M61311SP/M61316SP

I 2 C BUS Controlled Video Pre-amp for High Resolution Color Display

Description

M61311SP/M61316SP is semiconductor integrated circuit for CRT display monitor.
It includes OSD blanking, OSD mixing, retrace blanking, video detector, sync separator, wide band amplifier, brightness control.

Main/sub contrast, video response adjust, ret BLK adjust, 4ch D/A OUT and OSD level adjust function can be controlled by $\mathrm{I}^{2} \mathrm{C}$ BUS.

Features

- Frequency band width: RGB

OSD

- Input: RGB

OSD
OSD BLK
Retrace BLK
Clamp pulse
Output: RGB
OSD
Sync OUT
Video det OUT

200 MHz (M61311SP)
150 MHz (M61316SP)
(4 $\mathrm{V}_{\mathrm{P}-\mathrm{P}}$ at -3 dB)
80 MHz
$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (typ.)
3.5 V to 5.0 V (positive)
3.5 V to 5.0 V (positive)
2.5 V to 5.0 V (positive)
2.5 V to 5.0 V (positive)
$5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (at Brightness less than $2 \mathrm{~V}_{\mathrm{DC}}$)
$4 \mathrm{~V}_{\text {P-P }}$ (at Brightness less than $2 \mathrm{~V}_{\mathrm{DC}}$)
$5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
High $=4.2 \mathrm{~V}_{\mathrm{DC}}$, Low $=0.7 \mathrm{~V}_{\mathrm{DC}}$

Application

CRT display monitor

Recommended Operating Conditions

Supply voltage range:

Rated supply voltage:
11.50 V to $12.50 \mathrm{~V}(\mathrm{~V} 3, \mathrm{~V} 29)$
4.75 V to $5.25 \mathrm{~V}(\mathrm{~V} 11)$
$12.00 \mathrm{~V}(\mathrm{~V} 3, \mathrm{~V} 29)$
$5.00 \mathrm{~V}(\mathrm{~V} 11)$

Major Specification

$I^{2} \mathrm{C}$ BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function.
The difference in the M61311SP/M61316SP is RGB video frequency band width.
M 61311 SP is $200 \mathrm{MHz}, \mathrm{M} 61316 \mathrm{SP}$ is 150 MHz in conditions RGB output is $4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ at -3 dB .

Block Diagram

Pin Arrangement

NC: No connection
Outline: PRDP0032BA-A (32P4B)

Absolute Maximum Ratings

Item	Symbol	Ratings $\left.=25^{\circ} \mathrm{C}\right)$	
Supply voltage (pin 3, 29)	$\mathrm{V}_{\mathrm{CC}} 12$	13.0	Unit
Supply voltage (pin 11)	$\mathrm{V}_{\mathrm{CC}} 5$	6.0	V
Power dissipation	Pd	2358	V
Ambient temperature	Topr	-20 to +75	mW
Storage temperature	Tstg	-40 to +150	${ }^{\circ} \mathrm{C}$
Recommended supply 12	Vopr12	12.0	${ }^{\circ} \mathrm{C}$
Recommended supply 5	Vopr5	5.0	V
Voltage range 12	Vopr'12	11.5 to 12.5	V
Voltage range 5	Vopr'5	4.75 to 5.25	V

BUS Control Table

(1) Slave address:

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	$=88 \mathrm{H}$

(2) Slave receiver format:

Normal mode
8 bit 8 bit
8 bit

8 bit			8 bit		8 bit		
S	Slave address	A	Sub address	A	Data byte	A	P

Auto increment mode

$$
8 \text { bit }
$$

8 bit
8 bit

S	Slave address	A	Sub address (0XH) + 10H	A	Data byte (Sub address = OXH)	A
8 bit 8 bit						
Data (Sub address = $0(X+1) H$)		A	Data (Sub address $=0(X+2) H$)	A		

Note: S: Start condition, A: Acknowledge, P: Stop condition
(3) Sub address byte and data byte format:

Function	Bit	Sub Add.	Data Byte (Top: Byte Format, Under: Start Condition)							
			D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
			0	0	0	0	0	0	0	1*
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
			0	0	0	0	0	0	0	1*
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
			0	0	0	0	0	0	0	1*
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
			0	0	0	0	0	0	0	1*
OSD level	7	04H	-	A46	A45	A44	A43	A42	A41	A40
			-	0	0	0	0	0	0	1*
RE-BLK adjust	4	05H	-	-	-	-	A53	A52	A51	A50
			-	-	-	-	0	0	0	1*
Sharpness control	4	06H	-	-	-	-	A63	A62	A61	A60
			-	-	-	-	0	0	0	1*
Sync Sepa SW	1		-	-	-	A64	-	-	-	-
			-	-	-	0	-	-	-	-*
Video Det SW	1		-	-	A65	-	-	-	-	-
			-	-	0	-	-	-	-	-*
Test mode	2		A67	A66	-	-	-	-	-	-
			0	0	-	-	-	-	-	-*
D/A OUT1	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
			0	0	0	0	0	0	0	1*
D/A OUT2	8	08H	A87	A86	A85	A84	A83	A82	A81	A80
			0	0	0	0	0	0	0	1
D/A OUT3	8	09H	A97	A96	A95	A94	A93	A92	A91	A90
			0	0	0	0	0	0	0	1
D/A OUT4	8	OAH	AA7	AA6	AA5	AA4	AA3	AA2	AA1	AA0
			0	0	0	0	0	0	0	1

Note: pre-data
Sub add. 06H
Sync Sepa SW A64
0: Sync Sepa ON
1: Sync Sepa OFF
Video Det SW A65
0: Video Det ON
1: Video Det OFF

Always set up as A66 and A67 in 0
For $I^{2} C$ Data, please transfer in the period of vertical.
$I^{2} C$ BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	VIL	-0.5	1.5	V
Max. input HIGH voltage	V_{IH}	3.0	5.5	V
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	0	400	kHz
Time the bus must be free before a new transmission can start	$\mathrm{t}_{\text {BuF }}$	1.3	-	$\mu \mathrm{s}$
Hold time start condition. After this period the first clock pulse is generated	$\mathrm{t}_{\text {HD: }}$ STA	0.6	-	$\mu \mathrm{s}$
The LOW period of the clock	tıow	1.3	-	$\mu \mathrm{S}$
The HIGH period of the clock	thigh	0.6	-	$\mu \mathrm{S}$
Set up time for start condition (Only relevant for a repeated start condition)	tsu:Sta	0.6	-	$\mu \mathrm{S}$
Hold time DATA	$\mathrm{th}_{\text {h }: \text { DAT }}$	0	0.9	$\mu \mathrm{s}$
Set-up time DATA	$\mathrm{t}_{\text {SU:DAT }}$	100	-	ns
Rise time of both SDA and SCL lines	tr	$20+0.1 \mathrm{Cb}$	300	ns
Fall time of both SDA and SCL lines	tf	20+0.1-1 b	300	ns
Set-up time for stop condition	$\mathrm{t}_{\text {su: }}$ sto	0.6	-	$\mu \mathrm{S}$

Timing Chart

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, 5 \mathrm{~V} ; \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted $)$

Note: Tr and Tf pulse characteristics 1 and $2(4 \mathrm{Vp}-\mathrm{p})$ top: M61311SP, under: M61316SP

Electrical Characteristics (cont.)

Item	Symbol	Limits			Unit	Test Point	Input													BUS CTL (H)												
		Min.	Typ.	Max.			3 12 V Vcc	$\begin{array}{c\|} \hline 2 \\ \mathrm{R} \\ \mathrm{IN} \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ G \\ \text { IN } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \\ \text { song } \\ \hline \mathbb{N} \\ \hline \end{array}$	7 B IN	12 OSD BLK	$\begin{array}{\|c\|} \hline 13 \\ \mathrm{OSD} \\ \mathrm{R} \\ \mathrm{IN} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14 \\ \text { OSD } \\ \text { G } \\ \text { IN } \\ \hline \end{array}$	15 OSD B IN	$\begin{array}{\|c\|} \hline 17 \\ \text { RET } \\ \text { BLK } \end{array}$	$\begin{array}{\|c\|} \hline 18 \\ \mathrm{CP} \\ \mathrm{IN} \end{array}$	$\begin{array}{\|c\|} \hline 31 \\ \text { ABL } \\ (\mathrm{V}) \end{array}$	32 BRT (V)	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ \text { Main } \\ \text { cont } \end{array}$	$\begin{array}{\|c\|} \hline 01 \mathrm{H} \\ \text { Sub } \\ \mathrm{R} \\ \text { cont } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 02 \mathrm{H} \\ \text { Sub } \\ \mathrm{G} \\ \text { cont } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 03 \mathrm{H} \\ \text { Sub } \\ \mathrm{B} \\ \text { cont } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 04 \mathrm{H} \\ \text { OSD } \\ \text { Adj } \end{array}$	05H Re- BLK Adj	06 H $\begin{array}{l}\text { Sharp } \\ \text { ness }\end{array}$		VDET	O7H D/A OUT 1	$\begin{gathered} \hline 08 \mathrm{H} \\ \mathrm{D} / \mathrm{A} \\ \text { OUT } \\ 2 \\ \hline \end{gathered}$	O9H D/A OUT 3	OAH D/A OUT 4
OSD pulse characteristics1	OTr	-	2	5	ns	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	a	b	b	b	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 F \\ 111 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \hline \text { FF } \\ & 255 \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \end{gathered}$
OSD pulse characteristics2	OTf	-	4	7	ns	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	a	b	b	b	a	b	5	2	$\begin{array}{\|c} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 F \\ 111 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \end{gathered}$
OSD adjust control characteristics1 (Max.)	Oadj1	3.3	4.0	4.9	VP-P	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	b	b	b	b	a	b	5	2	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 7 \mathrm{~F} \\ 127 \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD adjust control relative characteristics1	\triangle Oadj1	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ \hline 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \hline 7 \mathrm{~F} \\ & 127 \end{aligned}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD adjust control characteristics2 (Typ.)	Oadj2	1.2	1.8	2.4	VP-P	$\begin{gathered} 26,28, \\ 30 \\ \hline \end{gathered}$	b	a	a	a	a	b	b	b	b	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 64 \end{aligned}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \hline \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD adjust control relative characteristics2	Δ Oadj2	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 64 \\ & \hline \end{aligned}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{gathered} \mathrm{FF} \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD adjust control characteristics3 (Min.)	Oadj3	-0.5	-0.1	0.3	VP-P	$\begin{gathered} 26,28 \\ 30 \\ \hline \end{gathered}$	b	a	a	a	a	b	b	b	b	a	b	5	2	$\begin{array}{\|c} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$
OSD adjust control relative characteristics3	\triangle Oadj3	-0.2	0	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD input threshold voltage	VthOSD	1.7	2.5	3.3	$V_{D C}$	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	a	b	b	b	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Black level difference in OSD BLK on/off	OBLK	-0.5	-1.0	0.3	$V_{D C}$	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	b	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$
Relative OBLK	\triangle OBLK	-0.2	0	0.2	-	$\begin{gathered} 26,28, \\ 30 \\ \hline \end{gathered}$	b	a	a	a	a	b	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\frac{08}{8}$	0	0	$F F$ 255	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
OSD BLK input threshold voltage	VthBLK	1.7	2.5	3.3	V_{DC}	$\begin{gathered} 26,28, \\ 30 \\ \hline \end{gathered}$	b	b	b	a	b	b	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{gathered} \hline 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Retrace BLK characteristics1	HBLK1	1.6	1.9	2.2	$V_{D C}$	$\begin{gathered} 26,28 \\ 30 \\ \hline \end{gathered}$	b	a	a	a	a	a	a	a	a	b	b	5	2	$\begin{array}{\|l\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \mathrm{~F} \\ & 15 \\ & \hline \end{aligned}$	08	0	0	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$
Retrace BLK characteristics2	HBLK2	1.0	1.3	1.6	V_{DC}	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	a	a	a	a	b	b	5	2	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} \hline 08 \\ 8 \end{gathered}$	$\frac{08}{8}$	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Retrace BLK characteristics3	HBLK3	0.3	0.6	0.9	$V_{D C}$	$\begin{gathered} 26,28 \\ 30 \end{gathered}$	b	a	a	a	a	a	a	a	a	b	b	5	2	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{FF} \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\frac{08}{8}$	0	0	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$
Retrace BLK input threshold voltage	$\begin{array}{\|l\|} \hline \text { Vth- } \\ \text { HBLK } \end{array}$	0.7	1.5	2.3	$V_{D C}$	$\begin{gathered} 26,28 \\ 30 \\ \hline \end{gathered}$	b	a	a	a	a	a	a	a	a	b	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\frac{08}{8}$	0	0	FF 255	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
SOG input maximum noise voltage	SS-NV	-	-	0.02	$\mathrm{V}_{\text {P-P }}$	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
SOG minimum input voltage	SS-SV	0.2	-	-	$\mathrm{V}_{\text {P-P }}$	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\frac{08}{8}$	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Sync output high level	VSH	4.5	4.9	5.0	V_{DC}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \mathrm{FF} \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \hline 00 \\ 0 \end{gathered}$	$\begin{gathered} \hline 00 \\ 0 \end{gathered}$		0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Sync output low level	VSL	0	0.4	0.7	V_{DC}	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\frac{08}{8}$	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
Sync output delay time	TDS-F	10	30	65	ns	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$
Sync output delay time2	TDS-R	10	30	65	ns	9	b	a	a	b	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{gathered} \mathrm{FF} \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET input maximum noise voltage	VD-NV	-	-	0.05	V_{P}	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \hline \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET minimum input voltage	VD-SV	0.2	-	-	$\mathrm{V}_{\text {P-P }}$	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET output high level	VVDH	3.8	4.2	5.0	$V_{D C}$	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET output low level	VVDL	0	0.7	1.1	$V_{D C}$	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{array}{\|c} \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \text { FF } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET output delay time1	TDV-F	10	23	50	ns	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
V-DET output delay time2	TDV-R	1	13	40	ns	10	b	b	b	a	b	a	a	a	a	a	b	5	2	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{gathered} \text { FF } \\ 255 \end{gathered}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FF } \\ & 255 \\ & \hline \end{aligned}$
D/A output maximum voltage	VDH	4.7	5.2	5.7	V_{DC}	$\begin{aligned} & 21,22, \\ & 23,24 \\ & \hline \end{aligned}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \hline \text { FF } \\ 255 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline F F \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
D/A output minimum voltage	VDL	0	0	0.5	V_{DC}	$\begin{array}{\|l\|} \hline 21,22, \\ 23,24 \\ \hline \end{array}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	00 0	00	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$
D/A OUT input current1	IA+1	0.18	-	-	mA	$\begin{array}{r} 21,22, \\ 23,24 \\ \hline \end{array}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	00	00	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$
D/A OUT input current2	IA+2	0.18	-	-	mA	$\begin{array}{r} 21,22, \\ 23,24 \\ \hline \end{array}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{aligned} & \mathrm{FF} \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	0 0 0	0 0 0	0 0 0	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$
D/A OUT output current	IA-	-	-	0.4	mA	$\begin{array}{\|r\|} \hline 21,22, \\ 23,24 \\ \hline \end{array}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FF} \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	08	0	0	$\begin{gathered} \mathrm{FF} \\ 255 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { FF } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$
D/A nonlinearity	DNL	-1.0	-	1.0	LSB	$\begin{aligned} & 21,22, \\ & 23,24 \end{aligned}$	b	a	a	a	a	a	a	a	a	a	b	5	2	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FF } \\ 255 \\ \hline \end{array}$	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 00 \\ 0 \\ \hline \end{gathered}$	08	0	0	$\begin{aligned} & \text { vari } \\ & \text { able } \end{aligned}$	$\begin{aligned} & \text { vari } \\ & \text { able } \end{aligned}$	$\begin{aligned} & \text { vari } \\ & \text { able } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline i & \text { vari } \\ \text { able } \\ \hline \end{array}$

Electrical Characteristics Test Method

$I_{\text {cc1 }} 5$ V Circuit Current1 Power Save Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

Icc2 12 V Circuit Current2 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.

$I_{\text {CC3 }} 5$ V Circuit Current3 Normal Mode

Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.

Vomax Output Dynamic Range

It makes the amplitude of SG1 1.4 p-p. Measure the DC voltage of the white level of the waveform output.
The measured value is called Vomax.

Vimax Maximum Input

Increase the input signal (SG1) amplitude gradually, starting from $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. Measure the amplitude of the input signal when the output signal starts becoming distorted.

GV Maximum Gain

Input SG1, and measure the amplitude output at $\operatorname{OUT}(26,28,30)$. The amplitude is called VOUT $(26,28,30)$.
Maximum gain GV is calculated by the equation below:
GV = 20log (VOUT / 0.7) (dB)

Δ GV Relative Maximum Gain

Relative maximum gain $\Delta \mathrm{GV}$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{GV}= & \operatorname{VOUT}(26) / \operatorname{VOUT}(28), \\
& \operatorname{VOUT}(28) / \operatorname{VOUT}(30), \\
& \operatorname{VOUT}(30) / \operatorname{VOUT}(26)
\end{aligned}
$$

VC1 Main Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at $\operatorname{OUT}(26,28,30)$. The amplitude is called VOUT $(26,28,30)$.
The measured value is called VC1.

$\Delta \mathrm{VC} 1$ Main Contrast Control Relative Characteristics1

Relative characteristics $\triangle \mathrm{VC} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{VC} 1= & \operatorname{VOUT}(26) / \operatorname{VOUT}(28), \\
& \text { VOUT (28) / VOUT (30), } \\
& \text { VOUT (30) / VOUT (26) }
\end{aligned}
$$

VC2 Main Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VC1.

V VC2 Main Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle \mathrm{VC} 1$.

VC3 Main Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in $\mathrm{VC1}$.

VC3 Main Contrast Control Relative Characteristics3

Relative characteristics $\triangle \mathrm{VC} 3$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{VC} 3= & \text { VOUT }(26)-\operatorname{VOUT}(28), \\
& \text { VOUT }(28)-\operatorname{VOUT}(30), \\
& \text { VOUT }(30)-\operatorname{VOUT}(26)
\end{aligned}
$$

VSC1 Sub Contrast Control Characteristics1 (Max.)

Input SG1, and measure the amplitude output at OUT (26, 28, 30). The amplitude is called VOUT $(26,28,30)$. The measured value is called VSC1.

Δ VSC1 Sub Contrast Control Relative Characteristics1

Relative characteristics $\triangle \mathrm{VSC} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{VSC} 1= & \text { VOUT }(26) / \operatorname{VOUT}(28), \\
& \text { VOUT }(28) / \operatorname{VOUT}(30), \\
& \text { VOUT }(30) / \operatorname{VOUT}(26)
\end{aligned}
$$

VSC2 Sub Contrast Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in VSC1.

V VSC2 Sub Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle \mathrm{VSC} 1$.

VSC3 Sub Contrast Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in VSC1.

Δ VSC3 Sub Contrast Control Relative Characteristics3

Relative characteristics $\triangle \mathrm{VSC} 3$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \operatorname{VSC} 3= & \operatorname{VOUT}(26)-\operatorname{VOUT}(28), \\
& \operatorname{VOUT}(28)-\operatorname{VOUT}(30), \\
& \operatorname{VOUT}(30)-\operatorname{VOUT}(26)
\end{aligned}
$$

ABL1 ABL Control Characteristics1

Measure the amplitude output at $\operatorname{OUT}(26,28,30)$. The amplitude is called VOUT $(26,28,30)$.
The measured value is ABL1.

\triangle ABL1 ABL Control Relative Characteristics1

Relative characteristics $\triangle \mathrm{ABL} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{ABL} 1= & \text { VOUT (26) / VOUT (28), } \\
& \text { VOUT (28) / VOUT (30), } \\
& \text { VOUT (30) / VOUT (26) }
\end{aligned}
$$

ABL2 ABL Control Characteristics2

Measuring condition and procedure are the same as described in ABL1.

\triangle ABL2 ABL Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle \mathrm{ABL} 1$.

ABL3 ABL Control Characteristics3

Measuring condition and procedure are the same as described in ABL1.

$\triangle A B L 3$ ABL Control Relative Characteristics3

Relative characteristics $\triangle \mathrm{ABL} 3$ is calculated by the equation below:
$\Delta A B L 3=\operatorname{VOUT}(26)-\operatorname{VOUT}(28)$,
VOUT (28) - VOUT (30),
VOUT (30) - VOUT (26)

VB1 Brightness Control Characteristics1

Measure the DC voltage at $\operatorname{OUT}(26,28,30)$. The amplitude is called VOUT $(26,28,30)$.
The measured value is called VB1.

Δ VB1 Brightness Control Relative Characteristics1

Relative characteristics $\Delta \mathrm{VB} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{VB} 1= & \text { VOUT }(26)-\operatorname{VOUT}(28), \\
& \operatorname{VOUT}(28)-\operatorname{VOUT}(30), \\
& \operatorname{VOUT}(30)-\operatorname{VOUT}(26)
\end{aligned}
$$

VB2 Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

Δ VB2 Brightness Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle \mathrm{VB} 1$.

VB3 Brightness Control Characteristics3

Measuring condition and procedure are the same as described in VB1.

VBB3 Brightness Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta \mathrm{VB} 1$.

Tr Pulse Characteristics1 (4 VP-P)

Measure the time needed for the input pulse to rise from 10% to 90% (Tr 1) and for the output pulse to rise from 10% to $90 \%(\mathrm{Tr} 2)$ with an active probe.

Pulse characteristics Tr is calculated by the equations below:

$$
\operatorname{Tr}=\sqrt{(\operatorname{Tr} 2)^{2}-(\operatorname{Tr} 1)^{2}} \quad \text { (ns) }
$$

$\Delta T r$ Relative Pulse Characteristics1 (4 $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$)

Relative characteristics $\Delta \mathrm{Tr}$ is calculated by the equation below:

$$
\begin{array}{r}
\Delta \operatorname{Tr}=\operatorname{Tr}(26)-\operatorname{Tr}(28), \\
\operatorname{Tr}(28)-\operatorname{Tr}(30), \\
\operatorname{Tr}(30)-\operatorname{Tr}(26)
\end{array}
$$

Tf Pulse Characteristics2 (4 VP-p)

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe

Pulse characteristics Tf is calculated by the equations below:

$$
\mathrm{Tf}=\sqrt{(\mathrm{Tf} 2)^{2}-(\mathrm{Tf} 1)^{2}} \quad \text { (ns) }
$$

$\Delta T f$ Relative Pulse Characteristics2 (4 $\mathrm{V}_{\mathrm{P}-\mathrm{p}}$)

Relative characteristics $\Delta \mathrm{Tf}$ is calculated by the equation below:

$$
\begin{array}{r}
\Delta \mathrm{Tf}=\operatorname{Tf}(26)-\operatorname{Tf}(28), \\
\mathrm{Tf}(28)-\operatorname{Tf}(30), \\
\mathrm{Tf}(30)-\operatorname{Tf}(26)
\end{array}
$$

VthCP Clamp Pulse Threshold Voltage

Decrease the SG5 input level gradually from 5.0 $\mathrm{V}_{\mathrm{P}-\mathrm{p}}$ monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable. And increase the SG5 input level gradually from 0 $\mathrm{V}_{\text {P-p. }}$. Measure the top level of input pulse when the output pedestal voltage turn increase with stable (a point of 2.0 V). The measured value is called VthCP.

WCP Clamp Pulse Minimum Width

Decrease the SG5 pulse width gradually from $0.5 \mu \mathrm{~s}$, monitoring the output. Measure the SG5 pulse width when the output pedestal voltage turn decrease with unstable. And increase the SG5 pulse width gradual from $0 \mu \mathrm{~s}$. Measure the SG5 pulse width when the output pedestal voltage turn increase with stable (a point of 2.0 V). The measured value is called WCP.

OTr OSD Pulse Characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oadj1 OSD Adjust Control Characteristics1 (Max.)

Measure the amplitude output at OUT $(26,28,30)$. The amplitude is called VOUT $(26,28,30)$. The measured value is called Oadj1.

Δ Oadj1 OSD Adjust Control Relative Characteristics1

Relative characteristics $\Delta \mathrm{Oadj} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \text { Oadj1 = } & \text { VOUT (26) / VOUT (28), } \\
& \text { VOUT (28) / VOUT (30), } \\
& \text { VOUT (30) / VOUT (26) }
\end{aligned}
$$

Oadj2 OSD Adjust Control Characteristics2 (Typ.)

Measuring condition and procedure are the same as described in Oadj1.

Δ Oadj2 OSD Adjust Control Relative Characteristics2

Measuring condition and procedure are the same as described in Δ Oadj1.

Oadj3 OSD Adjust Control Characteristics3 (Min.)

Measuring condition and procedure are the same as described in Oadj1.

Δ Oadj3 OSD Adjust Control Relative Characteristics3

Relative characteristics $\Delta \mathrm{Oadj} 3$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \text { Oadj3 }= & \text { VOUT }(26)-\operatorname{VOUT}(28), \\
& \text { VOUT }(28)-\operatorname{VOUT}(30), \\
& \text { VOUT }(30)-\operatorname{VOUT}(26)
\end{aligned}
$$

VthOSD OSD Input Threshold Voltage

Decrease the SG6 input level gradually from $5.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, monitoring the output. Measure the top level of SG6 when the output is disappeared. And increase the SG6 input level gradually from $0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. Measure the top level of SG6 when the output is appeared. The measured value is called VthOSD.

OBLK Black Level Difference in OSD BLK on/off

Calculating the black level voltage minus the output voltage of high section of SG6 it makes VOUT (26, 28, 30). The calculated value is called OBLK.

\triangle OBLK Relative OBLK

Relative characteristics \triangle OBLK is calculated by the equation below:

$$
\begin{aligned}
\Delta \text { OBLK }= & \text { VOUT (26) - VOUT (28), } \\
& \text { VOUT (28) - VOUT (30), } \\
& \text { VOUT (30) - VOUT (26) }
\end{aligned}
$$

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG6 at the time.
Decrease the SG6 input level gradually from $5.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, monitoring the output. Measure the top level of SG6 when the blanking period is disappeared. And increase the SG 6 input level gradually from $0 \mathrm{~V}_{\text {P-P. }}$. Measure the top level of SG6 when the blanking period is appeared. The measured value is called VthBLK.

HBLK1 Retrace BLK Characteristics1

Measure the bottom voltage at amplitude of OUT (26, 28, 30). The measured value is called HBLK1.

HBLK2 Retrace BLK Characteristics2

Measuring condition and procedure are the same as described in HBLK1.

HBLK3 Retrace BLK Characteristics3

Measuring condition and procedure are the same as described in HBLK1.

VthHBLK Retrace BLK Input Threshold Voltage

Decrease the SG7 input level gradually from $5.0 \mathrm{~V}_{\text {P-P }}$, monitoring the output. Measure the top level of SG7 when the output is disappeared. And increase the SG7 input level gradually from $0 \mathrm{~V}_{\mathrm{P}-\mathrm{P} \text {. Measure the top level of } \mathrm{SG} 7 \text { when the }}$ output is appeared. The measured value is called VthHBLK.

SS-NV SOG Input Maximum Noise Voltage

When SG4 is all black (no video), the sync's amplitude of SG 4 gradually from $0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ to $0.02 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. No pulse output permitted.

SS-SV SOG Minimum Input Voltage

When SG4 is all white or all black, the sync's amplitude of SG 4 gradually from $0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ to $0.3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. Positive pulse has occurred to Sync Sepa OUT.

VSH Sync Output High level

Measure the high voltage at Sync Sepa OUT. The measured value is treated as VSH.

VSL Sync Output Low Level

Measure the low voltage at Sync Sepa OUT. The measured value is treated as VSL.

TDS-F Sync Output Delay Time1

Sync Sepa OUT becomes high with sink part of SG4.
Measure the time needed for the front edge of SG4 Sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is called TDS-F.

TDS-R Sync Output Delay Time2

Sync Sepa OUT becomes high with sink part of SG4.
Measure the time needed for the rear edge of SG4 Sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is called TDS-R.

VD-NV V-DET Input Maximum Noise Voltage

Increase the SG 1 input level gradually from $0 \mathrm{~V}_{\text {P-P }}$ to $0.05 \mathrm{~V}_{\text {P-P. }}$. No pulse Video Det OUT permitted.

VD-SV V-DET Minimum Input Voltage

Decrease the SG 1 input level gradually from $0.2 \mathrm{~V}_{\text {P-P }}$ to $0.3 \mathrm{~V}_{\text {P-p }}$. Positive pulse has occurred to Video Det OUT.

VVDH V-DET Output High Level

Measure the high voltage at Video Det OUT. The measured value is treated as VVDH.

VVDL V-DET Output Low Level

Measure the low voltage at Video Det OUT. The measured value is treated as VVDL.

TDV-F V-DET Output Delay Time1

Video Det OUT becomes high with signal part of SG1.
Measure the time needed for the SG1 to fall from 50% and for Video Det OUT to fall from 50% with an active probe. The measured value is called TDV-F.

TDV-R V-DET Output Delay Time2

Video Det OUT becomes high with signal part of SG1.
Measure the time needed for the SG1 to rise from 50% and for Video Det OUT to rise from 50% with an active probe. The measured value is called TDV-R.

VDL D/A Output Minimum Voltage

Measure the DC voltage at D/A OUT. The measured value is called VDL.

IA+1 D/A OUT Input Current1

Measure the input current that flows into D/A OUT through $1 \mathrm{k} \Omega$ by $2 \mathrm{~V}_{\mathrm{DC}}$.

IA+2 D/A OUT Input Current2

Measure the input current that flows into D / A OUT through $1 \mathrm{k} \Omega$ by $0.5 \mathrm{~V}_{\mathrm{DC}}$.

IA- D/A OUT Output Current

Measure the output current that flows out of D/A OUT through $1 \mathrm{k} \Omega$ by $4.2 \mathrm{~V}_{\mathrm{DC}}$.

DNL D/A Nonlinearity

The difference of differential non-linearity of D/A OUT must be less than $\pm 1.0 \mathrm{LSB}$

Input Signal

SG No.	Signals
$\begin{gathered} \text { SG1 } \\ \text { Video signal } \\ \text { (all white) } \end{gathered}$	Pulse with amplitude of $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}(\mathrm{f}=30 \mathrm{kHz})$. Video width of $25 \mu \mathrm{~s}$. (75%) (Amplitude is variable.)
SG4 Video signal (all white, all black)	
SG5 Clamp pulse	Pulse width and amplitude are variable.
$\begin{gathered} \text { SG6 } \\ \text { OSD pulse } \end{gathered}$	
SG7 BLK pulse	

Test Circuit

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
$\begin{aligned} & 2 \\ & 4 \\ & 7 \end{aligned}$	R IN G IN B IN	3.5		Clamp to about 3.5 V due to clamp pulse from pin 18. Input at low impedance.
3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1} \\ & (12 \mathrm{~V}) \end{aligned}$	12	-	Connect to the power supply that stabilized.
5	SonG IN	When open 2.3		SYNC ON VIDEO input pin. Sync is negative. Input signal at pin 5, compare with the reference voltage of internal circuit in order to separate Sync signal from Sync on Green signal. Input at low impedance. Do not input the signal without the Sync. When it does not use this function, connect to capacitor between GND, turn on Sync Sepa SW by ${ }^{2} \mathrm{C}$ BUS.
$\begin{gathered} \hline 1 \\ 6 \\ 8 \\ 16 \\ 27 \end{gathered}$	GND GND 1 GND 2 GND 3 GND 4	GND		Connect to GND.
9	Sync Sepa OUT			Sync Sepa output pin. When the rise time of the signal is sped up, connect about 2.3 $\mathrm{k} \Omega$ between 5 V power supply. When it does not use, do openly. So as not to flow into pin 98 mA over, resistance value does not make to $2.3 \mathrm{k} \Omega$ or under. Output is a positive.
10	Video Det OUT	-		pin 10 needs to connect the 50 $\mathrm{k} \Omega$ between 5 V power supply. When it does not use this function, turn off Video Det SW by $I^{2} C$ BUS.
11	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & (5 \mathrm{~V}) \end{aligned}$	5	-	Connect to the power supply that stabilized.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
12 13 14 15	OSD BLK IN OSD R IN OSD G IN OSD B IN	-		Input the positive pulse When it does not use this function, connect to GND. When input OSD RGB pulse, input OSD BLK pulse without fail.
17	Retrace BLK IN	-		Input the positive pulse When it does not use this function, connect to GND.
18	Clamp Pulse IN			Input the positive pulse which width 200 ns over. Input at low impedance.
19	SDA			SDA of I ${ }^{2} \mathrm{C}$ BUS (Serial data line) $\text { Tth }=2.3 \mathrm{~V}$

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
20	SCL	-		SCL of $I^{2} \mathrm{C}$ BUS (Serial clock line) $\text { Tth }=2.3 \mathrm{~V}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	D/A OUT 1 D/A OUT 2 D/A OUT 3 D/A OUT 4	-		D/A output pin. Output voltage range is 0 V to 5 V . Input current is below 0.18 mA . Output current is below 0.4 mA .
$\begin{aligned} & 26 \\ & 28 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { B OUT } \\ & \text { G OUT } \\ & \text { R OUT } \end{aligned}$	Variable		This terminal needs to connect the 1 to $3 \mathrm{k} \Omega$ resister between GND. This resistance value may be changed, to improve the video output characteristics.
27	GND 4	-		Connect to GND
29	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC} 2} \\ & (12 \mathrm{~V}) \end{aligned}$	12		It is the power supply of emitter follower of RGB output exclusive use.
31	ABL IN	When open 2.5 V		ABL (Automatic beam limiter) input pin. Input voltage in the ranges of 0 V to 5 V . Output amplitude Max with 5 V . Output amplitude Min with 0 V . When it does not use this function, connect to 5 V .
32	BRIGHT	-		It is recommended that the IC is used between pedestal voltage 2 V to 3 V .
25	NC	-	-	Connect to GND.

Typical Characteristics (Reference data)

Brightness Control Characteristics

OSD Adjust Control Characteristics

OSD Adjust Control Data

Sub Contrast Control Characteristics

ABL Control Characteristics

ABL Control Voltage $\left(\mathrm{V}_{\mathrm{DC}}\right)$

D/A OUT Control Characteristics

D/A OUT Control Data

Application Method for M61311SP/M61316SP

About Clamp Pulse Input

Clamp pulse needs to be always inputted.
Clamp pulse width is recommended:
15 kHz at $1.0 \mu \mathrm{~s}$ over
30 kHz at $0.5 \mu \mathrm{~s}$ over
64 kHz at $0.3 \mu \mathrm{~s}$ over
The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the figure shown below is recommended.

Notice of Application

Make the nearest distance between output and pull down resister.
Recommend this resister is 1 to $3 \mathrm{k} \Omega$.
Power dissipation in $3 \mathrm{k} \Omega$ is smaller than $1 \mathrm{k} \Omega$.
Recommend pedestal voltage of IC output signal is 2 V .
As for the low level of the pulse input of OSD BLK, OSD, Clamp Pulse, Retrace BLK etc., avoid cons the GND level or under.

Pin 31 connect to the voltage that stabilized, and pay attention as surge etc. does not flow into.
$\mathrm{V}_{\mathrm{CC}}(12 \mathrm{~V}, 5 \mathrm{~V})$ connects to the power supply that stabilized, and bypass-capacitor connects near the term.
When capacitor is connected to pin 29, it sometimes oscillates. Do not connect capacitor to pin 29.
Connect to bypass-capacitance of the DC line near the terminal.
Connect to the NC pin to GND.
The time (t) is from fall of 9 bit of SCL to rise of acknowledge.
About the forwarding of $\mathrm{I}^{2} \mathrm{C}$ BUS, the time (t) changes with the resistance that connected outside.
The next SCL does not overlap into this time (t).

Acknowledge Delay Time Characteristics (Reference data)

Application Example

Package Dimensions

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6-2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7 . With the exception of products specifed by Retionas as suitable for automione applitations, Renesas products are not designed, or whictured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear quality undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shal have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificicial life support devices or systems
) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall ind liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as wallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

