

M66258FP

8192 × 8-Bit Line Memory

REJ03F0252-0200 Rev.2.00 Sep 14, 2007

Description

The M66258FP is high speed line memory that uses high performance silicon gate CMOS process technology and adopts the FIFO (First In First Out) structure consisting of $8192 \text{ words} \times 8 \text{ bits}$.

The M66258FP, performing reading and writing operations at different cycles independently and asynchronously, is optimal for buffer memory to be used between equipment of different data processing speeds.

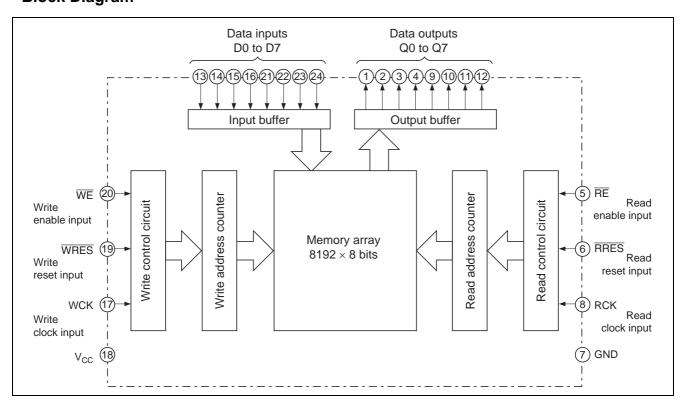
Features

Memory configuration: 8192 words × 8 bits configuration

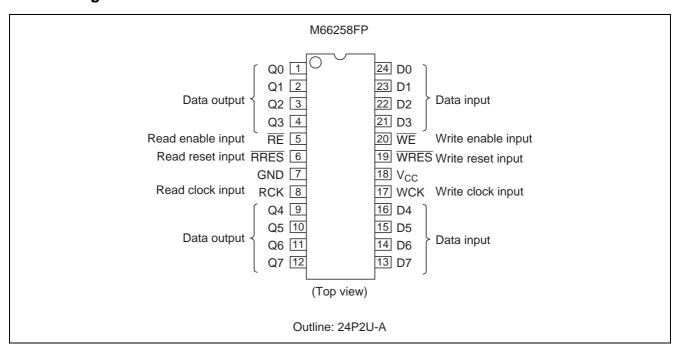
High speed cycle: 20 ns (Min)
High speed access: 16 ns (Max)
Output hold: 3 ns (Min)

Reading and writing operations can be completely carried out independently and asynchronously

• Variable length delay bit


• Input/output: TTL direct connection allowable

• Output: 3 states


Application

Digital copying machine, laser beam printer, high speed facsimile, etc.

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

(Ta = 0 to 70°C, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	–0.5 to +6.0 V		Value based on the GND pin
Input voltage	VI	-0.5 to V_{CC} + 0.5	V	
Output voltage	Vo	-0.5 to V_{CC} + 0.5	V	
Power dissipation	Pd	825	mW	Ta = 25°C
Storage temperature	Tstg	-65 to 150	°C	

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
Supply voltage	GND	_	0	_	V
Operating temperature	Topr	0 to 70			°C

Electrical Characteristics

(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
High-level input voltage	V _{IH}	2.0	_	_	V		
Low-level input voltage	V_{IL}	_	_	0.8	V		
High-level output voltage	V _{OH}	V _{CC} – 0.8	_		V	$I_{OH} = -4 \text{ m}$	A
Low-level output voltage	V _{OL}	_	_	0.55	V	$I_{OL} = 4 \text{ mA}$	
High-level input current	Іін	_	_	1.0	μΑ	V _I = V _{CC}	WE, WRES, WCK, RE, RRES, RCK, D0 to D7
Low-level input current	l _{IL}	_	_	-1.0	μА	V _I = GND	WE, WRES, WCK, RE, RRES, RCK, D0 to D7
Off-state high-level output current	l _{OZH}	_	_	5.0	μΑ	$V_O = V_{CC}$	
Off-state low-level output current	I _{OZL}	_	_	-5.0	μΑ	V _O = GND	
Average supply current during	Icc	_	_	150	mA	V _I = V _{CC} , GND, Output open	
operation						t_{WCK} , $t_{RCK} = 20 \text{ ns}$	
Input capacitance	Cı	_	_	10	pF	f = 1 MHz	
Off-time output capacitance	Co	_		15	pF	f = 1 MHz	

Function

When write enable input \overline{WE} is set to "L", the contents of data inputs D0 to D7 are read in synchronization with a rising edge of write clock input WCK to perform writing operation. When this is the case, the write address counter is also incremented simultaneously.

When \overline{WE} is set to "H", the writing operation is inhibited and the write address counter stops.

When write reset input WRES is set to "L", the write address counter is initialized.

When read enable input \overline{RE} is set to "L", the contents of memory are output to data outputs Q0 to Q7 in synchronization with a rising edge of read clock input RCK to perform reading operation. When this is the case, the read address counter is incremented simultaneously.

When \overline{RE} is set to "H", the reading operation is inhibited and the read address counter stops. The outputs are placed in a high impedance state.

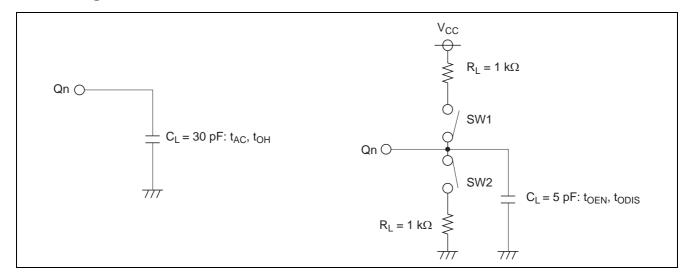
When read reset input RRES is set to "L", the read address counter is initialized.

Switching Characteristics

(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit
Access time	t _{AC}	_	_	16	ns
Output hold time	t _{OH}	3	_	_	ns
Output enable time	toen	3	_	16	ns
Output disable time	todis	3	_	16	ns

Timing Requirements


(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

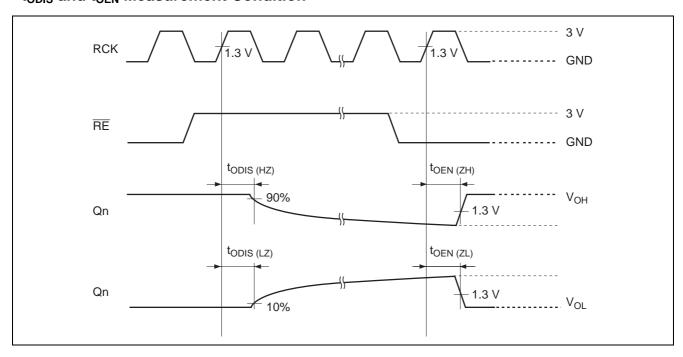
Item	Symbol	Min	Тур	Max	Unit
Write clock (WCK) cycle	t _{WCK}	20	_	_	ns
Write clock (WCK) "H" pulse width	t _{WCKH}	8	_	_	ns
Write clock (WCK) "L" pulse width	t _{WCKL}	8	_	_	ns
Read clock (RCK) cycle	t _{RCK}	20	_	_	ns
Read clock (RCK) "H" pulse width	t _{RCKH}	8	_	_	ns
Read clock (RCK) "L" pulse width	t _{RCKL}	8	_		ns
Input data setup time for WCK	t _{DS}	4	_	_	ns
Input data hold time for WCK	t _{DH}	3	_		ns
Reset setup time for WCK/RCK	t _{RESS}	4	_	_	ns
Reset hold time for WCK/RCK	t _{RESH}	3	_		ns
Reset non-selection setup time for WCK/RCK	t _{NRESS}	4		_	ns
Reset non-selection hold time for WCK/RCK	t _{NRESH}	3	_		ns
WE setup time for WCK	t _{WES}	4		_	ns
WE hold time for WCK	t _{WEH}	3	_		ns
WE non-selection setup time for WCK	t _{NWES}	4		_	ns
WE non-selection hold time for WCK	t _{NWEH}	3	_		ns
RE setup time for RCK	t _{RES}	4		_	ns
RE hold time for RCK	t _{REH}	3	_		ns
RE non-selection setup time for RCK	t _{NRES}	4	_	_	ns
RE non-selection hold time for RCK	t _{NREH}	3	_	_	ns
Input pulse up/down time	tr, tf		_	20	ns
Data hold time*	t _H	_	_	20	ms

Notes: Perform reset operation after turning on power supply.

^{*} For 1 line access, the following conditions must be satisfied: $\overline{\text{WE}}$ high-level period \leq 20 ms - 8192 • t_{WCK} - $\overline{\text{WRES}}$ low-level period $\overline{\text{RE}}$ high-level period \leq 20 ms - 8192 • t_{RCK} - $\overline{\text{RRES}}$ low-level period

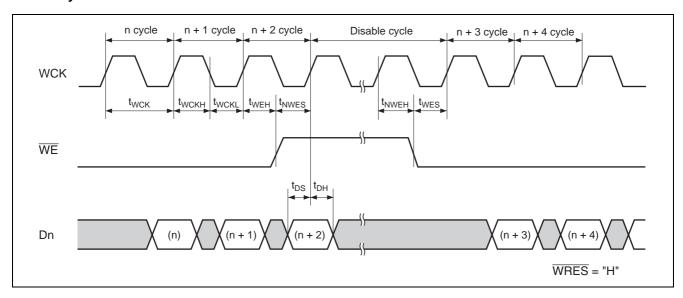
Switching Characteristics Measurement Circuit

Input pulse level: 0 to 3 V
Input pulse up/down time: 3 ns
Judging voltage Input: 1.3 V

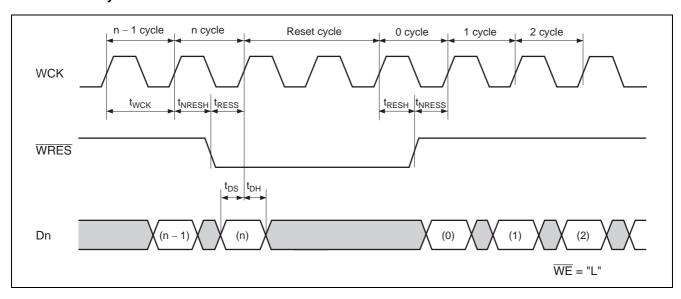

Output: 1.3 V (However, $t_{ODIS\,(LZ)}$ is judged with 10% of the output amplitude, while $t_{ODIS\,(HZ)}$ is

judged with 90% of the output amplitude)

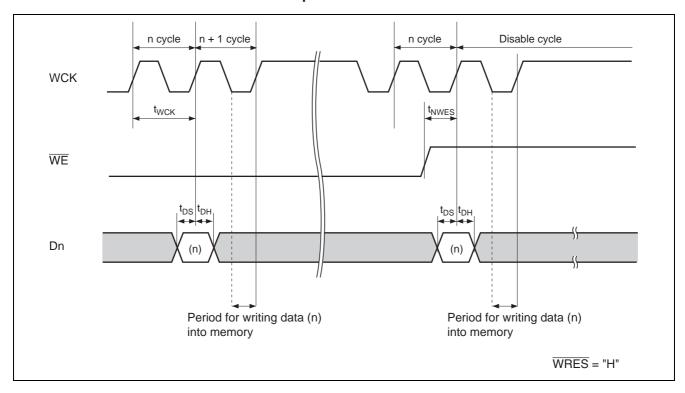
Load capacitance C_L includes the floating capacity of connected lines and input capacitance of probe.


Item	SW1	SW2
todis (LZ)	Close	Open
todis (HZ)	Open	Close
t _{OEN (ZL)}	Close	Open
t _{OEN (ZH)}	Open	Close

todis and toen Measurement Condition

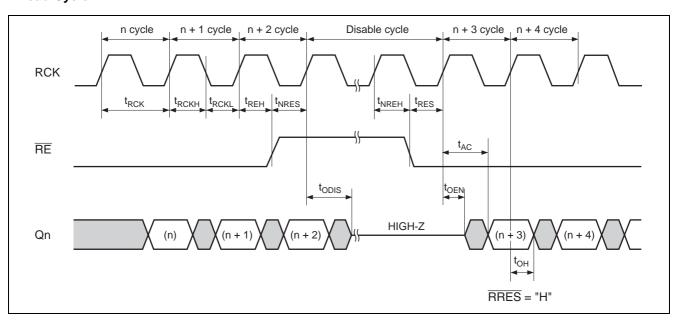


Operation Timing

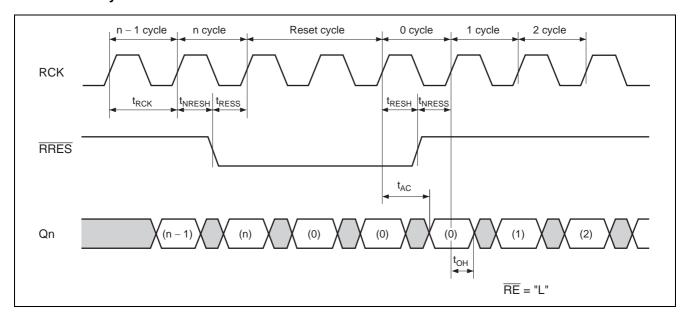

Write Cycle

Write Reset Cycle

Matters that Needs Attention when WCK Stops

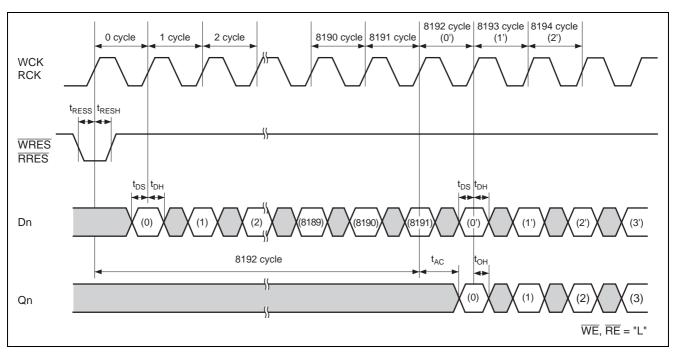


Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n + 1 cycle. The writing operation is complete at the falling edge after n + 1 cycle.

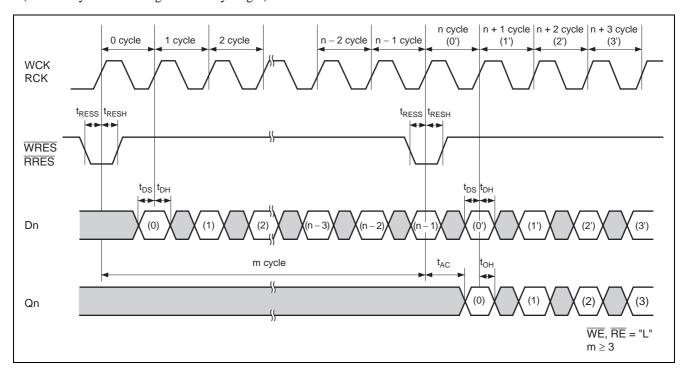

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

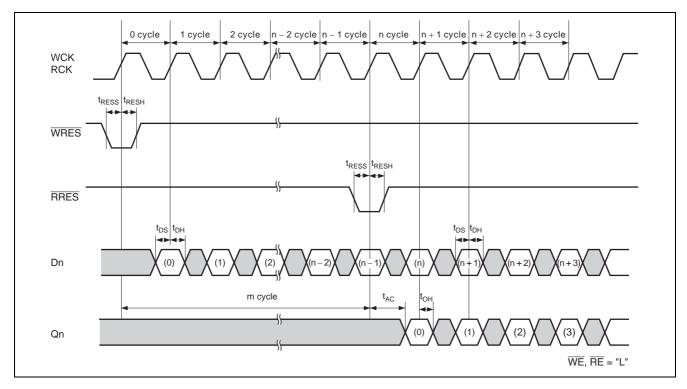
Read Cycle


Read Reset Cycle

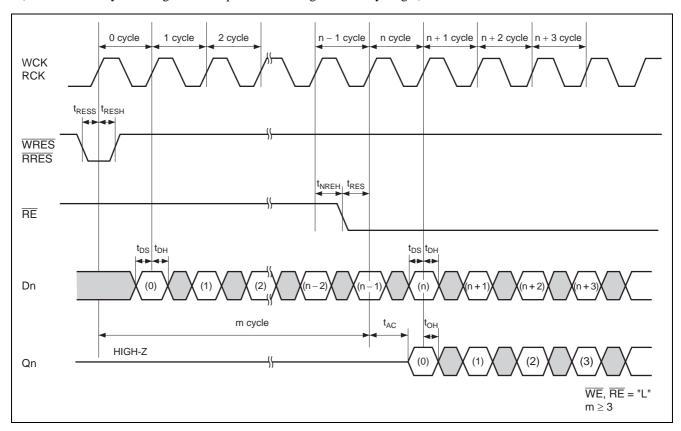
Variable Length Delay Bit


1 Line (8192 Bits) Delay

Input data can be written at the rising edge of WCK after write cycle and output data is read at the rising edge of RCK before read cycle to easily make 1 line delay.

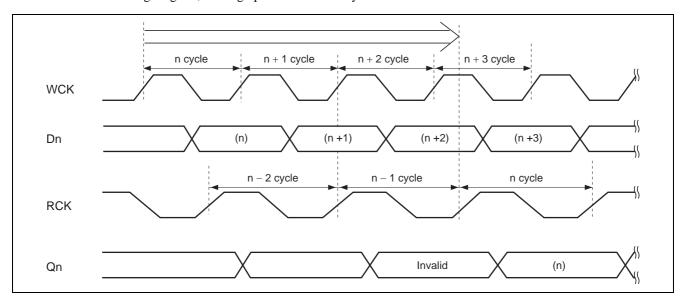

n-bit Delay Bit

(Reset at cycles according to the delay length)


n-bit Delay 2

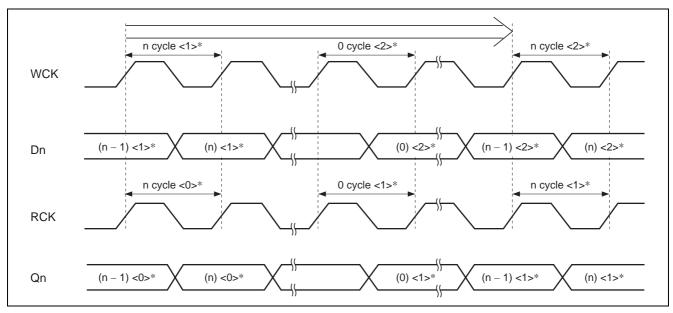
(Slides input timings of WRES and RRES at cycles according to the delay length)

n-bit Delay 3


(Slides address by disabling \overline{RE} in the period according to the delay length)

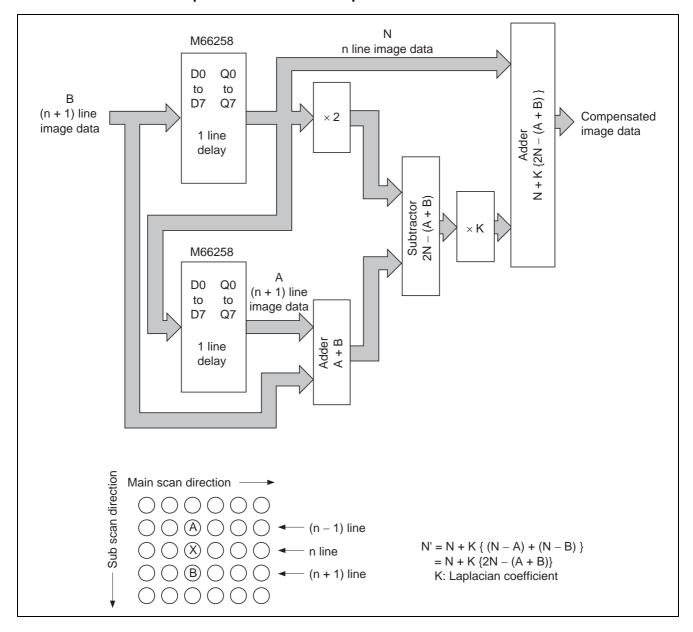
Reading Shortest n-cycle Write Data "n"

(Reading side n - 1 cycle starts after the end of writing side n - 1 cycle)

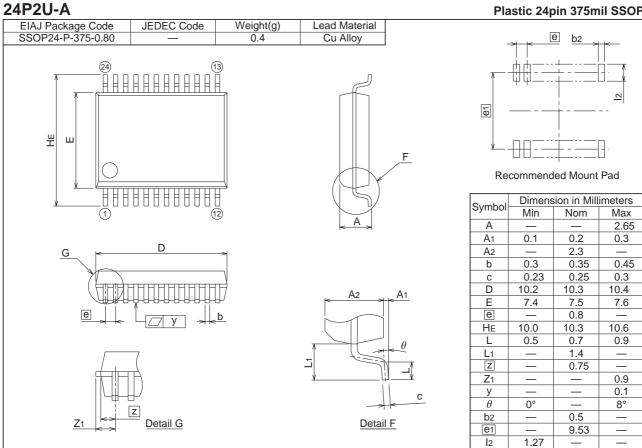

When the reading side n-1 cycle starts before the end of the writing side n+1 cycle, output Qn of n cycle is made invalid. In the following diagram, reading operation of n-1 cycle is invalid.

Reading Longest n-cycle Write Data "n": 1 Line Delay

(When writing side n-cycle <2>* starts, reading side n cycle <1>* then starts)


Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1> and the start of writing side n cycle <2>* overlap each other.

Note: <0>*, <1>* and <2>* indicate value of lines.


Application Example

Sub Scan Resolution Compensation Circuit with Laplacian Filter

Package Dimensions

Plastic 24pin 375mil SSOP

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510