а	а	b SG6	b SG5	а	а	2.0	5.0					08H 8						
OSD pulse characteristics2	OTf	_	3.0	6.0	ns	OUT	а	а	b SG6	b SG5	а	а	2.0	5.0					08H 8						
OSD adjust control characteristics1	Oaj1	4.6	5.4	6.2	V _{P-P}	OUT	а	b SG6	b SG6	b SG5	а	а	2.0	5.0					0FH 15						
OSD adjust control relative characteristics1	∆Oaj1	0.8	1.0	1.2								_		2					-						
OSD adjust control characteristics2	Oaj2	2.8	3.3	3.8	V _{P-P}	OUT	а	b SG6	b SG6	b SG5	а	а	2.0	5.0					08H 8						
OSD adjust control relative characteristics2		0.8	1.0	1.2			_	_	_				-						-						
OSD adjust control characteristics3	Oaj3	0	0.1	0.5	V _{P-P}	OUT	а	b SG6	b SG6	b SG5	а	а	2.0	5.0					08H 8						
OSD adjust control relative characteristics3	∆Oaj3	0.8	1.0	1.2	_	_	-		Ð	_		5		_					-						
OSD input threshold voltage	VthOSD	2.2	2.7	3.2	V	OUT	а	b SG6	b SG6 _{Variable}	b SG5	а	а	2.0	5.0					08H 8						
OSD BLK input threshold voltage	VthBLK	2.2	2.7	3.2	V	OUT	b SG1	b SG6 _{Variable}	а	b SG5	а	а	2.0	5.0					00H 0	•					
Retrace BLK characteristics1	HBLK1	1.7	2.0	2.3	×	OUT	а	а	a	b SG5	b SG7	а	2.0	5.0						0FH 15					
Retrace BLK characteristics2	HBLK2	0.7	1.0	1.3	<	OUT	а	а	а	b SG5	b SG7	а	2.0	5.0						06H 6					
Retrace BLK characteristics3	HBLK3	0.1	0.4	0.7	V	OUT	а	а	а	b SG5	b SG7	а	2.0	5.0						00H 0					
Retrace BLK input threshold voltage	VthRET	1.0	1.5	2.0	V	OUT	а	а	а	b SG5	b SG7 _{Variable}	а	2.0	5.0						08H 8					
SOG input maximum noise voltage	SS-NV	0	0.01	0.02	V _{P-P}	SonG IN Sync OUT	а	а	а	а	а	b SG4 _{Variable}	2.0	5.0		_	_	-	-	-	-	-	-	-	-
SOG minimum input voltage	SS-SV	0.2	0.3	-	V _{P-P}	SonG IN Sync OUT	а	а	а	а	а	b SG4 _{Variable}	2.0	5.0		_	_	-	-	-	-	-	-	-	-
Sync output high level	VSH	4.5	4.9	5.0	V	Sync OUT	а	а	а	а	а	b SG4		5.0	—			_	_	_	-	-	_	-	_
Sync output low level	VSL	0	0.3	0.6	V	Sync OUT	а	а	а	а	а	b SG4	2.0		—	—	—	_	_		-	-	-	-	-
Sync output delay time1	TDS-F	0	60	90	ns	Sync OUT	а	а	а	а	а	b SG4	2.0	5.0	—			-	-	-	-	-	-	-	-

Electrical Characteristics (cont.)

		L	imits			- .			Inpu	ıt			C ⁻ Volt	TL age					BUS	S СТ	Ľ (H)			
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point (s)	2, 6, 11 RGB in	1 OSD BLK	4, 9 13 OSD in	19 CP in	27 ReT BLK	7 SOG in	30 Bri- ght	15 ABL	00H Main Cont	01H Sub Cont 1	02H Sub Cont 2	03H Sub Cont 3	04H OSD Adj	05H BLK Adj	06H D/A OUT 1	07H D/A OUT 2	08H D/A OUT 3	09H D/A OUT 4	0BH INT EXT
Sync output delay time2	TDS-R	0	60	90	ns	Sync OUT	а	а	а	а	а	b SG4	2.0	5.0	—	—	—		—	—	-	—	—	—	_
D/A H output voltage	VOH	4.5	5.0	5.5	V _{DC}	D/A OUT	а	а	а	а	а	а	2.0	5.0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0	00H 0	FFH 255	FFH 255	FFH 255	FFH 255	00H 0
D/A L output voltage	VOL	0	0.5	1.0	V _{DC}	D/A OUT	а	а	а	а	а	а	2.0	5.0							00H 0	00H 0	00H 0	00H 0	
D/A output current range	IAO	-1.0	—	0.4	mA	D/A OUT	а	а	а	а	а	а	2.0	5.0							Vari able	Vari able	Vari able	Vari able	
D/A nonlinearity	DNL	-1.0	—	1.0	LSB	D/A OUT	а	а	а	а	а	а	2.0	5.0	ł		ł	ł	ł		Vari able	Vari able	Vari able	Vari able	

Electrical Characteristics Test Method

I_{CC1} Circuit Current1

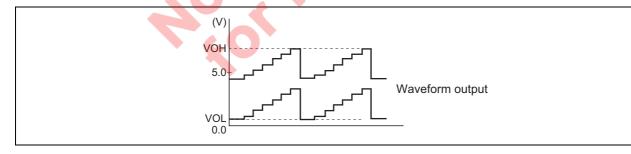
Measuring conditions are as listed in supplementary Table.

Measured with a current meter at test point I_A .

I_{CC2} Circuit Current2

Measuring conditions are as listed in supplementary Table.

Measured with a current meter at test point I_B .


Vomax Output Dynamic Range

Decrease V30 gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL.

Next, increase V30 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH.

Voltage Vomax is calculated by the equation below:

Vomax = VOH - VOL

Vimax Maximum Input

Increase the input signal (SG2) amplitude gradually, starting from 700 mV_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

G_v Maximum Gain

Input SG1, and read the amplitude output at OUT (29, 32, 35). The amplitude is called VOUT (29, 32, 35).

Maximum gain G_V is calculated by the equation below:

$$G_V = 20 \log \frac{VOUT}{0.7}$$
 (dB)

∆Gv Relative Maximum Gain

Relative maximum gain ΔG_V is calculated by the equation below:

$$\label{eq:GV} \begin{split} \Delta G_{V} &= \text{VOUT (29) / VOUT (32),} \\ & \text{VOUT (32) / VOUT (35),} \\ & \text{VOUT (35) / VOUT (29)} \end{split}$$

V_{C1} Main Contrast Control Characteristics1

Measuring the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35).

Main contrast control characteristics V_{C1} is calculated by the equation below:

$$V_{C1} = 20 \log \frac{VOUT}{0.7} (dB)$$

ΔV_{C1} Main Contrast Control Relative Characteristics1

Relative characteristics ΔV_{C1} is calculated by the equation below:

$$\label{eq:VC1} \begin{split} \Delta V_{\text{C1}} &= \text{VOUT} \; (29) \; / \; \text{VOUT} \; (32) \; , \\ & \text{VOUT} \; (32) \; / \; \text{VOUT} \; (35) \; , \\ & \text{VOUT} \; (35) \; / \; \text{VOUT} \; (29) \end{split}$$

V_{C2} Main Contrast Control Characteristics2

Measuring condition and procedure are the same as described in V_{C1} .

ΔV_{C2} Main Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔV_{C1} .

V_{C3} Main Contrast Control Characteristics3

Measuring condition and procedure are the same as described in V_{C1} .

ΔV_{C3} Main Contrast Control Relative Characteristics3

Measuring condition and procedure are the same as described in ΔV_{C1} .

V_{SC1} Sub Contrast Control Characteristics1

Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Sub contrast control characteristics V_{SC1} is calculated by the equation below:

$$V_{SC1} = 20 \log \frac{VOUT}{0.7}$$
 (dB)

ΔV_{SC1} Sub Contrast Control Relative Characteristics1

Relative characteristics ΔV_{SC1} is calculated by the equation below:

$$\label{eq:VSC1} \begin{split} \Delta V_{SC1} &= \text{VOUT} \; (29) \; / \; \text{VOUT} \; (32), \\ & \text{VOUT} \; (32) \; / \; \text{VOUT} \; (35), \\ & \text{VOUT} \; (35) \; / \; \text{VOUT} \; (29). \end{split}$$

V_{SC2} Sub Contrast Control Characteristics2

Measuring condition and procedure are the same as described in V_{SC1}.

ΔV_{SC2} Sub Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔV_{SC1} .

V_{SC3} Sub Contrast Control Characteristics3

Measuring condition and procedure are the same as described in V_{SC1} .

ΔV_{SC3} Sub Contrast Control Relative Characteristics3

Measuring condition and procedure are the same as described in ΔV_{SC1} .

VMSC Main/sub Contrast Control Characteristics2

Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Main/Sub contrast control characteristics VMSC1 is calculated by the equation below:

VMSC1 = 20log
$$\frac{\text{VOUT}}{0.7}$$
 (dB)

∆VMSC Main/sub Contrast Control Relative Characteristics2

Relative characteristics $\Delta VMSC1$ is calculated by the equation below:

∆VMSC = VOUT (29) / VOUT (32), VOUT (32) / VOUT (35), VOUT (35) / VOUT (29)

ABL1 ABL Control Characteristics1

Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as ABL1.

△ABL1 ABL Control Relative Characteristics1

Relative characteristics $\triangle ABL1$ is calculated by the equation below:

```
△ABL1 = VOUT (29) / VOUT (32),
VOUT (32) / VOUT (35),
VOUT (35) / VOUT (29)
```

ABL2 ABL Control Characteristics2

Measuring condition and procedure are the same as described in ABL1.

∆ABL2 ABL Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle ABL1$.

V_{B1} Brightness Control Characteristics1

Measure the DC voltage at OUT (29, 32, 35) with a voltmeter. The measured value is called VOUT (29, 32, 35), and is treated as V_{B1} .

ΔV_{B1} Brightness Control Relative Characteristics1

Relative characteristics ΔV_{B1} is calculated by the difference in the output between the channels.

 $\Delta V_{B1} = VOUT (29) - VOUT (32),$ VOUT (32) - VOUT (35), VOUT (35) - VOUT (29)

V_{B2} Brightness Control Characteristics2

Measuring condition and procedure are the same as described in V_{B1} .

ΔV_{B2} Brightness Control Relative Characteristics2

Measuring condition and procedure are the same as described in ΔV_{B1} .

V_{B3} Brightness Control Characteristics3

Measuring condition and procedure are the same as described in V_{B1} .

ΔV_{B3} Brightness Control Relative Characteristics3

Measuring condition and procedure are the same as described in ΔV_{B1} .

F_{C1} Frequency Characteristics1 (f = 50 MHz)

First, SG3 to 1 MHz is as input signal. Input a resister that is about $2 k\Omega$ to offer the voltage at input pins (2, 6, 11) in order that the bottom of input signal is 2.5 V. Control the main contrast in order that the amplitude of sine wave output is 4.0 V_{P-P}. Control the brightness in order that the bottom of sine wave output is 2.0 V_{P-P}. By the same way, measure the output amplitude when SG3 to 50 MHz is as input signal. The measured value is called VOUT (29, 32, 35). Frequency characteristics F_{C1} (29, 32, 35) is calculated by the equation below:

 $F_{C1} = 20\log \frac{VOUT V_{P-P}}{Output amplitude when inputted SG3 (1 MHz): 4 V_{P-P}}$ (dB)

△F_{c1} Frequency Relative Characteristics1 (f = 50 MHz)

Relative characteristics ΔF_{C1} is calculated by the difference in the output between the channels.

F_{c1}' Frequency Characteristics1 (f = 150 MHz)

Measuring condition and procedure are the same as described in F_{C1}, expect SG3 to 150 MHz.

ΔF_{C1} Frequency Relative Characteristics1 (f = 150 MHz)

Relative characteristics ΔF_{C1} ' is calculated by the difference in the output between the channels.

F_{c2} Frequency Characteristics2 (f = 150 MHz)

SG3 to 1 MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0 V_{P-P} . By the same way, measure the output amplitude when SG3 to 150 MHz is as input signal.

The measured value is called VOUT (29, 32, 35). Frequency characteristics F_{C2} (29, 32, 35) is calculated by the equation below:

 F_{C2} = 20log $\frac{VOUT V_{P-P}}{Output amplitude when inputted SG3 (1 MHz): 4 V_{P-P}}$ (dB)

ΔF_{C2} Frequency Relative Characteristics2 (f = 150 MHz)

Relative characteristics ΔF_{C2} is calculated by the difference in the output between the channels.

C.T.1 Crosstalk1 (f = 50 MHz)

Input SG3 (50 MHz) to pin 2 only, and then measure the waveform amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Crosstalk C.T.1 is calculated by the equation below:

C.T.1 = 20log $\frac{\text{VOUT}(29, 32)}{\text{VOUT}(35)}$ (dB)

C.T.1' Crosstalk1 (f = 150 MHz)

Measuring condition and procedure are the same as described in C.T.1, expect SG3 to 150 MHz.

C.T.2 Crosstalk2 (f = 50 MHz)

Input SG3 (50 MHz) to pin 6 only, and then measure the waveform amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Crosstalk C.T.2 is calculated by the equation below:

C.T.2 = 20log
$$\frac{\text{VOUT}(29, 35)}{\text{VOUT}(32)}$$
 (dB)

C.T.2' Crosstalk2 (f = 150 MHz)

Measuring condition and procedure are the same as described in C.T.2, expect SG3 to 150 MHz.

C.T.3 Crosstalk3 (f = 50 MHz)

Input SG3 (50 MHz) to pin 11 only, and then measure the waveform amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Crosstalk C.T.3 is calculated by the equation below:

C.T.3 = 20log
$$\frac{\text{VOUT}(32, 35)}{\text{VOUT}(29)}$$
 (dB)

C.T.3' Crosstalk3 (f = 150 MHz)

Measuring condition and procedure are the same as described in C.T.3, expect SG3 to 150 MHz.

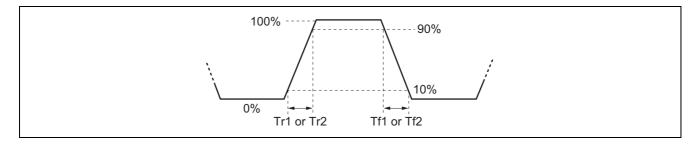
Tr Pulse Characteristics1 (4 V_{P-P})

Control the main contrast (00H) in order that the amplitude of output signal is 4.0 V_{P-P}.

Control the brightness (V30) in order that the Black level of output signal is 2.0 V.

Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with an active probe.

Pulse characteristics Tr is calculated by the equations below:


 $Tr = \sqrt{[(Tr2)^2 - (Tr1)^2]}$ (ns)

Tf Pulse Characteristics2 (4 V_{P-P})

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe.

Pulse characteristics Tf is calculated by the equations below:

$$Tf = \sqrt{[(Tf2)^2 - (Tf1)^2]}$$
 (ns)

VthCP Clamp Pulse Threshold Voltage

Turn down the SG5 input level gradually from 5.0 V_{P-P} , monitoring the waveform output.

Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.

WCP Clamp Pulse Minimum Width

Decrease the SG5 pulse width gradually from 0.5 μ s, monitoring the output. Measure the SG5 pulse width (a point of 1.5 V) when the output pedestal voltage turn decrease with unstable.

P_{DCH} Pedestal Voltage Temperature Characteristics1

Measure the pedestal voltage at 25°C. The measured value is called PDC1.

Measure the pedestal voltage at temperature of -20° C.

The measured value is called PDC2.

Pedestal voltage temperature characteristics 1 is calculated by the equation below:

 $P_{DCH} = PDC1 - PDC2$

P_{DCL} Pedestal Voltage Temperature Characteristics2

Measure the pedestal voltage at 25°C. The measured value is called PDC1

Measure the pedestal voltage at temperature of 75°C.

The measured value is called PDC3.

Pedestal voltage temperature characteristics 2 is calculated by the equation below:

 $P_{DCL} = PDC1 - PDC3$

OTr OSD Pulse Characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oaj1 OSD Adjust Control Characteristics1

Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as Oaj1.

△Oaj1 OSD Adjust Control Relative Characteristics1

Relative characteristics $\Delta Oaj1$ is calculated by the equation below:

∆Oaj1 = VOUT (29) / VOUT (32), VOUT (32) / VOUT (35), VOUT (35) / VOUT (29)

Oaj2 OSD Adjust Control Characteristics2

Measuring condition and procedure are the same as described in Oaj1.

△Oaj2 OSD Adjust Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta Oaj1$.

Oaj3 OSD Adjust Control Characteristics3

Measuring condition and procedure are the same as described in Oaj1.

△Oaj3 OSD Adjust Control Relative Characteristics3

Measuring condition and procedure are the same as described in Δ Oaj1.

VthOSD OSD Input Threshold Voltage

Reduce the SG6 input level gradually, monitoring output. Measure the SG6 level when the output reaches 0 V. The measured value is called VthOSD.

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG6 at the time.

Monitoring to output signal, decreasing the level of SG6. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.

HBLK1 Retrace BLK Characteristics1

Measure the amplitude output is blanked by the SG7 at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as HBLK1.

HBLK2 Retrace BLK Characteristics2

Measure the amplitude output is blanked by the SG7 at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as HBLK2.

HBLK3 Retrace BLK Characteristics3

Measure the amplitude output is blanked by the SG7 at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as HBLK3.

VthRET Retrace BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG7 at the time.

Monitoring to output signal, decreasing the level of SG7. Measure the top level of SG7 when the blanking period is disappeared. The measured value is called VthRET.

SS-NV SOG Input Maximum Noise Voltage

The sync's amplitude of SG4 be changed all white into all black, increase from 0 V_{P-P} to 0.02 V_{P-P} . No pulse output permitted.

SS-SV SOG Minimum Input Voltage

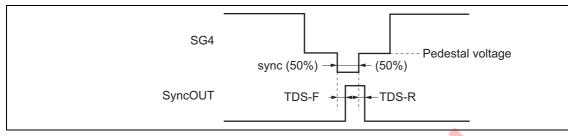
The sync's amplitude of SG4 be changed all white or all black, decrease from 0.3 V_{P-P} to 0.2 V_{P-P} . Confirm no malfunction produced by noise.

VSH Sync Output High level

Measure the high voltage at SyncOUT. The measured value is treated as VSH.

VSL Sync Output Low Level

Measure the low voltage at SyncOUT. The measured value is treated as VSL.


TDS-F Sync Output Delay Time1

SyncOUT becomes High with sync part of SG4.

Measure the time needed for the front edge of SG4 sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is treated as TDS-F, less than 90 ns.

TDS-R Sync Output Delay Time2

Measure the time needed for the rear edge of SG4 sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is treated as TDS-R, less than 90 ns.

VOH D/A H Output Voltage

Measure the DC voltage at D/A OUT. The measured value is treated as VOH.

VOL D/A L Output Voltage

Measure the DC voltage at D/A OUT. The measured value is treated as VOL.

IAO D/A Output Current Range

Electric current flow from the output of D/A OUT must be less than 1.0 mA.

Electric current flow into the output of D/A OUT must be less than 0.4 mA.

DNL D/A Nonlinearity

The difference of differential non-linearity of D/A OUT must be less than ± 1.0 LSB.

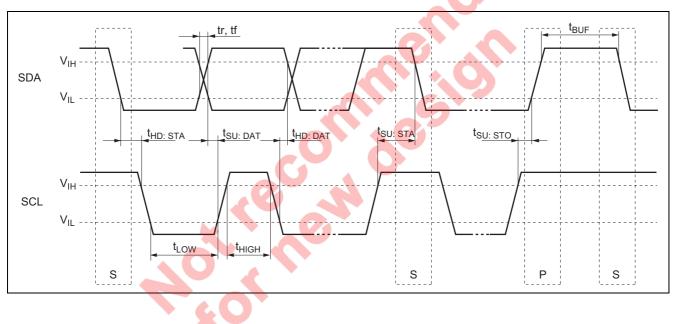
BUS Control Table

(1) Slave address

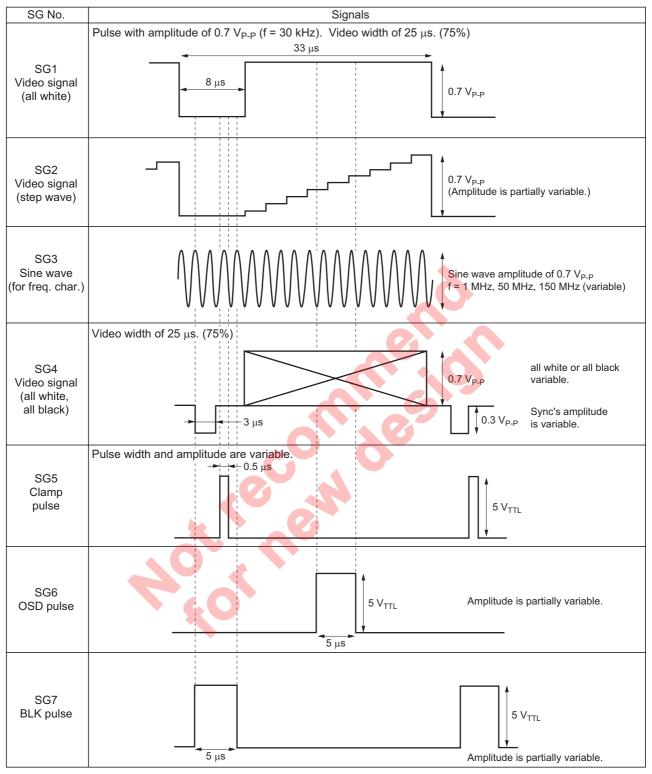
D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	= 88H

(2) Each functions sub address

		Sub		Data	Byte (Up	: Bit, Info	rmation	Down: P	reset)	
Function	Bit	Add.	D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
			0	1	0	0	0	0	0	0
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
			1	0	0	0	0	0	0	0
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
			1	0	0	0	0	0	0	0
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
			1	0	0	0	0	0	0	0
OSD level	4	04H	—	_	—		A43	A42	A41	A40
			0	0	0	0	1	0	0	0
RE-BLK adjust	4	05H				A	A53	A52	A51	A50
			0	0	0	0	1	0	0	0
D/A OUT1	8	06H	A67	A66	A65	A64	A63	A62	A61	A60
			1	0	0	0	0	0	0	0
D/A OUT2	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
			1	0	0	0	0	0	0	0
D/A OUT3	8	08H	A87	A86	A85	A84	A83	A82	A81	A80
			1	0	0	0	0	0	0	0
D/A OUT4	8	09H	A97	A96	A95	A94	A93	A92	A91	A90
			1	0	0	0	0	0	0	0
Pedestal clamp INT/EXT SW	1	0BH	—		_					AB0
			0	0	0	0	0	0	0	0

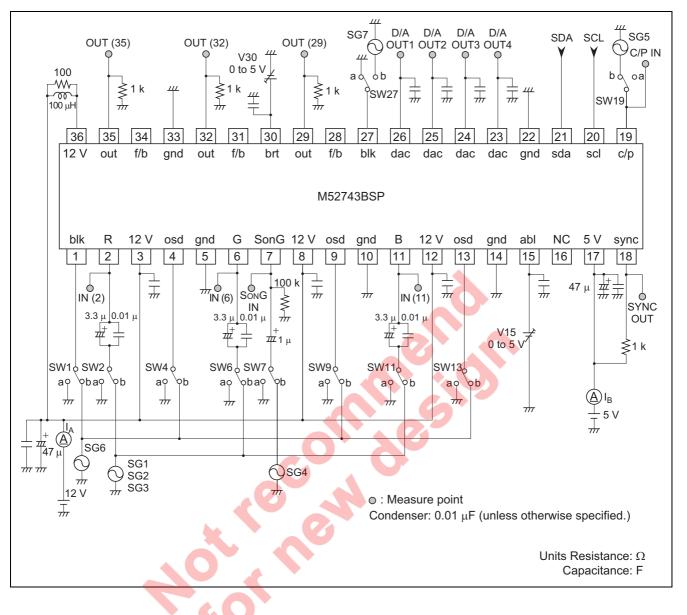

EXT Sv. Note: Pedestal level INT/EXT SW

 $0 \rightarrow INT \ 1 \rightarrow EXT$

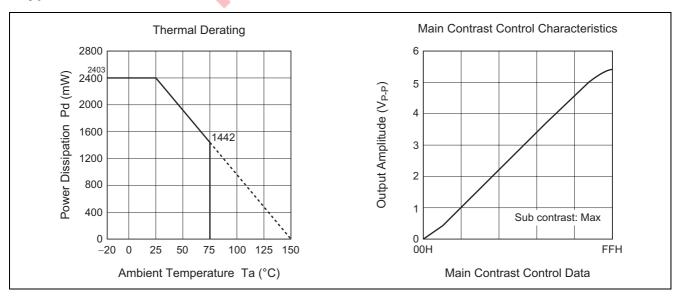

I²C BUS Control Section SDA, SCL Characteristics

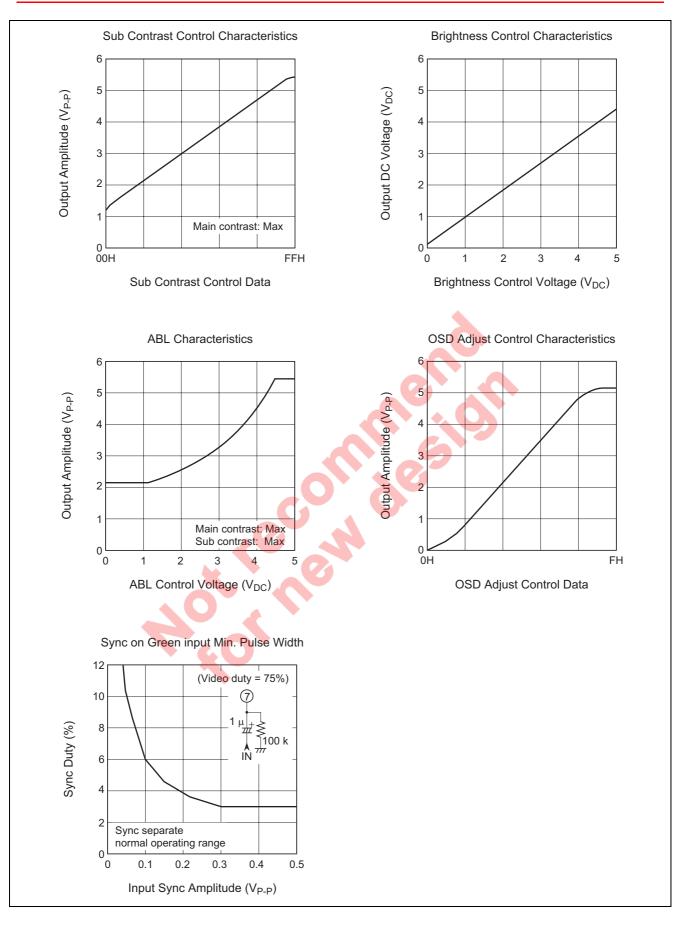
Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V _{IL}	-0.5	1.5	V
Max. input HIGH voltage	V _{IH}	3.0	5.5	V
SCL clock frequency	f _{SCL}	0	100	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	4.7	_	μS
Hold time start condition. After this period the first clock pulse is generated	t _{HD:STA}	4.0	_	μS
The LOW period of the clock	t _{LOW}	4.7	—	μS
The HIGH period of the clock	t _{HIGH}	4.0	—	μS
Set up time for start condition (Only relevant for a repeated start condition)	t _{SU:STA}	4.7		μS
Hold time DATA	t _{HD:DAT}	0	—	μS
Set-up time DATA	t _{SU:DAT}	250	—	ns
Rise time of both SDA and SCL lines	tr	_	1000	ns
Fall time of both SDA and SCL lines	tf	_	300	ns
Set-up time for stop condition	t _{SU:STO}	4.0	_	μS

Timing Chart

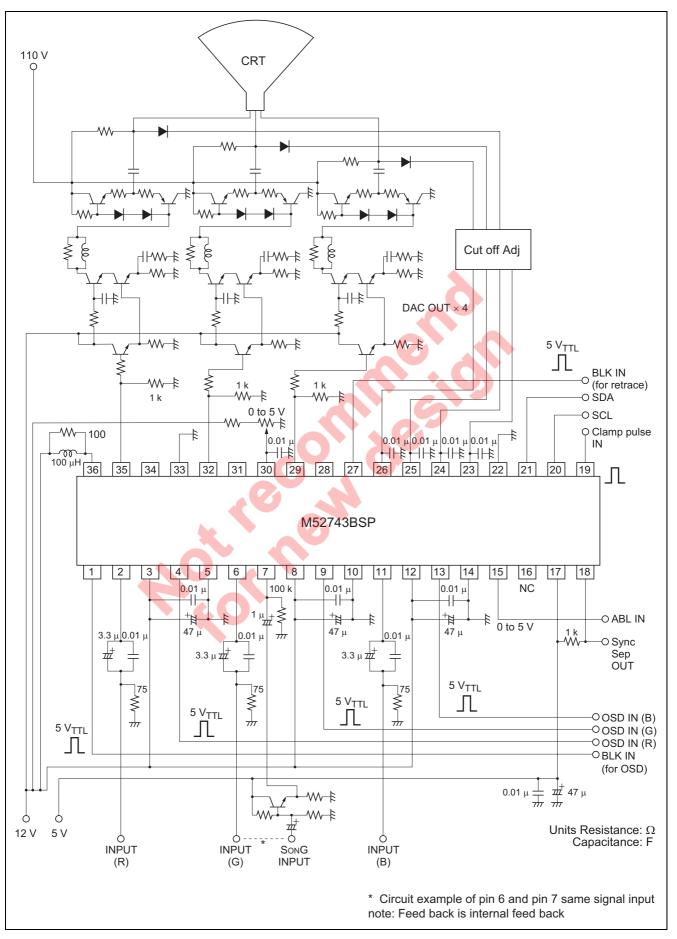


Input Signal




Note: f = 30 kHz

Test Circuit



Typical Characteristics

Application Example

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
1	OSD BLK IN			Input pulses
2 6 11	INPUT (R) INPUT (G) INPUT (R)	2.5	2 k 2 k 2 k 2 k 0.3 mA O CP 2.5 V	Clamped to about 2.5 V due to clamp pulses from pin 19. Input at low impedance.
3 8 12	V _{CC1} (R) V _{CC1} (G) V _{CC1} (B)	12		Apply equivalent voltage to 3 channels.
4 9 13	OSD IN (R) OSD IN (G) OSD IN (B)		4 0.5 mA ⊕ # 2.7 V	Input pulses
5 10 14 22 33	GND 1 (R) GND 1 (G) GND 1 (B) GND (5 V) GND 2	GND		—
7	INPUT (S on G)	When open ≈ 2.5 V	3.2 V	SYNC ON GREEN Input pin for sync separation. Sync is negative. Input signal at pin 7, compare with the reference voltage of internal circuit in order to separate sync signal. When not used, set to OPEN.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
15	ABL IN	When open 2.5 V	2.5 V 2.5 V 2.5 V 2.5 V 1.2 k ≤ 30 k 0.5 mA ⊖ π 15	ABL (Automatic Beam Limiter) input pin. Recommended voltage range is 0 to 5 V. When ABL function is not used, set to 5 V.
16	NC	—		_
17	V _{CC} (5 V)	5		—
18	S on G Sep OUT			Sync signal output pin, Being of open collector output type.
19	Clamp Pulse IN		19 2.2 V 0.15 mA	Input pulses 2.5 to 5 V 0.5 V maximum Input at low impedance.
20	SCL		50 k ₹ 50 k ₹ 20 2 k 3 V	SCL of I ² C BUS (Serial clock line) V _{TH} = 2.3 V
21	SDA		21 	SDA of I ² C BUS (Serial data line) V _{TH} = 2.3 V

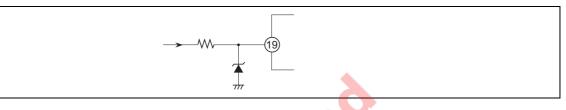
Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
23	D/A OUT		\	D/A output pin.
24				Output voltage range is 0 to 5 V,
25				Max output current is 0.4 mA.
26			23	
			Ø	
			7777	
27	Retrace BLK	—	Ф	Input pulses
	IN		50 k≩R	2.5 to 5 V
			G	
				──── 0.5 V maximum
			↓ + 2.25 V	Connected to GND if not used.
28	EXT Feed	Variable		_
	Back (B)		35 k ≷	
31	EXT Feed			
	Back (G)		⊥	
34	EXT Feed		¥ _ 🚺 `	
	Back (R)		Ť.	
			The second secon	
			-23	-
29	OUTPUT (B)	Variable		A resistor is needed on the GND
32	OUTPUT (G)		30 ₹50	side.
35	OUTPUT (R)		50	Set discretionally to maximum 15
			50 -	mA, depending on the required
			50 	driving capacity.
36	V _{CC2}	12		Used to supply power to output
		Impressed		emitter follower only.
30	Main		÷	It is recommended that the IC be
	Brightness 🔴		35 k ≷	used between pedestal voltage 2
				V and 3 V.
			¥ ¥	
			V	
			¥	
			30	
			111	

Application Method for M52743BSP

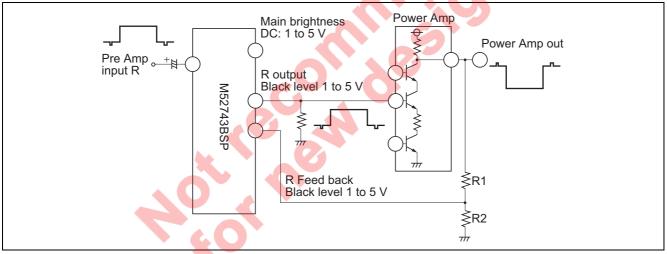
Clamp Pulse Input

Clamp pulse width is recommended


above 15 kHz, 1.0 μs

above 30 kHz, 0.5 μs

above 64 kHz, 0.3 $\mu s.$


The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the Figure shown right is recommended.

EXT-Feed Back

In case of application circuit example of lower figure, Set up R1, R2 which seems that the black level of the signal feed backed from Power AMP is 1 V, when the bottom of output signal is 1 V.

EXT-Feed Back Application Circuit

Notice of Application

- Make the nearest distance between output pin and pull down resister.
- Recommended pedestal voltage of IC output signal is 2 V.

Package Dimensions

36P4E Plastic 36pin 500mil SDIP EIAJ Package Code SDIP36-P-500-1.78 JEDEC Code Weight(g) Lead Material 3.0 Cu Alloy υ (36 19 e<u></u> ш 18 θ Dimension in Millimeters Symbol Min Nom Max D А 5.08 0.51 A1 3.8 A2 4 0.4 0.5 0.6 b 0.9 1.0 1.3 b1 b2 0.65 0.75 1.05 0.22 0.27 0.34 С D 31.3 31.5 31.7 10.85 11.0 11.15 е Е b1 b b2 е 1.778 **e**1 12.7 _ SEATING PLANE 3.0 L θ 0° 15°

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The product date. diagrams, charts, programs, algorithms, and application circuit examples.
 An information included in this document is used. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 An information included in this document, included in this document, but Renesas as more the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability Mathesever for any damages incurred as a set estil of errors or omissions in the information included in this document. Dut Renesas as products for the technology described herein you should follow the applicability of such assay and the applicability of warding and the substitution of the substitution of the substitution of the substitution of the substitution and traffic and the substitution of the substituti

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510