

M62501P/FP

PWM IC for the Synchronized Deflection System Control

REJ03D0857-0200 Rev.2.00 Jun 14, 2006

General Description

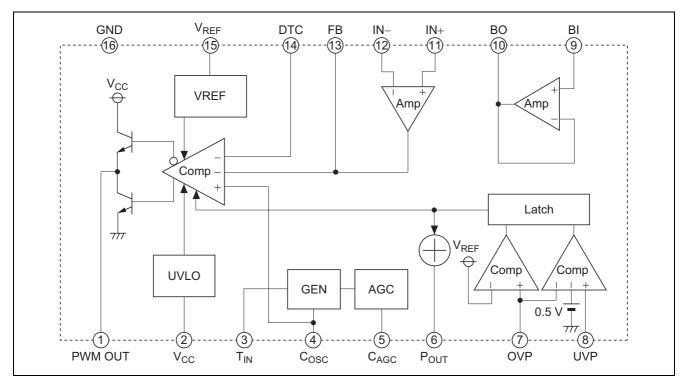
The M62501P/FP is a controller for a deflection system of CRT display monitors. It performs a stable PWM control over a wide fluctuation of external signals, thanks to the built-in trigger mode oscillator. The IC is suitable for an application to a high voltage drive of monitors because of its following circuits and functions;

- low voltage malfunction protection circuit,
- over or under voltage protection circuit for a control line,
- soft-start function.

It is also applicable to a horizontal output correction.

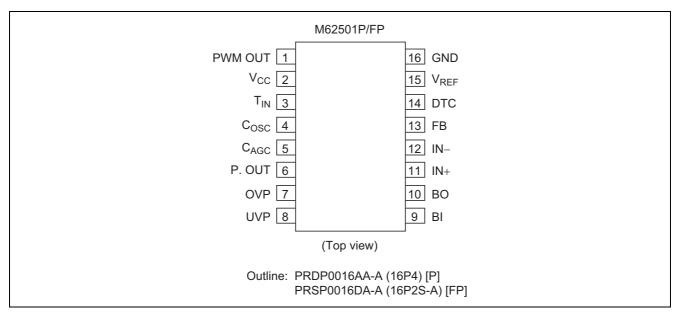
Features

- PWM output synchronized with external signals
- Wide pulse width modulation control frequency 15 kHz to 150 kHz
- Soft start function
- The under voltage output malfunction protection circuit


start $V_{CC} > 9 V$

- stop $V_{CC} < 6 V$
- Built-in over voltage protection (OVP) and under voltage protection (UVP) control

Application


CRT display monitor

Block Diagram

Pin Arrangement

Terminal Number and The Facility

PIN No.	Symbol	Functional Description
1	PWM OUT	PWM output
2	V _{cc}	Power supply
3	T _{IN}	Trigger input
4	C _{OSC}	Setting oscillating frequency
5	C _{AGC}	AGC setting
6	P.OUT	Error signal output
7	OVP	Input of over voltage protection
8	UVP	Input of under voltage protection
9	BI	Positive input of buffer Amp.
10	BO	Output of buffer Amp.
11	IN+	Positive input of Op-Amp.
12	IN-	Negative input of Op-Amp.
13	FB	Output of Op-Amp.
14	DTC	Dead time control (Soft start function)
15	V _{REF}	Output of reference voltage (5 V)
16	GND	Ground

Absolute Maximum Ratings

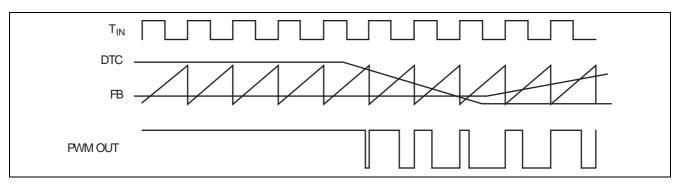
			(Ta =	$= 25^{\circ}$ C, unle	ess otherwise noted
Item	Symbol	Ratings		Unit	Conditions
Supply voltage	V _{CC}	15		V	
Output voltage	V _{OUT}	1:	5	V	
Output current	I _{OUT}	±100		mA	
Error amplifier input common mode voltage	VICM	-0.3 to V _{CC}		V	
Error amplifier differential input voltage	V _{ID}	V _{CC}		V	
Power dissipation	Pd	Р	FP	mW	
		1200	650		
Thermal derating	Κθ	Р	FP	mW/°C	Ta≥25°C
		9.6	5.2		
Operating temperature	Topr	-20 to +75		°C	
Storage temperature	Tstg	-40 to +150		°C	

2500

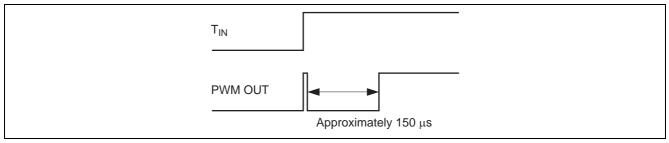
Electrical Characteristics

		Symbol	Limits				
Block	Item		Min	Max	Unit	Test Conditions	
All device	Range of power supply	Vcc	V _{CC} OFF		14	V	
	Circuit current	Icc		20		mA	Output off mode
Reference	Reference voltage	V_{REF}	4.80	5.00	5.20	V	I _{REF} = –5 mA
voltage	Input regulation	Reg-in		1.0	10	mV	$V_{CC} = 7$ to 14 V
section							$I_{REF} = -5 \text{ mA}$
	Load regulation	Reg-L	—	2.0	20	mV	$I_{REF} = 0$ to -5 mA
	Reference voltage thermal	TC _{VREF}	—	0.01		%/°C	
	coefficient						
	Maximum reference current	$I_{\text{REF MAX}}$		-30		mA	
	Short-circuit current	ls	—	-30	_	mA	
Error Amp. Buffer Amp.	Input offset voltage	V _{IO}	—	—	7	mV	
	Input bias current	l _{lb}	-100	—	_	nA	
	Input offset current	I _{IO}	-100		100	nA	
	Common mode input voltage range	VICM	-0.3	_	$V_{CC}-2$	V	
	Open loop transmission gain	AV	70	110		dB	
	Slew rate	SR		4		V/µs	
	Output voltage range	V _{OR}	0.3		V _{REF} – 1.5	V	
	Output sink current	Isink	10			mA	
	Output source current	Isource			-10	mA	
	Input bias current	lb	-20			nA	
	Slew rate	SR		4		V/µs	
	Output voltage	Vor	0.3		$V_{CC}-2.5$	V	
	Output sink current	Isink	2			mA	
	Output source current	Isource			-10	mA	
Oscillator	Oscillation frequency	f _{OSC}	15		150	kHz	
	The oscillator waveform bound voltage	V _{OSC H}	—	3.5		V	
	The oscillator waveform lower limit voltage	V _{OSC L}		1.5		V	
	High level of TIN	V _{TIN H}	2.5		Vcc	V	
	Low level of TIN	V _{TIN L}	_		1.0	V	
PWM output	Output saturation voltage L	V _{sat L}	_	0.7	1.4	V	l _o = 100 mA
section	Output saturation voltage H	V _{sat H}	9.5	10.5	_	V	I _O = -100 mA
UVLO	ON threshold voltage	V _{TH ON}	8.0	9.0	10.0	V	
section	OFF threshold voltage	VTH OFF	5.4	6.0	6.6	V	
OVP section	OVP terminal threshold voltage	V _{TH OVP}	4.75	5.00	5.25	V	
	OVP terminal input current	I _{IN OVP}			1.0	μA	
UVP section	Input offset voltage	V _{UVPO}			7	mV	
	UVP terminal input current	I _{IN UVP}		_	1.0	μA	
P.OUT	Output saturation voltage	Vsat		_	0.4	V	I _{PO} = 10 mA
section	Output leakage current	IL	<u> </u>		1.0	μA	V _{PO} = 12 V

Terminal		
No.	Symbol	Function and Terminal Circumscription Circuitry
1	PWM OUT	 PWM output terminal The PWM output synchronized with the T_{IN} input. Output "H" level = 10.5 V typ (The output load current: -100 mA, V_{CC} = 12 V) Output "L" level = 0.7 V typ (The output load current: +100 mA, V_{CC} = 12 V)
2	V _{CC}	Power supply terminal
3	T _{IN}	 Trigger input terminal Frequency range 15 kHz to 150 kHz It takes in a start edge.
		T _{IN} input waveform Min 1.0 V (6) GND
4	Cosc	Cosc terminal
-	Cose	 It generates a saw wave by connecting capacitor between 4-pin and GND. Recommended capacitor value is 1000 pF.
5	C _{AGC}	C _{AGC} terminal • It sets up sensitivity of AGC by connecting capacitor between 5-pin and GND. • Recommended capacitor value is 1 μF. V _{REF} 15 C _{OSC} 4 C _{OSC} 4 GND 16


Terminal Functional Description and Equivalent Circuit

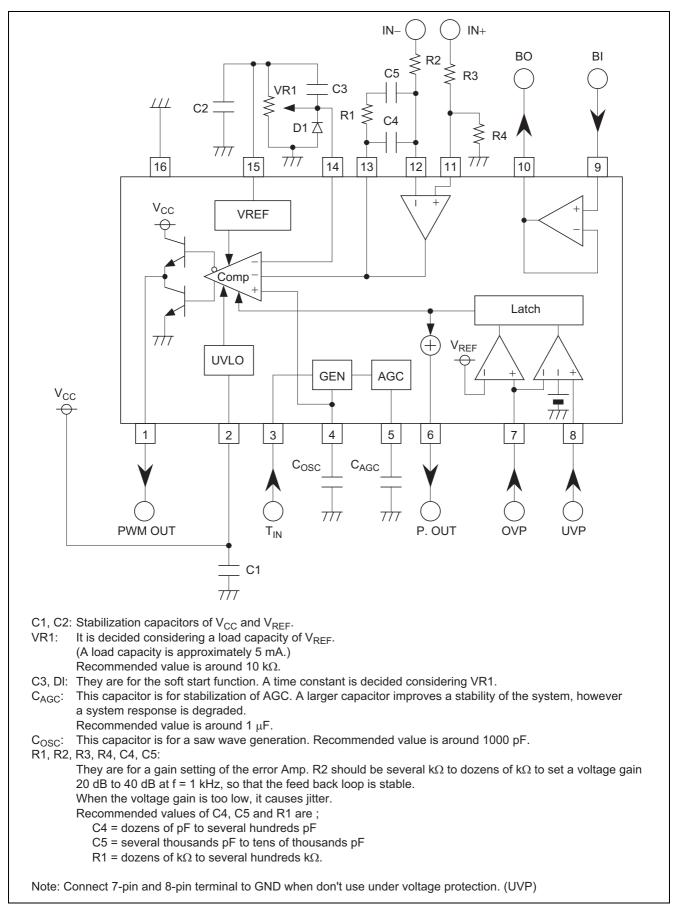
Terminal		
No.	Symbol	Function and Terminal Circumscription Circuitry
6	P.OUT	 The abnormal state detection output terminal The output becomes "H" from "L" when an abnormality is detected in the OVP or UVP terminal. Then the PWM output terminal becomes "H" settlement, too. Do OFF of power supply (V_{CC}) to remove latch of abnormal state. In abnormal state detection; Output "H" level = 10.5 V typ (The output load current: no-load, V_{CC} = 12 V) Output "L" level = 1.5 V typ (The output load current: -1 mA, V_{CC} = 12 V) In normal state ; Output "L" level = 0.4 V typ (The output load current: +10 mA, V_{CC} = 12 V)
7	OVP	Over voltage protection of the control line (OVP) Setting terminal voltage; GND ≤ V_{OVP} < V_{REF}
8	UVP	Under voltage protection of the control line (UVP) • Setting terminal voltage; GND $\leq V_{UVP} < V_{OVP}$ Vace 2 VREF (15 OVP (
9	BI	
10	BO	The input terminal of a buffer Amp. (BI) The output terminal of a buffer Amp. (BO) V_{CC} (2) U_{CC} (2) U_{CC} (2) U_{CC} (1) U_{CC} (1) U_{CC} (2) U_{CC} (1) U_{CC} (1) U_{CC} (2) U_{CC} (1) U_{CC} (1) U_{CC} (2) U_{CC} (1) U_{CC} (2) U_{CC} (2) U_{CC} (1) U_{CC} (2) U_{CC} (2) U_{CC} (1) U_{CC} (2) U_{CC} (2)


Terminal		
No.	Symbol	Function and Terminal Circumscription Circuitry
11	IN+	Positive input terminal of an Op-Amp. (IN+) V _{CC} (2)
12	IN–	Negative input terminal of an Op-Amp. (IN–)
13	FB	Output terminal of an Op-Amp. (FB)
14	DTC	Dead time control terminal (DTC)
		It can do soft start during power-on under keeping time constant.
		PWM comparator section
15	V _{REF}	Reference voltage terminal • 5 V output voltage (The terminal can begin to take outside connected load 5 mA.) V _{CC} (2) (15) V _{REI} (15) V _{REI}
16	GND	Ground terminal
10		

Timing Chart

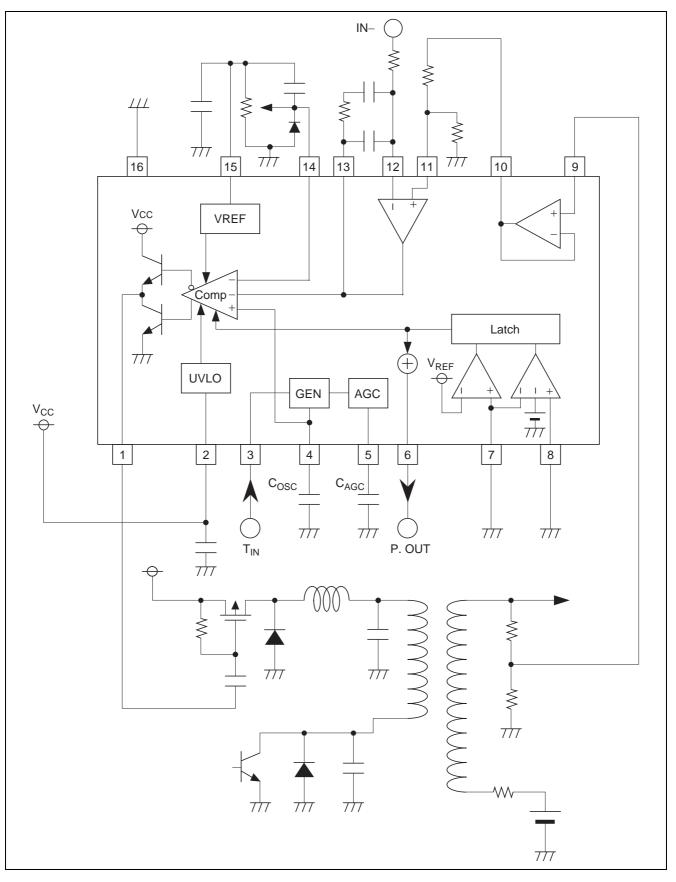
PWM OUT ON Duty is fixed in the voltage of higher one between DTC terminal and FB terminal voltage.

• Waveform at "H" was taken from "L", and having put T_{IN} up. (PWM output is fixed in "H", too when fix T_{IN} terminal in "H")

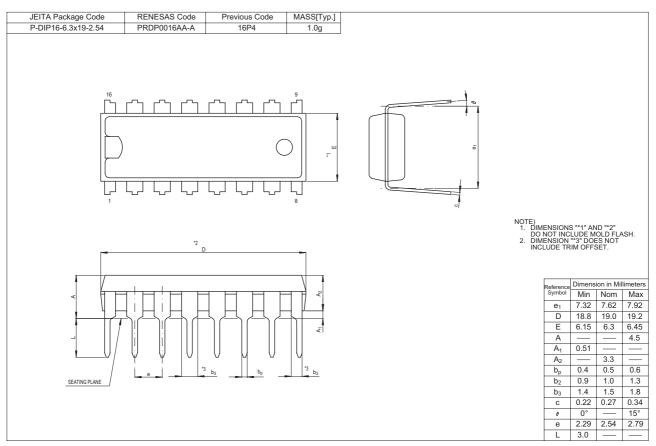


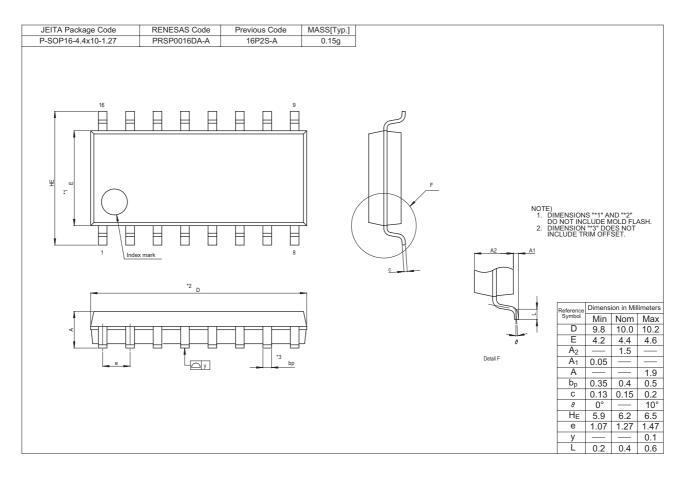
• Waveform at "L" was taken from "H", and having put T_{IN} up. (PWM output is fixed in "L", too when fix T_{IN} terminal in "L")

T _{IN}	
PWM	



M62501 Application





Example of Application Circuit

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (http://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com