12-BIT INPUT EXPANDER

DESCRIPTION

The M66007 is a semiconductor integrated circuit providing the 12-bit parallel input-serial output shift register function.

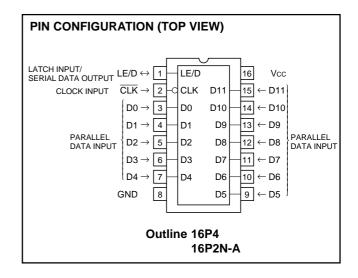
This product is completely designed with CMOS to sharply reduce power consumption compared with bipolar or Bi-CMOS product.

The M66007, developed as an input only expander IC necessary for microcomputer periphery, is widely applicable as a data parallel/serial conversion IC.

FEATURES

- Control signals of only two pins including LE/D and CLK
- Low power consumption of 50 μW/package maximum (Vcc=5V, Ta=25°C at time of standstill)
- Schmitt triggered input (LE/D, CLK, D0 to D11)
- Wide operating supply voltage range (Vcc=2~6V)
- Wide operating temperature range (Ta=-20~75°C)

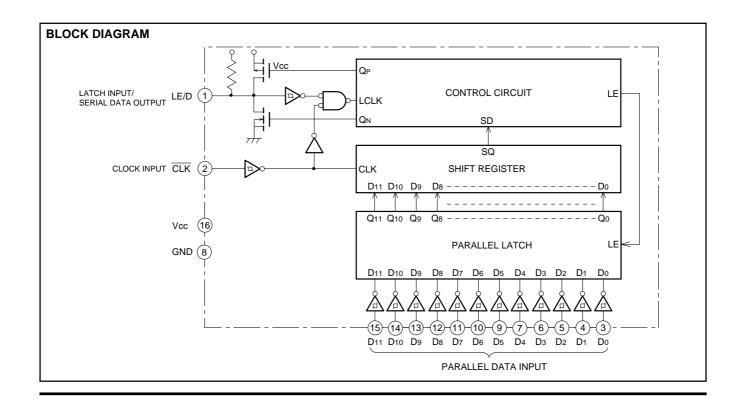
APPLICATION


Parallel/serial data conversion for microcomputer periphery

FUNCTION

The M66007 uses a silicon gate CMOS process to achieve low power consumption and high noise margin.

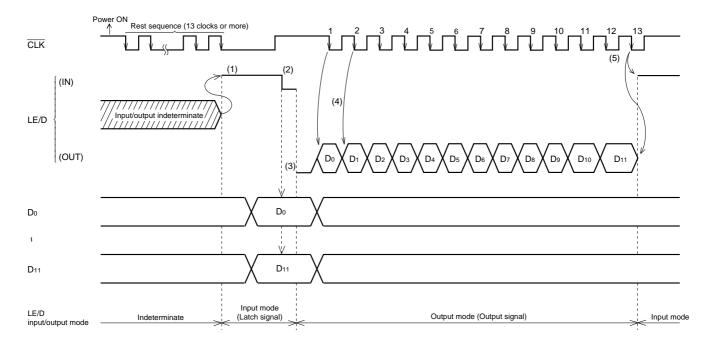
For control signals, this IC adopts only the two pins of latch input/serial data output LE/D and clock input $\overline{\text{CLK}}$. Each bit of shift register of 12-bit parallel input-serial output consists of flip-flop for shift.


When LE/D is placed in input mode, $\overline{\text{CLK}}$ is set to "H" and LE/D changes from "H" to "L", the status of parallel data inputs D0 to D11 at that time is latched with the flip-flop for shift and LE/D is switched to output mode to output "L".

After this, change of $\overline{\text{CLK}}$ from "H" to "L" makes the shift register perform shift operation and LE/D outputs the contents of the shift register from D0 in order.

In addition, the shift operation for up to the 12th bit is carried out and then LE/D is switched to the input mode at the falling edge of $\overline{\text{CLK}}$ of the 13th bit.

When power is turned on, the input/output mode of LE/D is indeterminate. However, detection of 13 or more falling edges of CLK sets LE/D in the input mode.



12-BIT INPUT EXPANDER

DESCRIPTION OF OPERATION

- (1) When power is turned on, LE/D is placed in input/output indeterminate mode. However, detection of 13 or more of falling edges of CLK sets LE/D in input mode.
- (2) When LE/D is placed in input mode, and CLK is set to "H", access starts at a falling edge of LE/D and the status of Do to D11 is latched.
- (3) In addition, LE/D switches from input mode to output mode and then outputs "L".
- (4) At a falling edge of CLK from "H" to "L", data latched in step(2) is shifted sequentially and is then output from LE/D in order of D₀ to D₁₁.
- (5) After the output of 12-bit data of D₀ to D₁₁, LE/D is switched to input mode at the 13th falling edge of CLK to wait for next access. Keep the LE/D pin set to "H" until the next access starts.

OPERATION TIMING CHART

12-BIT INPUT EXPANDER

ABSOLUTE MAXIMUM RATINGS (Ta = 20 ~ 75°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		−0.5 ~ +7.0	V	
Vı	Input voltage		-0.5 ~ Vcc + 0.5	V	
Vo	Output voltage		-0.5 ~ Vcc + 0.5	V	
lıĸ	Input protection diode current	VI<0V	-20	mA	
		VI>VCC	20	- IIIA	
Іок	Output incidental diode current	Vo<0V	-20		
		Vo>Vcc	20	— mA	
Icc	Power/GND	Vcc, GND	±20	mA	
Tstg	Storage temperature		−60 ~ 150	°C	

RECOMMENDED OPERATING CONDITIONS

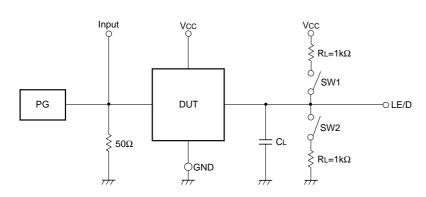
Cumbal	Parameter		Unit		
Symbol		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	2		6	V
Vı	Input voltage	0		Vcc	V
Vo	Output voltage	0		Vcc	V
Topr	Operating temperature	-20		75	°C

ELECTRICAL CHARACTERISTICS (Vcc = 2 ~ 6V unless otherwise noted)

		Conditions			Limits				
Symbol	Parameter				Ta=25°C			Ta= -20~75°C	
				Min.	Тур.	Max.	Min.	Max.	
VT+	Threshold voltage in positive direction	Vo=0.1V, Vcc-0.1V, Io=20μA		0.35 × Vcc		0.8 ×Vcc	0.35 × VCC	0.8 × Vcc	٧
VT-	Threshold voltage in negative direction	Vo=0.1V, Vcc-0.1V, Io=20μA		0.2 × Vcc		0.65 × Vcc	0.2 × Vcc	0.65 × Vcc	V
VoL	Low-level output voltage	VI=VT+, VT- VCC=4.5V	IoL=20µA			0.1		0.1	V
VOL			IOL=1mA			0.4		0.5	V
Voн	High-level output voltage	VI=VT+, VT- VCC=4.5V	IOH=-20μA	4.4			4.4		V
			IOH=-1mA	4.1			4.0		V
Ю	Maximum output leak current	VI-VIII, VI	Vo=Vcc			1.0		10.0	μΑ
			Vo=GND			-0.8		-1.2	mA
loo	Static consumption	VI=VCC, GND, VCC	=6V, LE/D="H"			10.0		100.0	μA
Icc	current	VI=VCC, GND, VCC=6V, LE/D="L"				0.8		1.2	mA

SWITCHING CHARACTERISTICS (Vcc=5V)

	Parameter	Conditions	Limits Ta = -20 ~ 75°C			Unit
Symbol						
			Min.	Тур.	Max.	1
fmax	Maximum repetition frequency	CL=50pF (Note 1)	2			MHz
tPLH					400	ns
tPHL	Output "L-H", "H-L" propagation time CLK-LE/D				400	ns
tPLZ	Output "I 7" "II 7" proposition time CLV I F/D				400	ns
tPHZ	Output "L-Z", "H-Z" propagation time CLK-LE/D				400	ns

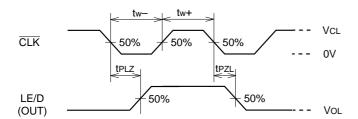


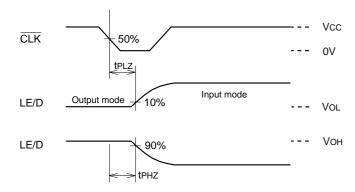
12-BIT INPUT EXPANDER

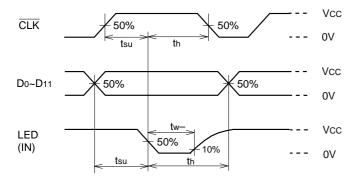
TIMING REQUIREMENTS (VCC = 5V)

	Parameter	Conditions	Limits $Ta = -20 \sim 75^{\circ}C$			Unit
Symbol						
			Min.	Тур.	Max.	
tw	CLK pulse width		250			ns
	LE/D pulse width (Input mode)		250			
tsu	CLK set up time for LE/D		100			ne
	Do~D11 set up time for LE/D		100			ns
th	CLK hold time for LE/D		200			ns
	Do~D11 hold time for LE/D		200			1 115

Note 1. Test Circuit

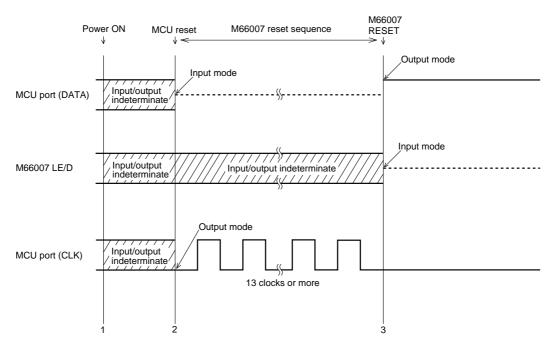

- (1) Characteristics (10%~90%) of pulse generator (PG)
 - tr = 6ns, tf = 6ns
- (2) Electrostatic capacitance CL includes the floating capacitance of connection and probe input capacitance.

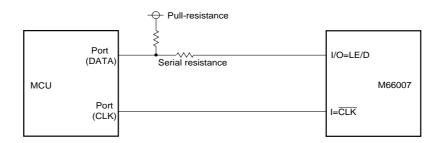

Item	SW1	SW2
tPLH	Open	Open
tPHL	Open	Open
tPLZ	Close	Open
tPHZ	Open	Close



12-BIT INPUT EXPANDER

TIMING DIAGRAM




12-BIT INPUT EXPANDER

PRECAUTIONS FOR APPLICATION

- 1. The following timing diagram shows the status of MCU port and LE/D pin of the M66007 when power is turned on. When MCU has been reset to make the collision period of MCU and LE/D line of the M66007 as short as possible, place the port (LE/D) in input mode and execute the reset sequence through the port (CLK) promptly to reset the M66007.
 - As shown in the diagram, to prevent the IC from being broken due to collision of the LE/D line in the 1-2 section, set in the LE/D line in series a resistance of a degree to which the transmission speed cannot be affected.
- When the LE/D pin on each of the MPU and M66007 sides switches from input mode to output mode or from output mode to input mode, the LE/D pin may be placed in high impedance status, resulting in oscillation.
 - To prevent malfunction due to this oscillation, pull up the LE/D line with a high resistance of a degree to which VOH and VOL levels cannot be affected. (with approx. $20k\Omega$ pullup resistance built-in)

Status of MCU and M66007 with Power Turned on

Connection Example of MCU and M66007

