

M62055FP

3 V Power Supply with Watchdog Timer

REJ03D0808-0200 Rev.2.00 Mar 10, 2006

Description

M62055FP is a 3 V power supply featuring a watchdog timer function for a microcontroller system.

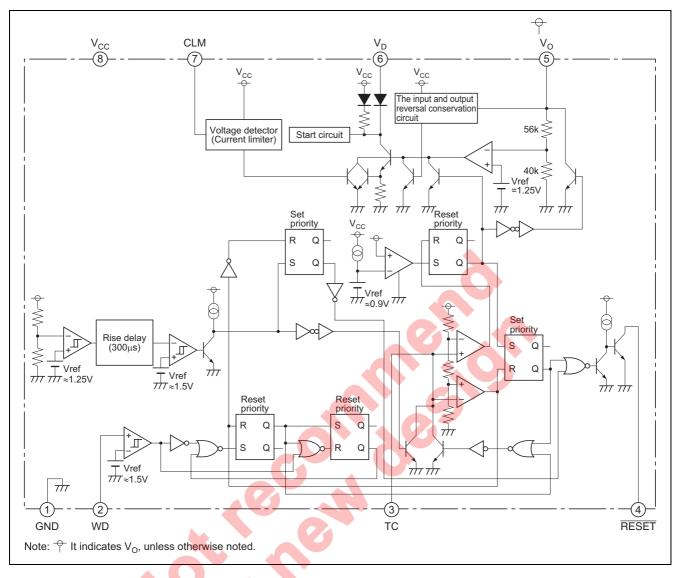
It can be a power source of 3 V \pm 5% by utilizing the reference voltage and amplifier.

It can also generate a reset pulse for the applied systems during power-on, moreover it includes the watchdog timer for a self diagnostics of the system, which can prevent system erroneous functions.

Features

- Power-on reset
- Watchdog timer
- High accuracy voltage source of 3 V \pm 5% (Max)
- Over current protection circuit
- The voltage detection accuracy of $\pm 5\%$ (Max)
- Output power (V_0) cutoff function at erroneous conditions
- Backward voltage protection circuits for inputs and outputs

Application


• Handy information terminal equipment, CD-ROM, Portable audio equipment

Pin Arrangement

	M62055F	P			
		8 V _{CC}			
	WD 2	7 CLM			
	TC 3	6 V _D			
•	RESET 4	5 Vo			
(Top view)					
Package: PRSP0008DA-A (8P2S-A)					

Block Diagram

Pin Functional Description

Pin No.	Symbol	Functional Description				
1	GND	Ground				
2	WD	Input for watchdog timer				
3	ТС	Setting up reset timer and watchdog timer				
4	RESET	Reset signal output				
5	Vo	Feedback to a power supply for a MCU				
6	VD	Controlling the stability of an output voltage with a PNP transistor connected externally				
7	CLM	Current limiting				
8	Vcc	Power supply voltage				

Absolute Maximum Ratings

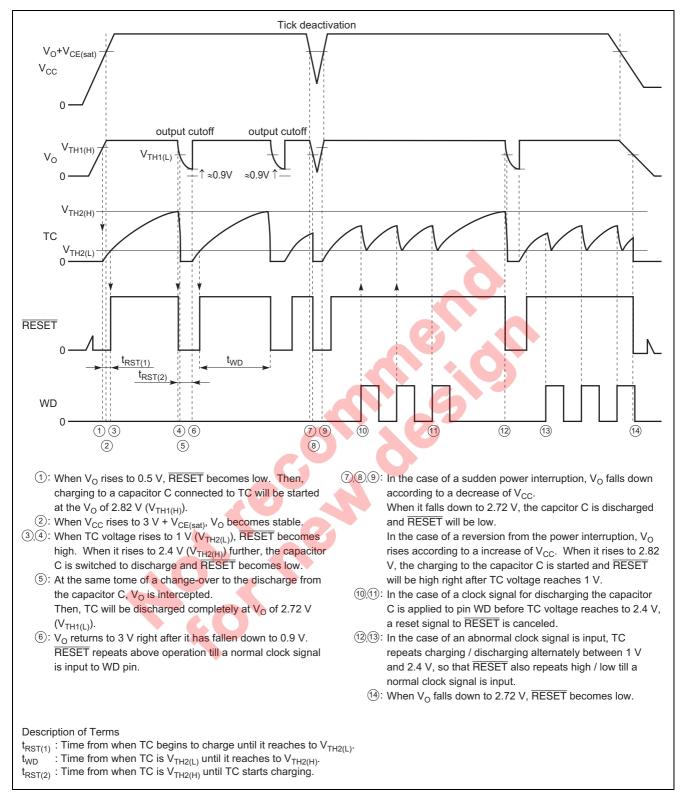
				$(Ta = 25^{\circ}C,$	unless otherwise noted)	
Item		Symbol	Ratings	Unit	Conditions	
Supply voltage		V _{cc}	13	V		
Reset pin	Output voltage	V _{RM}	10	V		
	Output current	I _{RM}	10	mA		
Watchdog pin inp	out voltage	V _{WDM}	3	V		
Thermal derating	ļ	Кθ	4.0	mV/°C	Ta≥25°C	
Operating tempe	rature	Topr	-20 to +75	°C		
Storage tempera	ture	Tstg	–55 to +150	°C		

Electrical Characteristics

 $(Ta = 25^{\circ}C, unless otherwise noted)$

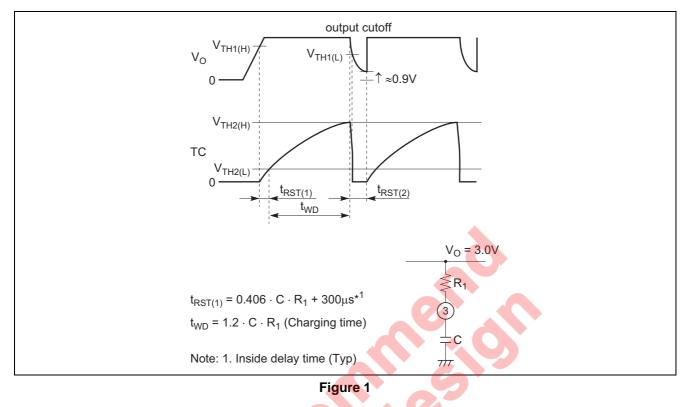
DC Characteristics

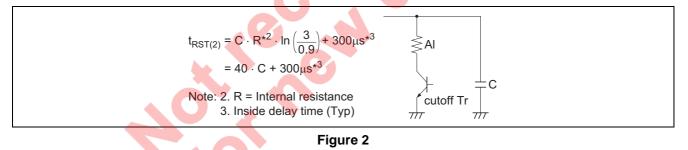
			1					
Item			Symbol	Min	Тур	Max	Unit	Test Conditions
Battery	ttery Supply voltage			3.5	-	13	V	
backup	Circuitry current			_	500	900	μA	
regulator Output voltage Bias current			Vo	2. <mark>8</mark> 5	3.00	3.15	V	
			I _{Bmax}	A	10	—	mA	
	Listing short-circuit bias cur	rent	IBSC		1		mA	
	Input voltage regulation		Reg-in	-	0.02		%/V	$V_{CC} = 3.5V$ to 13V
	Loading voltage regulation		Reg-lo		20	I	mV	I_{O} = 10mA to 100mA
	Output voltage thermal coefficient		ΔV ₀ /ΔT		0.02	I	%/T	
CLM threshold voltage			VTHCLM	P	200	_	mV	
Reset,	g		V _{TH1(H)}	2.68	2.82	2.96	V	
watchdog			V _{TH1(L)}	2.58	2.72	2.86	V	
timer			ΔV_{TH1}	_	0.1	_	V	
	Output voltage	Reset pin	V _{OL(RST)}	_	0.2	0.4	V	Isink = 4mA
Output leakage current Watchdog timer threshold voltage	Output leakage current		lleak	_	_	5	μΑ	
	oltage	V _{TH2(H)}	2.28	2.40	2.52	V		
			V _{TH2(L)}	0.95	1.00	1.05	V	
WD input current WD input threshold voltag TC output current TC input current	WD input current		I _{WD}	_		1	μΑ	$V_{IN} = 3V$
	WD input threshold voltage		V _{TH(WD)}	_	1.5	_	V	
	TC output current		Itco	_		-1	μΑ	V _{IN} = 0.8V
	TC input current	•	ltc1		2.0	_	mA	V _{IN} = 2.4V
			ltc2	8.0	_	_	mA	In the output cutoff transmission mode
	V _{cc} min operating voltage		V _{CCMIN}	—	—	2.0	V	*1


Note: 1. The V_{CC} minimum operating voltage at which the RESET output is low.

AC Characteristics

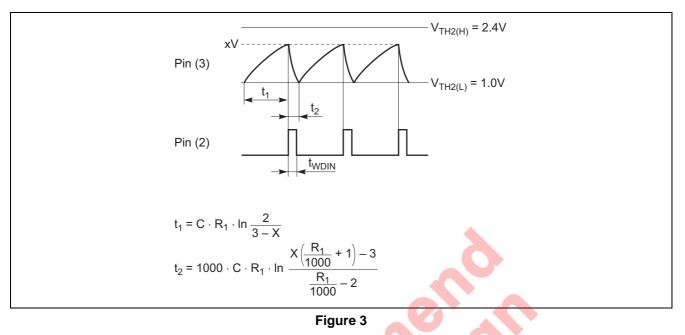
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Watchdog timer	t _{WD}	0.5	1.2	1.7	ms	$C=0.1\mu F,R_1=10k\Omega$
Reset timer (1)	t _{RST(1)}	0.2	0.5	1.1	ms	$C = 0.1 \mu F$, $R_1 = 10 k \Omega$
Reset timer (2)	t _{RST(2)}	_	_	10	ms	$C_0=10\mu F,R_1=10k\Omega,I_L=0$
Input pulse width	t _{WDIN}	3	_	_	μs	
Transmission delay time	t _d		20	_	μs	


Timing Chart



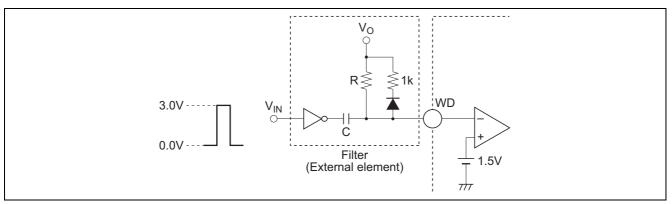
1. Pin (3) (TC pin) Charging and Discharging Time

When an error is occurred in RD input, TC waveform is as shown in figure 1.


The following formula can be obtained because $t_{RST(2)}$ is equal to the duration of V_0 cutoff.

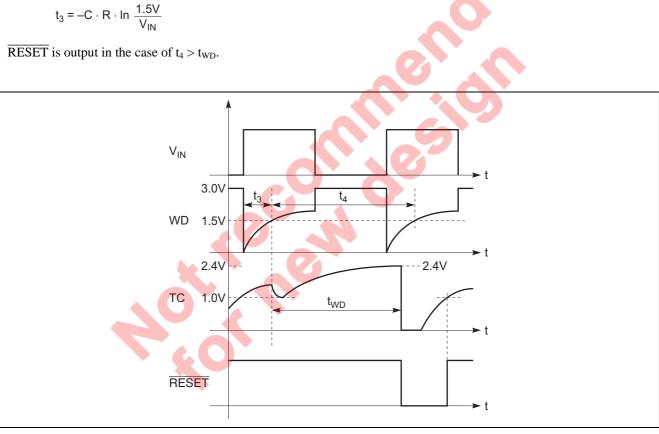
2. Pin (2) (WD pin) Input Frequency, Input Pulse Width, Charge/Discharge Time

When input of (2) WD is normal, TC waveform (3) is as shown in figure 3.


Conditions of an input to pin (2) (WD pin)
 (1) Input period should be t_{WD} or less. (Pin discharge is completed before the arrival of V_{TH2(H)} = 2.4 V)

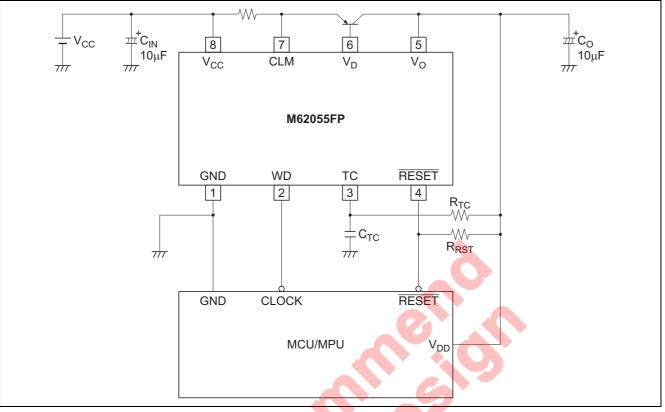
$$\frac{1}{1.2 \cdot C \cdot R_1} < f$$

(2) Input pulse width t_{WDIN} should be t_2 or less.



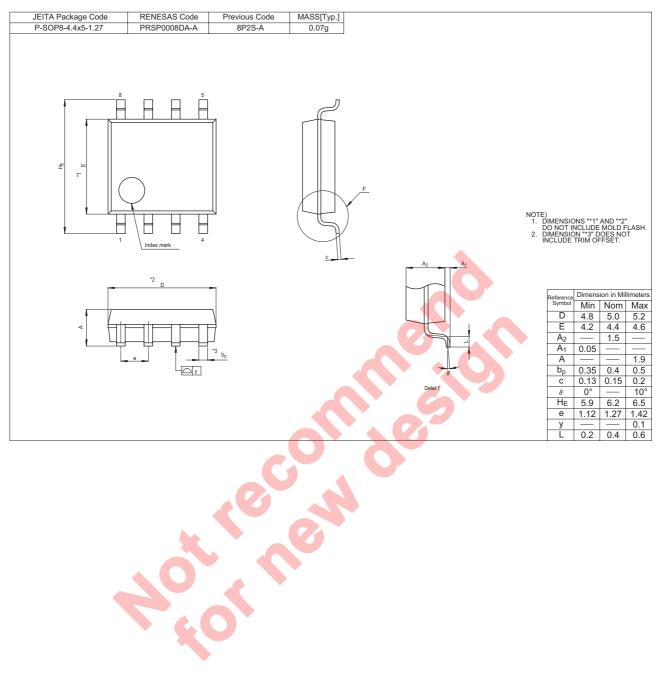
3. Relationship between the Input Pulse Width and the Low Pass Filter

Addition of a low pass filter makes input waveform dull. An input pulse width and CR of a low pass filter is determined referring to the figure 5.


If t_3 is too long, the TC waveform changes as shown in figure 5.

t₃ is set as follows:

 t_{WDIN} (3 µs) or more and t_2 (charging time) or less. (t_2 is a discharge time while an input is normal)



Application Circuit Example

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (intp://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or system for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510