

M61311SP/M61316SP

I²C BUS Controlled Video Pre-amp for High Resolution Color Display

REJ03F0199-0201 Rev.2.01 Mar 31, 2008

Description

M61311SP/M61316SP is semiconductor integrated circuit for CRT display monitor.

It includes OSD blanking, OSD mixing, retrace blanking, video detector, sync separator, wide band amplifier, brightness control.

Main/sub contrast, video response adjust, ret BLK adjust, 4ch D/A OUT and OSD level adjust function can be controlled by I^2C BUS.

Features

• Frequency band width: RGB 200 MHz (M61311SP)

150 MHz (M61316SP)

 $(4 V_{P-P} at -3 dB)$

OSD 80 MHz

Input: RGB $0.7 V_{P-P}$ (typ.)

OSD 3.5 V to 5.0 V (positive)
OSD BLK 3.5 V to 5.0 V (positive)
Retrace BLK 2.5 V to 5.0 V (positive)
Clamp pulse 2.5 V to 5.0 V (positive)

Output: RGB $5 V_{P-P}$ (at Brightness less than $2 V_{DC}$)

OSD $4 V_{P-P}$ (at Brightness less than $2 V_{DC}$)

Sync OUT $5 V_{P-P}$

Video det OUT High = 4.2 V_{DC} , Low = 0.7 V_{DC}

Application

CRT display monitor

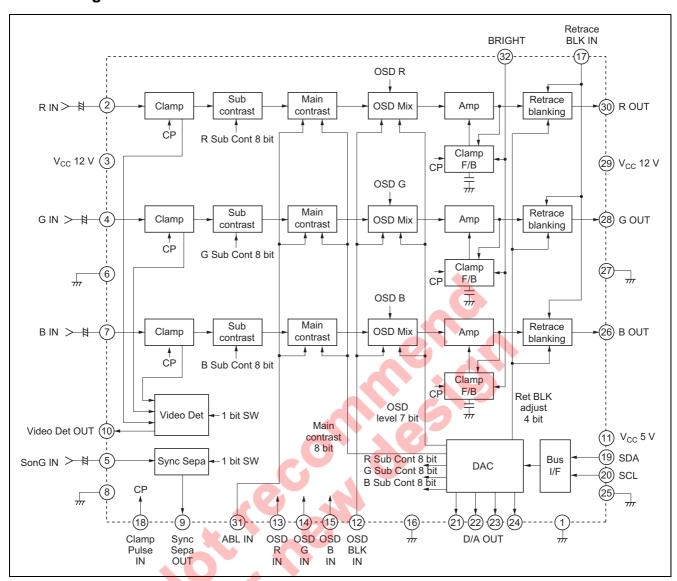
Recommended Operating Conditions

Supply voltage range: 11.50 V to 12.50 V (V3, V29)

4.75 V to 5.25 V (V11)

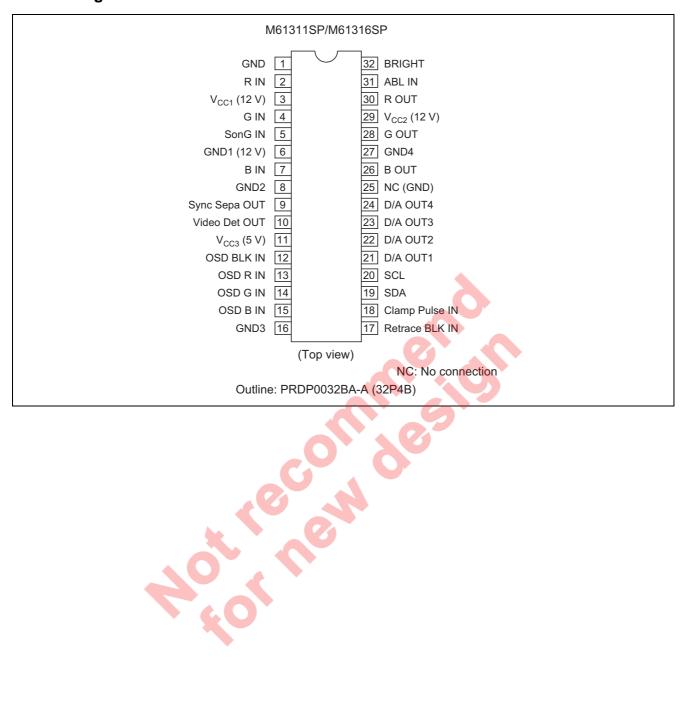
Rated supply voltage: 12.00 V (V3, V29)

5.00 V (V11)


Major Specification

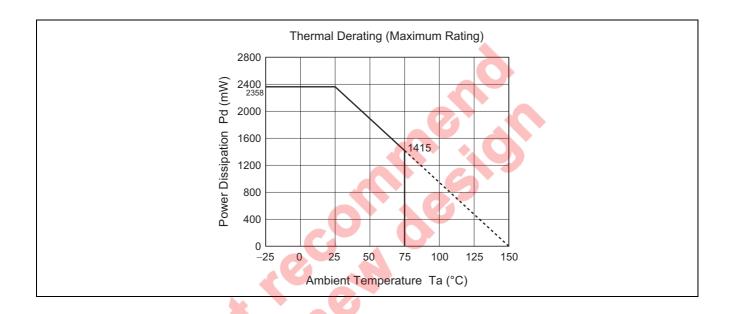
I²C BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function.

The difference in the M61311SP/M61316SP is RGB video frequency band width.


M61311SP is 200 MHz, M61316SP is 150 MHz in conditions RGB output is 4 $V_{P,P}$ at -3 dB.

Block Diagram

RENESAS


Pin Arrangement

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Supply voltage (pin 3, 29)	V _{CC} 12	13.0	V
Supply voltage (pin 11)	V _{CC} 5	6.0	V
Power dissipation	Pd	2358	mW
Ambient temperature	Topr	−20 to +75	°C
Storage temperature	Tstg	-40 to +150	°C
Recommended supply 12	Vopr12	12.0	V
Recommended supply 5	Vopr5	5.0	V
Voltage range 12	Vopr'12	11.5 to 12.5	V
Voltage range 5	Vopr'5	4.75 to 5.25	V

BUS Control Table

(1) Slave address:

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	= 88H

(2) Slave receiver format:

Normal mode

8 bit 8 bit 8 bit

S Slave address A Sub address A Data byte A P

Auto increment mode

8 bit 8 bit

S Slave address A Sub address (0XH) + 10H A Data byte (Sub address = 0XH) A 8 bit 8 bit

Data
(Sub address = 0 (X + 1) H)

A Data
(Sub address = 0 (X + 2) H)

A

Note: S: Start condition, A: Acknowledge, P: Stop condition

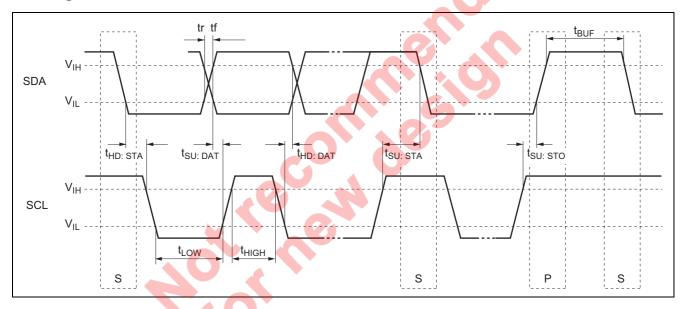
(3) Sub address byte and data byte format:

		Sub	1	Data Byte	(Top: B	yte Form	at, Unde	r: Start C	ondition)
Function	Bit	Add.	D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
			0	0	0	0	0	0	0	1*
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
			0	0	0	0	0	0	0	1*
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
			0	0	0	0	0	0	0	1*
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
			0	0	0	0	0	0	0	1*
OSD level	7	04H	X —	A46	A45	A44	A43	A42	A41	A40
		4		0	0	0	0	0	0	1*
RE-BLK adjust	4	05H	-0	_	_	_	A53	A52	A51	A50
				_	_	_	0	0	0	1*
Sharpness control	4	06H		_	_	_	A63	A62	A61	A60
		4	_	_	_		0	0	0	1*
Sync Sepa SW	1		_	_	_	A64	_	_	_	_
•			_	_	_	0	_	_	_	*
Video Det SW	1		_	_	A65	_	_	_	_	_
			_	_	0	_	_	_	_	*
Test mode	2		A67	A66	_	_	_	_	_	_
			0	0	_	_	_	_	_	*
D/A OUT1	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
			0	0	0	0	0	0	0	1*
D/A OUT2	8	08H	A87	A86	A85	A84	A83	A82	A81	A80
			0	0	0	0	0	0	0	1
D/A OUT3	8	09H	A97	A96	A95	A94	A93	A92	A91	A90
			0	0	0	0	0	0	0	1
D/A OUT4	8	0AH	AA7	AA6	AA5	AA4	AA3	AA2	AA1	AA0
			0	0	0	0	0	0	0	1

Note: pre-data

Sub add. 06H

Sync Sepa SW A64 0: Sync Sepa ON 1: Sync Sepa OFF Video Det SW A65 0: Video Det ON 1: Video Det OFF


Always set up as A66 and A67 in 0

For I²C Data, please transfer in the period of vertical.

I²C BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V _{IL}	-0.5	1.5	V
Max. input HIGH voltage	V _{IH}	3.0	5.5	V
SCL clock frequency	f _{SCL}	0	400	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	1.3	_	μS
Hold time start condition. After this period the first clock pulse is generated	t _{HD:STA}	0.6	_	μS
The LOW period of the clock	t _{LOW}	1.3	_	μS
The HIGH period of the clock	t _{HIGH}	0.6	_	μS
Set up time for start condition (Only relevant for a repeated start condition)	t _{SU:STA}	0.6	_	μS
Hold time DATA	t _{HD:DAT}	0	0.9	μS
Set-up time DATA	t _{SU:DAT}	100	_	ns
Rise time of both SDA and SCL lines	tr	20+0.1Cb	300	ns
Fall time of both SDA and SCL lines	tf	20+0.1Cb	300	ns
Set-up time for stop condition	t _{SU:STO}	0.6		μS

Timing Chart

Electrical Characteristics

(V_{CC} = 12 V, 5 V; Ta = 25°C, unless otherwise noted)

							_										CC			٧,.	, v	, 10	ı —		<u></u>	unless of	.1101	WISC	<i>,</i> 110	icu,
		ı	Limit	s							-	npı	ıt						TL 'ol						В	BUS CTL (H)			
						Test	3 12 V	2 R	4 G	5 SonG	7 B	12 OSD	13 OSD	14 OSD	15 OSD	17 RET	18 CP	31 ABL	32 BRT		Sub	Sub	03H Sub	OSD	05H Re-	06H Sharp SonG VD	07I ET D//			0AH D/A
Item	Symbol	Min.	ļ	Max		Point	Vcc	IN	IN	IN	IN	BLK	R IN	G IN	B IN	BLK	IN	(V)	(V)	cont	R cont	G cont	B cont	Adj	BLK Adj	ness SW S	1	2	3	OUT 4
5 V Circuit current1 power save mode	I _{CC1}	_	6	10	mA	IB	а	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00	00	8 0 (00	00	00	00
12 V Circuit current2 normal mode	I _{CC2}	_	105	130	mA	IA	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (00	00	00	00
5 V Circuit current3 normal mode	I _{CC3}	-	4	8	mA	IB	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00	08 8 0 (00	00	00	00
Output dynamic range	Vomax	7.5	9	-	V _{DC}	26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	5	0.5	FF 255	FF 255	FF 255	FF 255	00	00	08	FF	FF	FF	FF 255
Maximum input	Vimax	1.4	-	-	V _{P-P}	26, 28,	b	b	b	а	b	а	а	а	а	а	b	5	2	46	FF	FF	FF	00	00	08	FF	FF	FF	FF
Maximum gain	GV	16	17.5	19	dB	30 26, 28,	b	b	b	а	b	а	а	а	а	а	b	5	2	70 FF	255 FF	255 FF	255 FF	00	00	8 0 0	FF	FF	FF	255 FF
Relative maximum gain	ΔGV	0.8	1.0	1.2	_	30	<u> </u>	_	_	 	_	_	<u> </u>	_	 	_	 	_	_	255 FF	255 FF	255 FF	255 FF	00	00	8 0 0) 25: FF	FF	FF	255 FF
Main contrast control	VC1	3.3	4	4.7	V _{P-P}	26, 28,	b	b	b	а	b	а	а	а	а	а	b	5	2	255 C8	255 FF	255 FF	255 FF	0	0	8 0 0 08) 25	_	+	255 FF
characteristics1 (Max.) Main contrast control	ΔVC1	0.8	1.0		_	30		_	_					_			_			200 C8	255 FF	255 FF	255 FF	0	0	8 0 0) 25:	_	_	255 FF
relative characteristics1		2.3	2.8		W		b	b	b	а	b	а	а	_	а	_	b	5	2	200	255	255	255	0	0	8 0 (25	5 255	255	255
Main contrast control characteristics2 (Typ.)	VC2			<u> </u>	*P-P	26, 28, 30		٦		a	,	a	a	а	a	а	Ľ			80 128	FF 255	FF 255	FF 255	00	00	8 0 (_	5 255	255	FF 255
Main contrast control relative characteristics2	ΔVC2	0.8			_	_	_	_		_			_	_	_	_	_		1	80 128	FF 255	FF 255	FF 255	00	00	8 0 (FF 25	- 1		FF 255
Main contrast control characteristics3 (Min.)	VC3	0.25	0.55		V _{P-P}	26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	5	2	10 16	FF 255	FF 255	FF 255	00	00 0	08 8 0 0	FF 25	- 1	1	FF 255
Main contrast control relative characteristics3	ΔVC3	-0.2	0	0.2	V _{P-P}	_	_	_	_	-	-	_	_	_	_	\neq	7	7		10 16	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (FF 25	- 1		FF 255
Sub contrast control characteristics1 (Max.)	VSC1	3.3	4	4.7	V _{P-P}	26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	C8 200	C8 200	C8 200	00	00	08 8 0 (FF	- 1		FF 255
Sub contrast control relative characteristics1	ΔVSC1	0.8	1.0	1.2	-	_	_	-	-	-	_	-	1	E	7	F	-	_	E	FF 255	C8 200	C8 200	C8 200	00	00	08	FF	FF	FF	FF 255
Sub contrast control	VSC2	2.3	2.8	3.3	V _{P-P}		b	b	b	а	b	а	а	а	а	а	b	5	2	FF	80	80	80	00	00	08	FF	FF	FF	FF
characteristics2 (Typ.) Sub contrast control	ΔVSC2	0.8	1.0	1.2	_	30	_	_	_				2	_	_	7	7	<u> </u>	_	255 FF	128 80	128 80	128 80	00	00	8 0 0	FF	FF	FF	255 FF
relative characteristics2 Sub contrast control	VSC3	0.2	0.5	0.8	V _{P-P}	26, 28,	b	b	b	а	b	а	а	а	а	а	b	5	2	255 FF	128 10	128 10	128 10	00	00	8 0 0) 25: FF	_	_	255 FF
characteristics3 (Min.) Sub contrast control	ΔVSC3	-0.2	0		V _{P-P}	30	4	9			_	_	4	7		_	_	_	_	255 FF	16 10	16 10	16 10	00	00	8 0 0 08) 25: FF	_	+	255 FF
relative characteristics3 ABL control	ABL1	3.4	4.2			26, 28,	b	b	b	а	b	а	а	а	а	а	b	4	2	255 FF	16 FF	16 FF	16 FF	0	0	8 0 0) 25: FF	_	255 FF	255 FF
characteristics1 ABL control relative	ΔABL1	0.8		<u> </u>		30					7		_							255 FF	255 FF	255 FF	255 FF	0	0	8 0 (08	_	5 255	255	255 FF
characteristics1					V		_	_	1	2		_		_			_	_		255	255	255	255	0	0	8 0 (25	5 255	255	255
ABL control characteristics2	ABL2	1.5	2.0	2.5	V _{P-P}	26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	2	2	FF 255	FF 255	FF 255	FF 255	00	00	8 0 (FF) 25	- 1	FF 255	FF 255
ABL control relative characteristics2	∆ABL2	8.0	1.0	1.2	_				_	_	_	_	_	_	_	_	_	_	_	FF 255	FF 255	FF 255	FF 255	00 0	00 0	8 0 (FF 25	- 1	FF 255	FF 255
ABL control characteristics3	ABL3	-0.3	0	0.3	V _{P-P}	26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	0	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (FF 25	FF 5 255		FF 255
ABL control relative characteristics3	ΔABL3	-0.2	0	0.2	V _{P-P}		_	_	_	-	_	_	_	_	_	_	_	_	_	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (FF 25	- 1		FF 255
Brightness control characteristics1	VB1	3.4	3.8	4.2	V_{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	а	b	5	4	FF 255	FF 255	FF 255	FF 255	00	00	08	FF	FF	FF	FF 255
Brightness control relative characteristics1	ΔVB1	-0.3	0	0.3	V	_	_	-	-	-	_	_	-	_	-	_	-	_	_	FF 255	FF 255	FF 255	FF 255	00	00	08	FF	FF	FF	FF 255
Brightness control	VB2	1.6	1.9	2.2	V _{DC}	26, 28,	b	а	а	а	а	а	а	а	а	а	b	5	2	FF	FF	FF	FF	00	00	08	FF	FF	FF	FF
characteristics2 Brightness control	ΔVB2	-0.3	0	0.3	V	30	-	-	-	-	_	_	-	_	-	<u> </u>	-	_	_	255 FF	255 FF	255 FF	255 FF	00	00	8 0 0	FF	FF	FF	FF
relative characteristics2 Brightness control	VB3	0.3	0.5	0.7	V _{DC}	26, 28,	b	а	а	а	а	а	а	а	а	а	b	5	0.5	FF	255 FF	255 FF	255 FF	00	00	8 0 0	FF	FF	FF	FF
characteristics3 Brightness control	ΔVB3	-0.3	0	0.3	V	30	_	_	-	_	_	_	_	_	_	_	_	_	_	255 FF	255 FF	255 FF	255 FF	00	0	8 0 C	25: FF	_	-	255 FF
relative characteristics3 Pulse characteristics1	Tr	<u> </u>	2.2	3.0	ns*	26, 28,	b	b	b	а	b	а	а	а	а	а	b	5	2	255 C8	255 FF	255 FF	255 FF	0	0	8 0 (_	5 255	255	1
(4 V _{P-P})	ΔTr	-0.8	2.7	3.5		26, 28, 30	Ĺ	Ĺ	Ĺ	_	Ĺ	_	_	_	_	_	Ĺ	Ľ	_	200	255	255	255	0	0	8 0 0	25	5 255	255	255
Relative pulse characteristics1 (4 V _{P-P})		_∪.8			ns		_	<u> </u>	_		_						_	_	_	C8 200	FF 255	FF 255	FF 255	00	00	8 0 (_	5 255	255	FF 255
Pulse characteristics2 (4 V _{P-P})	Tf	E	2.2	3.5		26, 28, 30	b	b	b	а	b	а	а	а	а	а	b	5	2	C8 200	FF 255	FF 255	FF 255	00	00	08 8 0 (_	5 255	255	FF 255
Relative pulse characteristics2 (4 V _{P-P})	ΔTf	-0.8	0	0.8			_			_	_	_	_	_		_	_	_		C8 200	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (FF 25	- 1		FF 255
Clamp pulse threshold voltage	VthCP	0.7	1.5	2.3	V _{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0 (FF 25	- 1		FF 255
Clamp pulse minimum width	WCP	0.2	-	-	μS	26, 28, 30	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00	00	08 8 0 (FF		FF 255	FF 255
Note: Tr and Tf nulse charac		4							щ.	<u> </u>			_										_50			-1-10	1-0.		1-00	,_55

Note: Tr and Tf pulse characteristics 1 and 2 (4 Vp-p) top: M61311SP, under: M61316SP

Electrical Characteristics (cont.)

																		C.	TL												—
		L	_imit	s			3	2	4	5	7	npu	11 13	14	15	17	18		ol 32	00H	01H	02H	03H	04H	05H	US CTL	(H)	07H	08H	09H	0AH
Item	Symbol	Min.	Тур.	Max.	. Unit	Test Point	12 V Vcc	R IN		SonG IN	В	OSD BLK		OSD G IN	OSD B IN	RET BLK	CP IN	ABL (V)	BRT (V)	Main cont	Sub R cont	Sub G cont	Sub B cont	OSD Adj	Re- BLK Adj	Sharp SonG ness SW	VDET SW	D/A OUT	D/A	D/A	D/A
OSD pulse characteristics1	OTr	_	2	5	ns	26, 28, 30	b	а	а	а	а	а	b	b	b	а	b	5	2	FF 255	FF 255	FF 255	FF 255	6F 111	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD pulse characteristics2	OTf	_	4	7	ns	26, 28, 30	b	а	а	а	а	а	b	b	b	а	b	5	2	FF 255	FF 255	FF 255	FF 255	6F 111	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD adjust control characteristics1 (Max.)	Oadj1	3.3	4.0	4.9	V _{P-P}	26, 28, 30	b	а	а	а	а	b	b	b	b	а	b	5	2	FF 255	FF	FF 255	FF 255	7F 127	00	08	0	FF 255	FF 255	FF	FF 255
OSD adjust control relative characteristics1	∆Oadj1	0.8	1.0	1.2	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	FF 255	FF 255	FF 255	FF 255	7F 127	00	08 8 0	0	FF 255	FF 255	FF 255	FF
OSD adjust control characteristics2 (Typ.)	Oadj2	1.2	1.8	2.4	V _{P-P}	26, 28, 30	b	а	а	а	а	b	b	b	b	а	b	5	2	FF 255	FF 255	FF 255	FF 255	40 64	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD adjust control relative characteristics2	∆Oadj2	8.0	1.0	1.2	_	_	_	_		_	_	_	_		_	_	_	_	_	FF 255	FF 255	FF 255	FF 255	40 64	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD adjust control characteristics3 (Min.)	Oadj3	-0.5	-0.1	0.3	V _{P-P}	26, 28, 30	b	а	а	а	а	b	b	b	b	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD adjust control relative characteristics3	∆Oadj3	-0.2	0	0.2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	FF 255	FF 255	FF 255	FF 255	00 0	00	8 0 8 0	0	FF 255	FF 255	FF 255	-
OSD input threshold voltage	VthOSD	1.7	2.5	3.3	V _{DC}	26, 28, 30	b	а	а	а	а	а	b	b	b	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00	00	8 0 8 0	0	FF 255	FF 255	FF 255	-
Black level difference in OSD BLK on/off	OBLK	-0.5	-1.0	0.3	V _{DC}	26, 28, 30	b	а	а	а	а	b	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00	00	8 0	0	FF 255	FF 255	FF 255	FF 255
Relative OBLK	∆OBLK	-0.2	0	0.2	_	26, 28, 30	b	а	а	а	а	b	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
OSD BLK input threshold voltage	VthBLK	1.7	2.5	3.3	V _{DC}	26, 28, 30	b	b	b	а	b	b	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics1	HBLK1	1.6	1.9	2.2	V _{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	b	b	5	2	FF 255	FF 255	FF 255	FF 255	00	0F 15	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics2	HBLK2	1.0	1.3	1.6	V _{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	b	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	08 8	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Retrace BLK characteristics3	HBLK3	0.3	0.6	0.9	V _{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	b	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Retrace BLK input threshold voltage	Vth- HBLK	0.7	1.5	2.3	V _{DC}	26, 28, 30	b	а	а	а	а	а	а	а	а	b	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
SOG input maximum noise voltage	SS-NV	_	_	0.02	V _{P-P}	9	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
SOG minimum input voltage	SS-SV	0.2	_	-	V _{P-P}	9	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Sync output high level	VSH	4.5	4.9	5.0	V _{DC}	9	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Sync output low level	VSL	0	0.4	0.7	V _{DC}	9 🤇	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Sync output delay time1	TDS-F	10	30	65	ns	9	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
Sync output delay time2	TDS-R	10	30	65	ns	9	b	а	а	b	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	-
V-DET input maximum noise voltage	VD-NV	Ξ	3	0.05	V _{P-P}	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	-
V-DET minimum input voltage	VD-SV	0.2	Z		V _{P-P}	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00	08 8 0	0	FF 255	FF 255	FF 255	FF 255
V-DET output high level	VVDH	3.8	4.2	5.0	V _{DC}	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
V-DET output low level	VVDL	0	0.7	1.1	V _{DC}	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	
V-DET output delay time1	TDV-F	10	23	50	ns	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
V-DET output delay time2	TDV-R	1	13	40	ns	10	b	b	b	а	b	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
D/A output maximum voltage	VDH	4.7	5.2	5.7	V _{DC}	21, 22, 23, 24	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255	FF 255	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
D/A output minimum voltage	VDL	0	0	0.5	V _{DC}	21, 22, 23, 24	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255		FF 255	00 0	00 0	08 8 0	0	00 0	00 0	00 0	00 0
D/A OUT input current1	IA+1	0.18	_	_	mA	21, 22, 23, 24	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255		FF 255	00 0	00 0	08 8 0	0	00 0	00 0	00 0	00
D/A OUT input current2	IA+2	0.18	_	_	mA	21, 22, 23, 24	b	а	а	а	а	а	а	а	а	а	b	5	2	FF 255	FF 255		FF 255	00 0	00 0	8 0 8 0	0	00 0	00 0	00 0	00 0
D/A OUT output current	IA-	_	_	0.4	mA	21, 22, 23, 24	b	а	а	а	а	а	а	а	а	а	b	5	2	-	FF 255	-	FF 255	00 0	00 0	08 8 0	0	FF 255	FF 255	FF 255	FF 255
D/A nonlinearity	DNL	-1.0	I	1.0	LSB	21, 22,	b	а	а	а	а	а	а	а	а	а	b	5	2	FF	FF	FF	FF	00	00	08		vari	vari	vari	vari

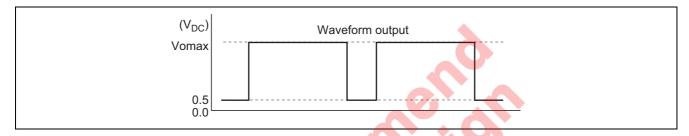
Electrical Characteristics Test Method

I_{CC1} 5 V Circuit Current1 Power Save Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

I_{CC2} 12 V Circuit Current2 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.


I_{CC3} 5 V Circuit Current3 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

Vomax Output Dynamic Range

It makes the amplitude of SG1 1.4 P.P. Measure the DC voltage of the white level of the waveform output.

The measured value is called Vomax.

Vimax Maximum Input

Increase the input signal (SG1) amplitude gradually, starting from 0.7 V_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

GV Maximum Gain

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

Maximum gain GV is calculated by the equation below:

$$GV = 20log (VOUT / 0.7) (dB)$$

∆GV Relative Maximum Gain

Relative maximum gain ΔGV is calculated by the equation below:

$$\Delta$$
GV = VOUT (26) / VOUT (28),
VOUT (28) / VOUT (30),
VOUT (30) / VOUT (26)

VC1 Main Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is called VC1.

ΔVC1 Main Contrast Control Relative Characteristics1

Relative characteristics $\Delta VC1$ is calculated by the equation below:

VC2 Main Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VC1.

∆VC2 Main Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta VC1$.

VC3 Main Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in VC1.

∆VC3 Main Contrast Control Relative Characteristics3

Relative characteristics $\Delta VC3$ is calculated by the equation below:

$$\Delta$$
VC3 = VOUT (26) – VOUT (28),
VOUT (28) – VOUT (30),
VOUT (30) – VOUT (26)

VSC1 Sub Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30). The measured value is called VSC1.

∆VSC1 Sub Contrast Control Relative Characteristics1

Relative characteristics $\Delta VSC1$ is calculated by the equation below:

$$\Delta$$
VSC1 = VOUT (26) / VOUT (28),
VOUT (28) / VOUT (30),
VOUT (30) / VOUT (26)

VSC2 Sub Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VSC1.

∆VSC2 Sub Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta VSC1$.

VSC3 Sub Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in VSC1.

∆VSC3 Sub Contrast Control Relative Characteristics3

Relative characteristics $\Delta VSC3$ is calculated by the equation below:

$$\Delta$$
VSC3 = VOUT (26) – VOUT (28),
VOUT(28) – VOUT (30),
VOUT (30) – VOUT (26)

ABL1 ABL Control Characteristics1

Measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is ABL1.

∆ABL1 ABL Control Relative Characteristics1

Relative characteristics $\triangle ABL1$ is calculated by the equation below:

ABL2 ABL Control Characteristics2

Measuring condition and procedure are the same as described in ABL1.

∆ABL2 ABL Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle ABL1$.

ABL3 ABL Control Characteristics3

Measuring condition and procedure are the same as described in ABL1,

∆ABL3 ABL Control Relative Characteristics3

Relative characteristics \triangle ABL3 is calculated by the equation below:

VB1 Brightness Control Characteristics1

Measure the DC voltage at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30).

The measured value is called VB1.

∆VB1 Brightness Control Relative Characteristics1

Relative characteristics $\Delta VB1$ is calculated by the equation below:

$$\Delta VB1 = VOUT (26) - VOUT (28),$$

$$VOUT (28) - VOUT (30),$$

$$VOUT (30) - VOUT (26)$$

VB2 Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

∆VB2 Brightness Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta VB1$.

VB3 Brightness Control Characteristics3

Measuring condition and procedure are the same as described in VB1.

∆VB3 Brightness Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta VB1. \label{eq:delta-vB1}$

Tr Pulse Characteristics1 (4 V_{P-P})

Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with an active probe.

Pulse characteristics Tr is calculated by the equations below:

$$Tr = \sqrt{(Tr2)^2 - (Tr1)^2}$$
 (ns)

∆Tr Relative Pulse Characteristics1 (4 V_{P-P})

Relative characteristics ΔTr is calculated by the equation below:

$$\Delta Tr = Tr (26) - Tr (28),$$

$$Tr (28) - Tr (30),$$

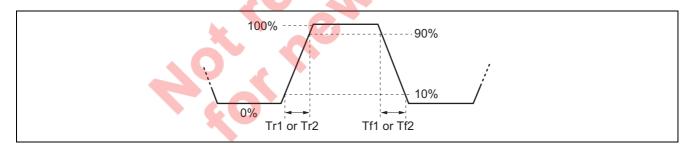
$$Tr (30) - Tr (26)$$

Tf Pulse Characteristics2 (4 V_{P-P})

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe.

Pulse characteristics Tf is calculated by the equations below:

Tf =
$$\sqrt{(Tf2)^2 - (Tf1)^2}$$
 (ns)


∆Tf Relative Pulse Characteristics2 (4 V_{P-P})

Relative characteristics ΔTf is calculated by the equation below:

$$\Delta Tf = Tf (26) - Tf (28),$$

$$Tf (28) - Tf (30),$$

$$Tf (30) - Tf (26)$$

VthCP Clamp Pulse Threshold Voltage

Decrease the SG5 input level gradually from $5.0~V_{P-P}$ monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable. And increase the SG5 input level gradually from $0~V_{P-P}$. Measure the top level of input pulse when the output pedestal voltage turn increase with stable (a point of 2.0~V). The measured value is called VthCP.

WCP Clamp Pulse Minimum Width

Decrease the SG5 pulse width gradually from $0.5~\mu s$, monitoring the output. Measure the SG5 pulse width when the output pedestal voltage turn decrease with unstable. And increase the SG5 pulse width gradual from $0~\mu s$. Measure the SG5 pulse width when the output pedestal voltage turn increase with stable (a point of 2.0~V). The measured value is called WCP.

OTr OSD Pulse Characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oadj1 OSD Adjust Control Characteristics1 (Max.)

Measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT (26, 28, 30). The measured value is called Oadj1.

∆Oadj1 OSD Adjust Control Relative Characteristics1

Relative characteristics Δ Oadj1 is calculated by the equation below:

$$\Delta$$
Oadj1 = VOUT (26) / VOUT (28),
VOUT (28) / VOUT (30),
VOUT (30) / VOUT (26)

Oadj2 OSD Adjust Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in Oadj1.

∆Oadj2 OSD Adjust Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle Oadj1$.

Oadj3 OSD Adjust Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in Oadj1.

∆Oadj3 OSD Adjust Control Relative Characteristics3

Relative characteristics ΔOadj3 is calculated by the equation below:

VthOSD OSD Input Threshold Voltage

Decrease the SG6 input level gradually from $5.0~V_{P-P}$, monitoring the output. Measure the top level of SG6 when the output is disappeared. And increase the SG6 input level gradually from $0~V_{P-P}$. Measure the top level of SG6 when the output is appeared. The measured value is called VthOSD.

OBLK Black Level Difference in OSD BLK on/off

Calculating the black level voltage minus the output voltage of high section of SG6 it makes VOUT (26, 28, 30). The calculated value is called OBLK.

∆OBLK Relative OBLK

Relative characteristics $\triangle OBLK$ is calculated by the equation below:

$$\Delta OBLK = VOUT (26) - VOUT (28),$$

$$VOUT (28) - VOUT (30),$$

$$VOUT (30) - VOUT (26)$$

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG6 at the time.

Decrease the SG6 input level gradually from $5.0~V_{P-P}$, monitoring the output. Measure the top level of SG6 when the blanking period is disappeared. And increase the SG6 input level gradually from $0~V_{P-P}$. Measure the top level of SG6 when the blanking period is appeared. The measured value is called VthBLK.

HBLK1 Retrace BLK Characteristics1

Measure the bottom voltage at amplitude of OUT (26, 28, 30). The measured value is called HBLK1.

HBLK2 Retrace BLK Characteristics2

Measuring condition and procedure are the same as described in HBLK1.

HBLK3 Retrace BLK Characteristics3

Measuring condition and procedure are the same as described in HBLK1.

VthHBLK Retrace BLK Input Threshold Voltage

Decrease the SG7 input level gradually from $5.0 \, V_{P-P}$, monitoring the output. Measure the top level of SG7 when the output is disappeared. And increase the SG7 input level gradually from $0 \, V_{P-P}$. Measure the top level of SG7 when the output is appeared. The measured value is called VthHBLK.

SS-NV SOG Input Maximum Noise Voltage

When SG4 is all black (no video), the sync's amplitude of SG4 gradually from $0 V_{P-P}$ to $0.02 V_{P-P}$. No pulse output permitted.

SS-SV SOG Minimum Input Voltage

When SG4 is all white or all black, the sync's amplitude of SG4 gradually from $0.2~V_{P-P}$ to $0.3~V_{P-P}$. Positive pulse has occurred to Sync Sepa OUT.

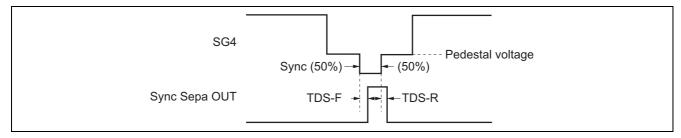
VSH Sync Output High level

Measure the high voltage at Sync Sepa OUT. The measured value is treated as VSH.

VSL Sync Output Low Level

Measure the low voltage at Sync Sepa OUT. The measured value is treated as VSL.

TDS-F Sync Output Delay Time1


Sync Sepa OUT becomes high with sink part of SG4.

Measure the time needed for the front edge of SG4 Sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is called TDS-F.

TDS-R Sync Output Delay Time2

Sync Sepa OUT becomes high with sink part of SG4.

Measure the time needed for the rear edge of SG4 Sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is called TDS-R.

VD-NV V-DET Input Maximum Noise Voltage

Increase the SG1 input level gradually from 0 V_{P-P} to 0.05 V_{P-P}. No pulse Video Det OUT permitted.

VD-SV V-DET Minimum Input Voltage

Decrease the SG1 input level gradually from 0.2 V_{P-P} to 0.3 V_{P-P}. Positive pulse has occurred to Video Det OUT.

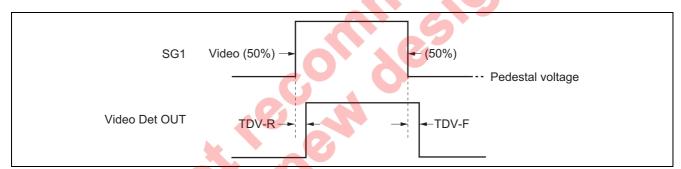
VVDH V-DET Output High Level

Measure the high voltage at Video Det OUT. The measured value is treated as VVDH.

VVDL V-DET Output Low Level

Measure the low voltage at Video Det OUT. The measured value is treated as VVDL.

TDV-F V-DET Output Delay Time1


Video Det OUT becomes high with signal part of SG1.

Measure the time needed for the SG1 to fall from 50% and for Video Det OUT to fall from 50% with an active probe. The measured value is called TDV-F.

TDV-R V-DET Output Delay Time2

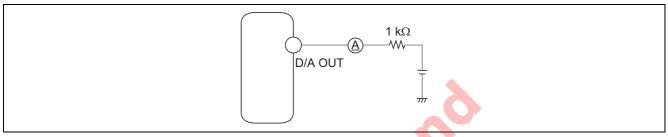
Video Det OUT becomes high with signal part of SG1.

Measure the time needed for the SG1 to rise from 50% and for Video Det OUT to rise from 50% with an active probe. The measured value is called TDV-R.

VDL D/A Output Minimum Voltage

Measure the DC voltage at D/A OUT. The measured value is called VDL.

IA+1 D/A OUT Input Current1

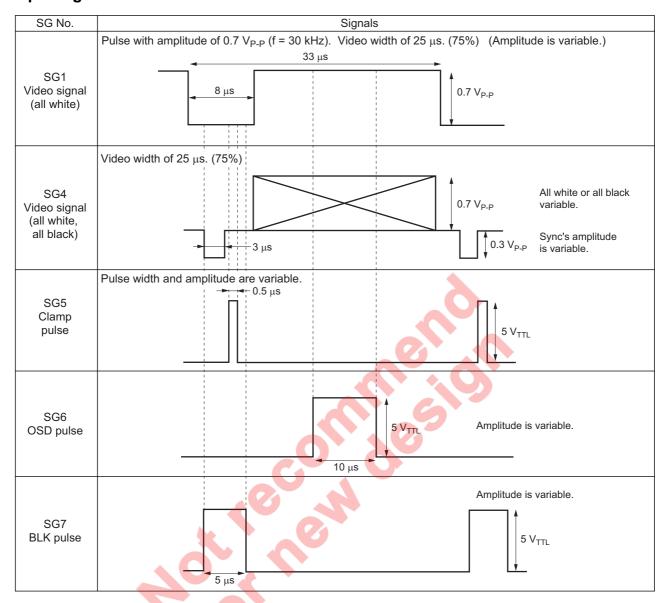

Measure the input current that flows into D/A OUT through 1 k Ω by 2 V_{DC} .

IA+2 D/A OUT Input Current2

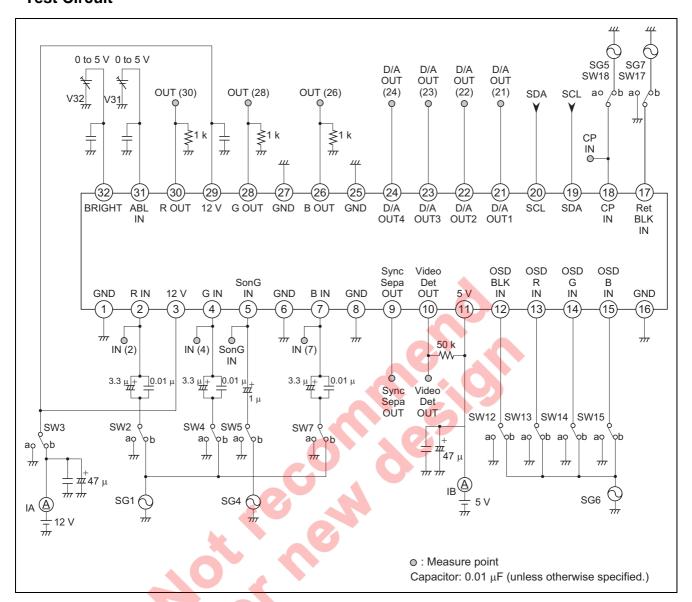
Measure the input current that flows into D/A OUT through 1 k Ω by 0.5 V_{DC} .

IA- D/A OUT Output Current

Measure the output current that flows out of D/A OUT through 1 k Ω by 4.2 V_{DC} .



DNL D/A Nonlinearity

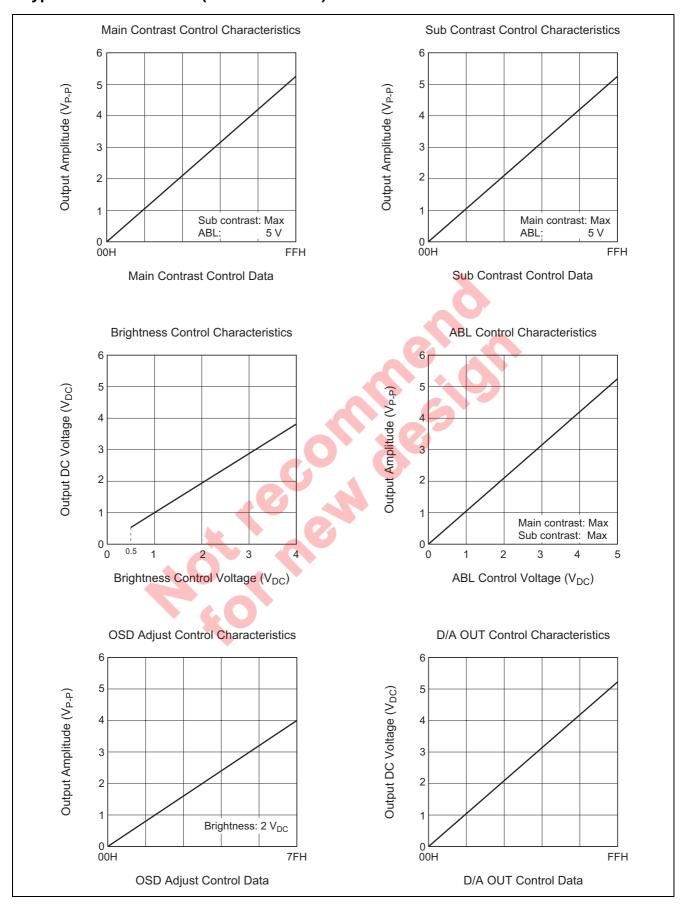

The difference of differential non-linearity of D/A OUT must be less than ± 1.0 LSB.

Input Signal

Test Circuit

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
2	R IN	3.5	→ 12 V	Clamp to about 3.5 V due to
4	G IN			clamp pulse from pin 18.
7	B IN		2 k ≩ 2 k	Input at low impedance.
			→	
			CP CP	
			$0.02 \text{ mA} \bigcirc 2.25 \text{ V} + + 3.5 \text{ V}$	
3	V _{CC1}	12	मा मा मा	Connect to the power supply
3	(12 V)	12	_	that stabilized.
5	SonG	When open 2.3	0.514	SYNC ON VIDEO input pin.
3	IN	When open 2.3	→ 5 V	Sync is negative.
			\$ \$ 30 k\$	Input signal at pin 5, compare
			1.5 k \$\frac{30 k}{1.5 k}\$ \$\frac{30 k}{4.5 k}\$	with the reference voltage of
				internal circuit in order to
			10 k	separate Sync signal from Sync
			(5) 1 k \$	on Green signal.
				Input at low impedance.
			∑ 2.28 V	Do not input the signal without
			$\overline{\downarrow}$ 0.2 mA 0.13 mA $\overline{\downarrow}$ 2.4 V	the Sync.
			hith the the	When it does not use this
				function, connect to capacitor
				between GND, turn on Sync
				Sepa SW by I ² C BUS.
1	GND	GND		Connect to GND.
6	GND 1		10 3	
8	GND 2	A		
16	GND 3			
27	GND 4	- A O		Sync Sepa output pin.
9	Sync Sepa		♦ 5 V	
				1
				When the rise time of the signal
	OUT	Pe	1 k 🗸	When the rise time of the signal is sped up, connect about 2.3
		6	1 k 🕏 🔼	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply.
		6	1 k \$	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do
		6	1 k 🕏 🔼	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly.
			1 k \$ \(\frac{1}{2} \)	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do
			1 k \$	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA
			1 k \$ \(\frac{1}{2} \)	When the rise time of the signal is sped up, connect about 2.3 kΩ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not
10			1 k \$ \(\frac{1}{2} \)	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50
10	OUT Video Det		1 k \$ \(\sum_{m} \) \(\sum_{m} \)	When the rise time of the signal is sped up, connect about 2.3 k Ω between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 k Ω or under. Output is a positive.
10	OUT		1 k \$ 7 9 9 12 V	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this
10	OUT Video Det		1 k \$ 7 9 9 7 12 V	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW
10	OUT Video Det		1 k \$ 7 9 9 7 12 V	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this
10	OUT Video Det		1 k \$ 7 9 9 7 12 V	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW
10	OUT Video Det		1 k \$ \(\frac{1}{2} \) \(\fr	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW
10	OUT Video Det		1 k \$ 7 9 9 7 12 V	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW
10	OUT Video Det		1 k	When the rise time of the signal is sped up, connect about 2.3 $k\Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 9 8 mA over, resistance value does not make to 2.3 $k\Omega$ or under. Output is a positive. pin 10 needs to connect the 50 $k\Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW


Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
12	OSD	_	♀ 12 V	Input the positive pulse
13	BLK IN OSD R IN		0.1 mA	1.5 V to GND
14	OSD G IN		\$500	When it does not use this function, connect to GND.
15	OSD B IN		3.25 V	When input OSD RGB pulse, input OSD BLK pulse without fail.
17	Retrace	_	↔ 12 V	Input the positive pulse
	BLK IN		₹50 k	0.5 V to GND
				When it does not use this function, connect to GND.
			2.25 V = 77	
18	Clamp Pulse IN		0.15 mA 750 10 k \$ \$10 k	Input the positive pulse which width 200 ns over. Input at low impedance. 2.5 to 5 V 0.5 V to GND
19	SDA		19 3.0 V	SDA of I ² C BUS (Serial data line) Tth = 2.3 V

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
20	SCL		→ 12 V	SCL of I ² C BUS
			20 - XM - Z K	(Serial clock line) Tth = 2.3 V
			3.0 V	
21 22 23 24	D/A OUT 1 D/A OUT 2 D/A OUT 3 D/A OUT 4	_	915 kg	D/A output pin. Output voltage range is 0 V to 5 V. Input current is below 0.18 mA. Output current is below 0.4 mA.
26 28 30	B OUT G OUT R OUT	Variable	€9 50 X ≥35	This terminal needs to connect the 1 to $3 \text{ k}\Omega$ resister between GND. This resistance value may be changed, to improve the video output characteristics.
27	GND 4	_	27	Connect to GND
29	V _{CC2} (12 V)	12	7 H	It is the power supply of emitter follower of RGB output exclusive use.
31	ABL IN	When open 2.5 V	5 k \$ 6 k \$ 9 k \$ 2.5 k \$ 31	ABL (Automatic beam limiter) input pin. Input voltage in the ranges of 0 V to 5 V. Output amplitude Max with 5 V. Output amplitude Min with 0 V. When it does not use this function, connect to 5 V.
32	BRIGHT		To other channel	It is recommended that the IC is used between pedestal voltage 2 V to 3 V.
25	NC		<i>''</i>	Connect to GND.
20	10	_	_	CONTINECT TO GIVD.

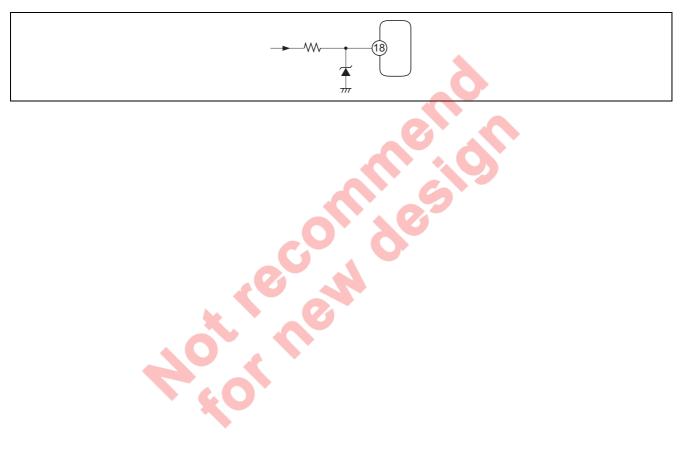
Typical Characteristics (Reference data)

Application Method for M61311SP/M61316SP

About Clamp Pulse Input

Clamp pulse needs to be always inputted.

Clamp pulse width is recommended:


15 kHz at 1.0 μs over

30 kHz at 0.5 µs over

64 kHz at 0.3 µs over

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the figure shown below is recommended.

Notice of Application

Make the nearest distance between output and pull down resister.

Recommend this resister is 1 to 3 k Ω .

Power dissipation in 3 k Ω is smaller than 1 k Ω .

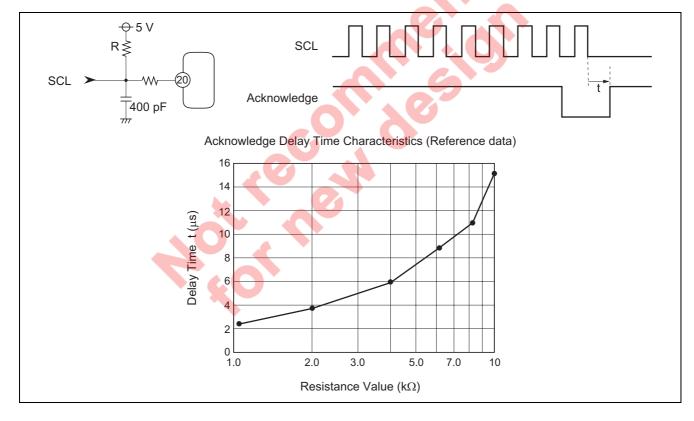
Recommend pedestal voltage of IC output signal is 2 V.

As for the low level of the pulse input of OSD BLK, OSD, Clamp Pulse, Retrace BLK etc., avoid cons the GND level or under.

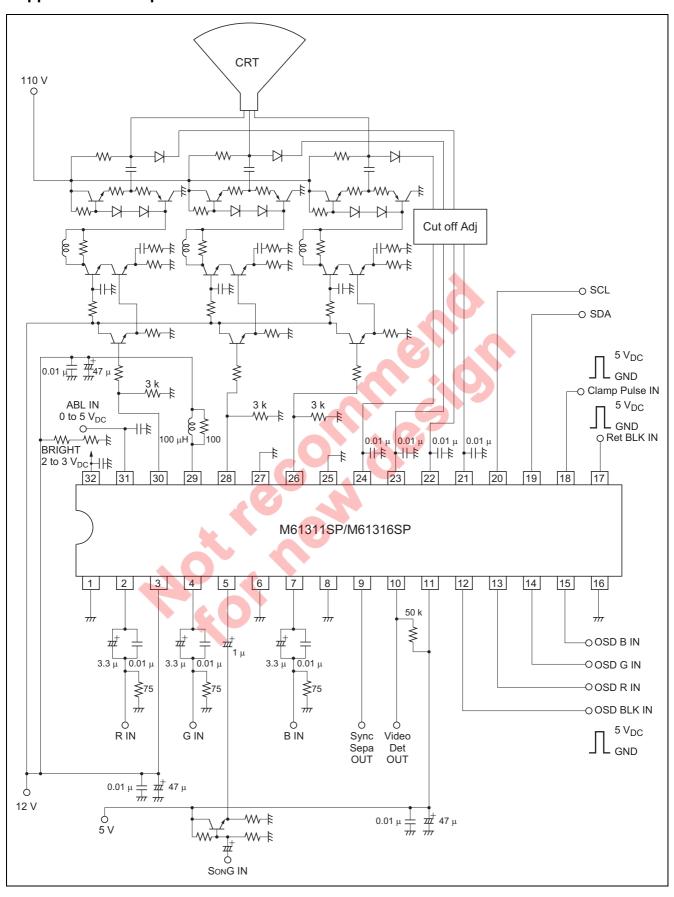
Pin 31 connect to the voltage that stabilized, and pay attention as surge etc. does not flow into.

V_{CC} (12 V, 5 V) connects to the power supply that stabilized, and bypass-capacitor connects near the term.

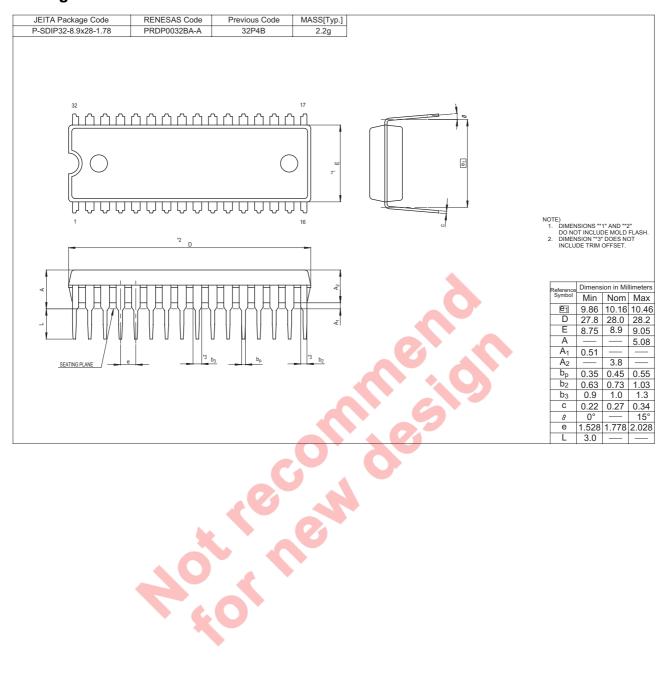
When capacitor is connected to pin 29, it sometimes oscillates. Do not connect capacitor to pin 29.


Connect to bypass-capacitance of the DC line near the terminal.

Connect to the NC pin to GND.


The time (t) is from fall of 9 bit of SCL to rise of acknowledge.

About the forwarding of I²C BUS, the time (t) changes with the resistance that connected outside.


The next SCL does not overlap into this time (t).

Application Example

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to the date this document in the such and the procedure of the date this document. In the such and the procedure of the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

L	