

# **MAS1017**

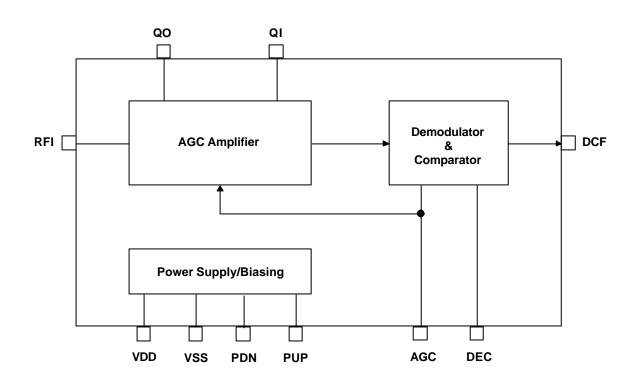
# **AM Receiver IC**

- •Wide Supply Voltage Range
- Power Down and Power Up Control

#### **DESCRIPTION**

The MAS1017 AM-Receiver chip is a highly sensitive, simple to use AM receiver specially intended to receive time signals in the frequency range from 40 kHz to 100 kHz. There are only a few external components needed. The circuit has a preamplifier, wide range

automatic gain control, demodulator and output comparator built in. The output signal can be processed directly with an additional digital circuitry to extract the data from the received signal.


### **FEATURES**

- Wide Supply Voltage Range
- Power Down and Power Up Control
- Only a Few External Components Needed
- Highly Sensitive AM Receiver

#### **APPLICATIONS**

• Time Signal Receiver (designed for DCF77)

### **BLOCK DIAGRAM**





### **PAD LAYOUT**

| 2 | N  | Q | 4 | п | ır | n |
|---|----|---|---|---|----|---|
| _ | ., |   | _ |   |    |   |

|         | QI  | DCF |
|---------|-----|-----|
| E       | QO  | PUP |
| 1588 μm | PD  | AGC |
| `       | RFI | DEC |
|         | VSS | VDD |

DIE size =  $2.09 \times 1.59$  mm; PAD size =  $100 \times 100$   $\mu$ m Substrate is connected to VDD. Please make sure that VDD is bonded first.

| Pad Identification    | Name | X-coordinate | Y-coordinate | Note |
|-----------------------|------|--------------|--------------|------|
| Power Supply Voltage  | VDD  | 1867 μm      | 270 μm       |      |
| Power Supply Ground   | VSS  | 262 μm       | 257 μm       |      |
| Power Down Input      | PDN  | 242 μm       | 751 μm       | 1    |
| Power Up Input        | PUP  | 1859 μm      | 1029 μm      | 2    |
| AGC Capacitor         | AGC  | 1859 μm      | 790 μm       |      |
| Demodulator Capacitor | DEC  | 1859 μm      | 514 μm       |      |
| Receiver Input        | RFI  | 242 μm       | 513 μm       |      |
| Quarz Filter Output   | QO   | 242 μm       | 1029 μm      |      |
| Quarz Filter Input    | QI   | 242 μm       | 1307 μm      |      |
| DCF Signal Output     | DCF  | 1859 μm      | 1345 μm      | 3    |

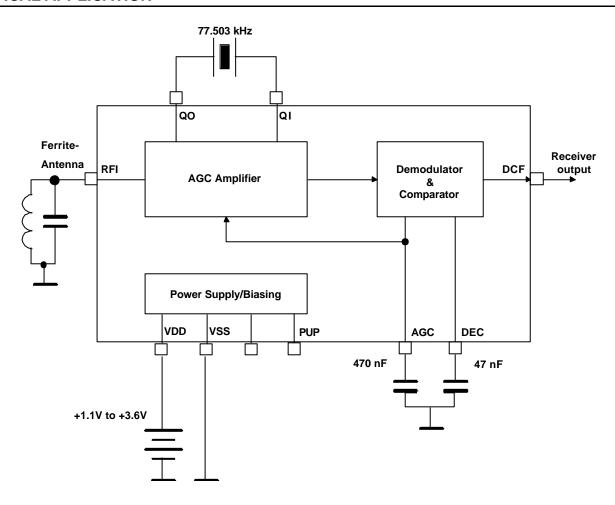
#### Notes:

- Level = VSS means receiver on; VDD = receiver off (PUP = VSS) Internal pull-up resistor > 1 MOhm to VDD
- 2) Level = VDD means receiver on; VSS = receiver off (PDN = VDD) Internal pull-down resistor > 1MOhm to VSS
- 3) 100% AM results in Level = VSS; 25% AM results in Level = VDD
  - the output is a current source/sink with  $|I_{OUT}| > 5 \mu A$
  - at power down the output is tri-state



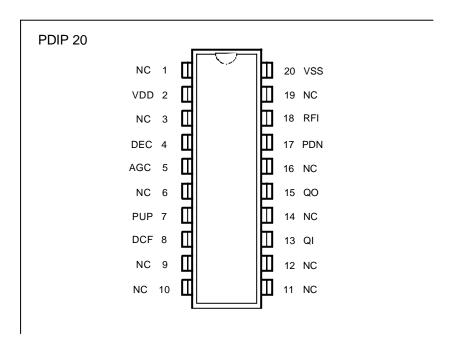
### **ABSOLUTE MAXIMUM RATINGS**

| Parameter             | Symbol              | Conditions | Min                  | Max                  | Unit |
|-----------------------|---------------------|------------|----------------------|----------------------|------|
| Supply Voltage        | $V_{DD}$ - $V_{SS}$ |            | -0.3                 | 5.0                  | V    |
| Input Voltage         | V <sub>IN</sub>     |            | V <sub>SS</sub> -0.3 | V <sub>DD</sub> +0.3 | V    |
| Power Dissipation     | P <sub>MAX</sub>    |            |                      | 100                  | mW   |
| Operating Temperature | T <sub>OP</sub>     |            | -20                  | 70                   | °C   |
| Storage Temperature   | T <sub>ST</sub>     |            | -40                  | 120                  | °C   |


# **ELECTRICAL CHARACTERISTICS**

Operating Conditions: VDD = 1.4V, Temperature = 25°C

| Parameter                                                                                    | Symbol                             | Conditions | Min                   | Тур | Max  | Unit  |
|----------------------------------------------------------------------------------------------|------------------------------------|------------|-----------------------|-----|------|-------|
| Operating Voltage                                                                            | $V_{DD}$                           |            | 1.10                  |     | 3.60 | V     |
| Current Consumption                                                                          | I <sub>DD</sub>                    |            |                       | 40  | 100  | μΑ    |
| Stand-By Current                                                                             | I <sub>DDoff</sub>                 |            |                       |     | 0.1  | μΑ    |
| Input Range                                                                                  | f <sub>IN</sub>                    |            | 40                    |     | 100  | kHz   |
| Sensitivity                                                                                  | V <sub>IN</sub>                    |            | 0.001                 |     | 20   | mVrms |
| Input Levels $ I_{IN} $ <0.5 $\mu$ A                                                         | V <sub>IL</sub><br>V <sub>IH</sub> |            | V <sub>DD</sub> - 0.3 |     | 0.3  | V     |
| Output Current<br>V <sub>OL</sub> <0.2 V <sub>DD</sub> ;V <sub>OH</sub> >0.8 V <sub>DD</sub> | ll <sub>OUT</sub>                  |            | 5                     |     |      | μΑ    |
| Output Pulse                                                                                 | T <sub>0</sub>                     |            | 30                    |     | 125  | ms    |
|                                                                                              | T <sub>1</sub>                     |            | 130                   |     | 220  | ms    |
| Startup Time                                                                                 | T <sub>Start</sub>                 |            |                       | 8   |      | S     |
| Output Delay Time                                                                            | T <sub>Delay</sub>                 |            |                       | 50  |      | ms    |




# **TYPICAL APPLICATION**





# PACKAGE (an example, see ordering information)



# **PIN DESCRIPTION**

| Pin Name | Pin | Type | Function              | Note |
|----------|-----|------|-----------------------|------|
| NC       | 1   |      |                       |      |
| VDD      | 2   | Р    | Positive power supply |      |
| NC       | 3   |      |                       |      |
| DEC      | 4   | AO   | Demodulator capacitor |      |
| AGC      | 5   | AO   | AGC capacitor         |      |
| NC       | 6   |      |                       |      |
| PUP      | 7   | Al   | Power up input        | 2    |
| DCF      | 8   | DO   | Demodulator output    | 3    |
| NC       | 9   |      |                       |      |
| NC       | 10  |      |                       |      |
| NC       | 11  |      |                       |      |
| NC       | 12  |      |                       |      |
| QI       | 13  | Al   | Quartz filter input   |      |
| NC       | 14  |      |                       |      |
| QO       | 15  | AO   | Quartz filter output  |      |
| NC       | 16  |      |                       |      |
| PDN      | 17  | Al   | Power down input      | 1    |
| RFI      | 18  | Al   | Receiver input        |      |
| NC       | 19  |      |                       |      |
| VSS      | 20  | G    | Power supply ground   |      |

#### Notes:

- 1) Level = VSS means receiver on; VDD = receiver off
- 2) Level = VDD means receiver on; VSS = receiver off (PDN = VDD) Internal pull-down resistor > 1MOhm to VSS
- 3) 100 % AM results in Level = VSS; 25 % AM results in Level = VDD
  - the output is a current source/sink with [lout] >5  $\mu A$
  - at power down the output is tri-state



### **ORDERING INFORMATION**

| Product Code | Product        | Package             | Comments |
|--------------|----------------|---------------------|----------|
| MAS1017AZAA  | AM-Receiver IC | Dice on sticky tape |          |
| MAS1017ATAA  | AM-Receiver IC | Wafer, EWS-tested   |          |

More package options (e.g., SO14) available upon request.

| LOCAL DISTRIBUTOR |  |  |  |  |
|-------------------|--|--|--|--|
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |

### MICRO ANALOG SYSTEMS OY CONTACTS

| Micro Analog Systems Oy     | Tel. (09) 80 521          |
|-----------------------------|---------------------------|
| Kamreerintie 2, P.O. Box 51 | Tel. Int. +358 9 80 521   |
| FIN-02771 ESPOO, FINLAND    | Telefax +358 9 805 3213   |
| http://www.mas-oy.com       | E-mail: hitech@mas-oy.com |

#### NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.