14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Abstract

General Description

The MAX1156/MAX1158/MAX1174 14-bit, Iow-power, successive-approximation analog-to-digital converters (ADCs) feature automatic power-down, a factorytrimmed internal clock, and a byte-wide parallel interface. The devices operate from a single +4.75 V to +5.25 V analog supply and feature a separate digital supply input for direct interface with +2.7 V to +5.25 V digital logic.
The MAX1156 accepts a 0 to +10 V analog input voltage range. The MAX1158 accepts a $\pm 10 \mathrm{~V}$ bipolar analog input voltage range, while the MAX1174 accepts a $\pm 5 \mathrm{~V}$ bipolar analog input voltage range. All devices consume no more than 26.5 mW at a sampling rate of 135 ksps when using an external reference, and 31 mW when using the internal +4.096 V reference. AutoShutdown ${ }^{\text {TM }}$ reduces supply current to 0.4 mA (typ) at 10ksps.
The MAX1156/MAX1158/MAX1174 are ideal for highperformance, battery-powered, data-acquisition applications. Excellent AC performance (THD $=-100 \mathrm{~dB}$) and DC accuracy ($\pm 1 \mathrm{LSB}$ INL) make the MAX1156/ MAX1158/MAX1174 ideal for industrial process control, instrumentation, and medical applications.
The MAX1156/MAX1158/MAX1174 are available in a 20-pin TSSOP package and are fully specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range and the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range.

Applications

Temperature Sensing and Monitoring Industrial Process Control
I/O Modules
Data-Acquisition Systems
Precision Instrumentation

Pin Configuration appears at end of data sheet.

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

- Byte-Wide Parallel Interface			
- Analog Input Voltage Range: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0$ to 10 V			
- Single +4.75V to +5.25V Analog Supply Voltage			
- Interface with +2.7V to +5.25V Digital Logic			
- ± 1 LSB INL (max)			
- ± 1 LSB DNL (max)			
- Low Supply Current (max)			
2.9mA (External Reference)			
3.8mA (Internal Reference)			
$5 \mu \mathrm{~A}$ AutoShutdown Mode			
- Small Footprint			
- 20-Pin TSSOP Package			
Ordering Information			
PART	TEMP RANGE	PIN- PACKAGE	INPUT VOLTAGE RANGE
MAX1156ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	0 to +10 V
MAX1156BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	0 to +10 V
MAX1156AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	0 to +10 V
MAX1156BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	0 to +10 V

Ordering Information continued at end of data sheet.
Typical Operating Circuit

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ABSOLUTE MAXIMUM RATINGS

AV ${ }_{\text {DD }}$ to AGND	3V to +6 V
DV ${ }_{\text {d }}$ to DGND.	-0.3V to +6V
AGND to DGND.	-0.3V to +0.3V
AIN to AGND	-16.5V to +16.5 V
REF, REFADJ to AGND	-0.3 V to ($\mathrm{A} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
$\overline{C S}, \mathrm{R} / \overline{\mathrm{C}}, \mathrm{HBEN}$ to DGND	-0.3V to +6V
D_, $\overline{\text { EOC }}$ to DGND	-0.3V to (DVDD + 0.3V)
Maximum Continuou	Pin...................... 50 mA

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
20-Pin TSSOP (derate $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots879 \mathrm{~mW}$ Operating Temperature Range
MAX11_ _ CUP.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX11_ _ EUP.............................. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, external reference $=+4.096 \mathrm{~V}, C_{R E F}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu F, V_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC ACCURACY							
Resolution	RES			14			Bits
Differential Nonlinearity	DNL	No missing codes over temperature		-1		+1	LSB
Integral Nonlinearity	INL	MAX11__A		-1		+1	LSB
		MAX11__B		-2		+2	
Transition Noise		RMS noise, external reference		0.32			LSBRMS
		Internal reference		0.34			
Offset Error				-10	0	+10	mV
Gain Error					0	± 0.2	\%FSR
Offset Drift					16		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Drift					± 1		ppm $/{ }^{\circ} \mathrm{C}$
AC ACCURACY (fin $=1 \mathrm{kHz}, \mathrm{V}_{\text {AIN }}=$ full range, 135 ksps)							
Signal-to-Noise Plus Distortion	SINAD			81	85		dB
Signal-to-Noise Ratio	SNR			82	85		dB
Total Harmonic Distortion	THD				-100	-86	dB
Spurious-Free Dynamic Range	SFDR			87	103		dB
ANALOG INPUT							
Input Range	$V_{\text {AIN }}$	MAX1156		0		+10	V
		MAX1158		-10		+10	
		MAX1174		-5		+5	
Input Resistance	Rain	MAX1156/MAX1174	Normal operation	5.3	6.9	9.2	k Ω
		MAX1156	Shutdown mode	5.3			
		MAX1174	Shutdown mode	3.0			
		MAX1158	Normal operation	7.8	10	13.0	
			Shutdown mode	6.0			

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, external reference $=+4.096 \mathrm{~V}, C_{R E F}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu F, V_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Current	IAIN	MAX1156, $0 \leq \mathrm{V}_{\text {AIN }} \leq+10 \mathrm{~V}$		-0.1		+2.0	mA
		$\begin{aligned} & \text { MAX1158, } \\ & -10 \mathrm{~V} \leq \text { VAIN } \leq+10 \mathrm{~V} \end{aligned}$	Normal operation	-1.8		+1.2	
			Shutdown mode	-1.8		+1.8	
		$\begin{aligned} & \text { MAX1174, } \\ & -5 \mathrm{~V} \leq \mathrm{V}_{\text {AIN }} \leq+5 \mathrm{~V} \end{aligned}$	Normal operation	-1.8		+0.4	
			Shutdown mode	-1.8		+1.8	
Input Current Step at Power-Up	IPU	MAX1158, $\mathrm{V}_{\text {AIN }}=+10 \mathrm{~V}$, shutdown mode to operating mode			0.5	0.7	mA
		MAX1174, $\mathrm{V}_{\text {AIN }}=+5 \mathrm{~V}$, shutdown mode to operating mode			1	1.4	
Input Capacitance	CIN				10		pF
INTERNAL REFERENCE							
REF Output Voltage	VREF			4.056	4.096	4.136	V
REF Output Tempco					± 35		ppm $/{ }^{\circ} \mathrm{C}$
REF Short-Circuit Current	IREF-SC				± 10		mA
EXTERNAL REFERENCE							
REF and REFADJ Input Voltage Range				3.8		4.2	V
REFADJ Buffer Disable Threshold				$\begin{gathered} \mathrm{AV} \mathrm{VDD}^{-} \\ 0.4 \end{gathered}$		$\begin{gathered} A V_{D D}- \\ 0.1 \end{gathered}$	V
REF Input Current	IREF	Normal mode, fsAMPLE $=135 \mathrm{ksps}$			60	100	$\mu \mathrm{A}$
		Shutdown mode (Note 1)			± 0.1	± 10	
REFADJ Input Current	IREFADJ	REFADJ = AVDD			16		$\mu \mathrm{A}$
DIGITAL INPUTS/OUTPUTS							
Output High Voltage	VOH	$\begin{aligned} & \text { ISOURCE }=0.5 \mathrm{~mA}, \mathrm{DV} \text { DD }=+2.7 \mathrm{~V} \text { to }+5.25 \mathrm{~V}, \\ & A V_{D D}=+5.25 \mathrm{~V} \end{aligned}$		$\begin{gathered} \text { DVDD - } \\ 0.4 \end{gathered}$			V
Output Low Voltage	Vol	$\begin{aligned} & I_{S I N K}=1.6 \mathrm{~mA}, \mathrm{DV} \text { DD }=+2.7 \mathrm{~V} \text { to }+5.25 \mathrm{~V}, \\ & \mathrm{AV} \mathrm{DD}=+5.25 \mathrm{~V} \end{aligned}$				0.4	V
Input High Voltage	V_{IH}			$\begin{aligned} & 0.7 \times \\ & D V_{D D} \end{aligned}$			V
Input Low Voltage	VIL					$\begin{aligned} & 0.3 \times \\ & D V_{D D} \end{aligned}$	V
Input Leakage Current		Digital input = DVDD		-1		+1	$\mu \mathrm{A}$
Input Hysteresis	V HYST				0.2		V
Input Capacitance	CIN				15		pF
Three-State Output Leakage	Ioz					± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Coz				15		pF

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, external reference $=+4.096 \mathrm{~V}, C_{R E F}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu F, V_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLIES							
Analog Supply Voltage	AVDD			4.75		5.25	V
Digital Supply Voltage	DVDD			2.70		5.25	V
Analog Supply Current	IAVDD	External reference, 135ksps	MAX1156			2.9	mA
			MAX1158/MAX1174		4	5.3	
		Internal reference, 135ksps	MAX1156			3.8	
			MAX1158/MAX1174		5.2	6.2	
Shutdown Supply Current	ISHDN	Shutdown mode (Note 1), digital input = DVDD or OV			0.5	5	$\mu \mathrm{A}$
		Standby mode			3.7		mA
Digital Supply Current	IDVDD					0.75	mA
Power-Supply Rejection		$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			1		LSB

TIMING CHARACTERISTICS (Figures 1 and 2)

$\left(A V_{D D}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V} \pm 5 \%, \mathrm{DV}$ DD $=+2.7 \mathrm{~V}$ to AV DD, external reference $=+4.096 \mathrm{~V}, \mathrm{CrEF}=10 \mu \mathrm{~F}, \mathrm{CREFADJ}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{REF}} \mathrm{CDJ}=$ $A V_{D D}, C_{L O A D}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. .

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Maximum Sampling Rate	fsample-max				135	ksps
Acquisition Time	tacQ			2		$\mu \mathrm{s}$
Conversion Time	tconv				4.7	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ Pulse Width High	tcSH	(Note 2)		40		ns
$\overline{\mathrm{CS}}$ Pulse Width Low	tCSL	(Note 2)	DV ${ }_{\text {DD }}=+4.75 \mathrm{~V}$ to +5.25 V	40		ns
			$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V	60		
R// to $\overline{\mathrm{CS}}$ Fall Setup Time	tDS			0		ns
R/C to $\overline{\mathrm{CS}}$ Fall Hold Time	tDH	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V		40		ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V		60		
$\overline{\mathrm{CS}}$ to Output Data Valid	too	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V		80		
$\overline{\text { EOC Fall to } \overline{\mathrm{CS}} \text { Fall }}$	tDV			0		ns
$\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{EOC}}$ Rise	teoc	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		DV ${ }_{\text {DD }}=+2.7 \mathrm{~V}$ to +5.25 V			80	
Bus Relinquish Time	$t_{B R}$	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V			80	
HBEN Transition to Output Data Valid	tDo1	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		DV $\mathrm{DD}=+2.7 \mathrm{~V}$ to +5.25 V			80	

Note 1: Maximum specification is limited by automated test equipment.
Note 2: To ensure best performance, finish reading the data and wait tBR before starting a new acquisition.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Typical Operating Characteristics

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=\mathrm{AV}$ DD $, \mathrm{CLOAD}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Typical Application Circuit)

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Typical Operating Characteristics (continued)

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=\mathrm{AV}$ DD $, C_{L O A D}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Typical Application Circuit)

Pin Description

PIN	NAME	FUNCTION
1	D4/D12	Three-State Digital Data Output
2	D5/D13	Three-State Digital Data Output. D13 is the MSB.
3	D6/0	Three-State Digital Data Output
4	D7/0	Three-State Digital Data Output
5	R/C	Read/Convert Input. Power up and put the MAX1156/MAX1158/MAX1174 in acquisition mode by holding R / \bar{C} low during the first falling edge of $\overline{C S}$. During the second falling edge of $\overline{\mathrm{CS}}$, the level on R / \bar{C} determines whether the reference and reference buffer power down or remain on after conversion. Set R/C high during the second falling edge of $\overline{\mathrm{CS}}$ to power down the reference and buffer, or set R/C low to leave the reference and buffer powered up. Set R/C high during the third falling edge of $\overline{\mathrm{CS}}$ to put valid data on the bus.
6	$\overline{\text { EOC }}$	End of Conversion. $\overline{\text { EOC }}$ drives low when conversion is complete.
7	$A V_{\text {DD }}$	Analog Supply Input. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to AGND.
8	AGND	Analog Ground. Primary analog ground (star ground).
9	AIN	Analog Input
10	AGND	Analog Ground. Connect pin 10 to pin 8.
11	REFADJ	Reference Buffer Output. Bypass REFADJ with a $0.1 \mu \mathrm{~F}$ capacitor to AGND for internal reference mode. Connect REFADJ to AVDD to select external reference mode.
12	REF	Reference Input/Output. Bypass REF with a $10 \mu \mathrm{~F}$ capacitor to AGND for internal reference mode. External reference input when in external reference mode.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

PIN	NAME	FUNCTION
13	HBEN	High-Byte Enable Input. Used to multiplex the 14-bit conversion result. 1: Most significant byte available on the data bus. 0: Least significant byte available on the data bus.
14	$\overline{\mathrm{CS}}$	Convert Start. The first falling edge of $\overline{\mathrm{CS}}$ powers up the device and enables acquire mode when $\mathrm{R} / \overline{\mathrm{C}}$ is low. The second falling edge of $\overline{\mathrm{CS}}$ starts conversion. The third falling edge of $\overline{\mathrm{CS}}$ loads the result onto the bus when R / \bar{C} is high.
15	DGND	Digital Ground
16	DVDD	Digital Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to DGND.
17	D0/D8	Three-State Digital Data Output. D0 is the LSB.
18	D1/D9	Three-State Digital Data Output
19	D2/D10	Three-State Digital Data Output
20	D3/D11	Three-State Digital Data Output

Figure 1. Load Circuits

Detailed Description

Converter Operation

The MAX1156/MAX1158/MAX1174 use a successiveapproximation (SAR) conversion technique with an inherent track-and-hold (T/H) stage to convert an analog input into a 14-bit digital output. Parallel outputs provide a high-speed interface to microprocessors ($\mu \mathrm{Ps}$). The Functional Diagram shows a simplified internal architecture of the MAX1156/MAX1158/MAX1174. Figure 3 shows a typical application circuit for the MAX1156/MAX1158/MAX1174.

Analog Input
 Input Scaler

The MAX1156/MAX1158/MAX1174 have an input scaler, which allows conversion of true bipolar input voltages and input voltages greater than the power supply, while operating from a single +5 V analog supply. The input scaler attenuates and shifts the analog input to match the input range of the internal DAC. The MAX1156 has a unipolar input voltage range of 0 to +10 V . The MAX1158 input voltage range is $\pm 10 \mathrm{~V}$ while the MAX1174 input voltage range is $\pm 5 \mathrm{~V}$. Figure 4 shows the equivalent input circuit of the MAX1156/ MAX1158/MAX1174. This circuit limits the current going into or out of AIN to less than 1.8 mA .

Track and Hold (T/H)
In track mode, the internal hold capacitor acquires the analog signal (see Figure 4). In hold mode, the T/H switches open and the capacitive DAC samples the analog input. During the acquisition, the analog input (AIN) charges capacitor CHOLD. The acquisition ends on the second falling edge of $\overline{\mathrm{CS}}$. At this instant, the T/H switches open. The retained charge on Chold represents a sample of the input. In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node T/H OUT to zero within the limits of 14 -bit resolution. Force $\overline{\mathrm{CS}}$ low to put valid data on the bus after conversion is complete.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 2. MAX1156/MAX1158/MAX1174 Timing Diagram

Power-Down Modes Select standby mode or shutdown mode with the R/C bit during the second falling edge of $\overline{C S}$ (see the Selecting Standby or Shutdown Mode section). The MAX1156/MAX1158/MAX1174 automatically enter either standby mode (reference and buffer on) or shutdown (reference and buffer off) after each conversion, depending on the status of R / \bar{C} during the second falling edge of $\overline{\mathrm{CS}}$.

Internal Clock
The MAX1156/MAX1158/MAX1174 generate an internal conversion clock to free the microprocessor from the burden of running the SAR conversion clock. Total conversion time (tconv) after entering hold mode (second falling edge of $\overline{\mathrm{CS}}$) to end of conversion ($\overline{\mathrm{EOC}}$) falling is 4.7 ss (max).

Applications Information

Starting a Conversion

 $\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{C}}$ control acquisition and conversion in the MAX1156/MAX1158/MAX1174 (see Figure 2). The first falling edge of $\overline{C S}$ powers up the device and puts it in acquire mode if R / \bar{C} is low. The convert start is ignored if R / \bar{C} is high. The MAX1156/MAX1158/MAX1174 need at least $12 \mathrm{~ms}($ Crefadj $=0.1 \mu \mathrm{~F}, \mathrm{CreF}=10 \mu \mathrm{~F})$ for the internal reference to wake up and settle before starting the conversion, if powering up from shutdown.

Figure 3. Typical Application Circuit for the MAX1156/MAX1158/ MAX1174

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 4. Equivalent Input Circuit

Selecting Standby or Shutdown Mode

The MAX1156/MAX1158/MAX1174 have a selectable standby or low-power shutdown mode. In standby mode, the ADC's internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after completing a conversion. The reference and reference buffer require a minimum of 12 ms (CREFADJ $=0.1 \mu \mathrm{~F}$, $C_{\text {REF }}=10 \mu \mathrm{~F}$) to power up and settle from shutdown.
The state of R / \bar{C} at the second falling edge of $\overline{C S}$ selects which power-down mode the MAX1156/ MAX1158/MAX1174 enter upon conversion completion. Holding R/C low causes the MAX1156/MAX1158/ MAX1174 to enter standby mode. The reference and buffer are left on after the conversion completes. R/C high causes the MAX1156/MAX1158/MAX1174 to enter shutdown mode and power down the reference and buffer after conversion (see Figures 5 and 6). Set the voltage at $\mathrm{R} / \overline{\mathrm{C}}$ high during the second falling edge of $\overline{\mathrm{CS}}$ to realize the lowest current operation.

Standby Mode
While in standby mode, the supply current is less than 3.7 mA (typ). The next falling edge of $\overline{\mathrm{CS}}$ with $\mathrm{R} / \overline{\mathrm{C}}$ low causes the MAX1156/MAX1158/MAX1174 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time.

Shutdown Mode

In shutdown mode, the reference and reference buffer are shut down between conversions. Shutdown mode reduces supply current to $0.5 \mu \mathrm{~A}$ (typ) immediately after the conversion. The next falling edge of $\overline{C S}$ with R/C low causes the reference and buffer to wake up and enter acquisition mode. To achieve 14-bit accuracy, allow $12 \mathrm{~ms}($ Crefadj $=0.1 \mu \mathrm{~F}, \mathrm{CreF}=10 \mu \mathrm{~F})$ for the internal reference to wake up.

Internal and External Reference

 Internal ReferenceThe internal reference of the MAX1156/MAX1158/ MAX1174 is internally buffered to provide +4.096 V output at REF. Bypass REF to AGND and REFADJ to AGND with $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$, respectively. Sink or source current at REFADJ to make fine adjustments to the internal reference. The input impedance of REFADJ is nominally $5 \mathrm{k} \Omega$. Use the circuit of Figure 7 to adjust the internal reference to $\pm 1.5 \%$.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 5. Selecting Standby Mode

External Reference

An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1156/ MAX1158/MAX1174's internal buffer amplifier. Using the buffered REFADJ input makes buffering the external reference unnecessary. The input impedance of REFADJ is typically $5 k \Omega$. The internal buffer output must be bypassed at REF with a $10 \mu F$ capacitor.
Connect REFADJ to AVDD to disable the internal buffer. Directly drive REF using an external 3.8 V to 4.2 V reference. During conversion, the external reference must be able to drive $100 \mu \mathrm{~A}$ of DC load current and have an output impedance of 10Ω or less.
For optimal performance, buffer the reference through an op amp and bypass REF with a $10 \mu \mathrm{~F}$ capacitor. Consider the MAX1156/MAX1158/MAX1174's equivalent input noise (0.32LSB) when choosing a reference.

Reading the Conversion Result $\overline{E O C}$ is provided to flag the microprocessor when a conversion is complete. The falling edge of $\overline{\mathrm{EOC}}$ signals that the data is valid and ready to be output to the bus. D0-D13 are the parallel outputs of the MAX1156/MAX1158/MAX1174. These three-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high-impedance during acquisition and conversion. Data is loaded onto the output bus with the third falling edge of $\overline{\mathrm{CS}}$ with $\mathrm{R} / \overline{\mathrm{C}}$ high (after tDO). Bringing $\overline{\mathrm{CS}}$ high forces the output bus back to high impedance. The MAX1156/MAX1158/MAX1174 then wait for the next falling edge of $\overline{\mathrm{CS}}$ to start the next conversion cycle (see Figure 2).

Figure 6. Selecting Shutdown Mode

HBEN toggles the output between the high/low byte. The low byte is loaded onto the output bus when HBEN is low and the high byte is on the bus when HBEN is high. The two MSBs of the high byte are always zero.

Transfer Function

Figures 8, 9, and 10 show the MAX1156/MAX1158/ MAX1174 output transfer functions. The MAX1158 and MAX1174 outputs are coded in offset binary, while the MAX1156 is coded in standard binary.

Input Buffer

Most applications require an input buffer amplifier to achieve 14-bit accuracy and prevent loading the source. Switch the channels immediately after acquisition, rather than near the end of or after a conversion, when the input signal is multiplexed. This allows more time for the input buffer amplifier to respond to a large step-change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. Figure 11 shows an example of this circuit using the MAX427.
Figures 12a and 12b show how the MAX1158 and MAX1174 analog input current varies depending on whether the chip is operating or powered down. The part is fully powered down between conversions if the voltage at R / \bar{C} is set high during the second falling edge of $\overline{\mathrm{CS}}$. The input current abruptly steps to the powered up value at the start of acquisition. This step in the input current can disrupt the ADC input, depending on the driving circuit's output impedance at high frequencies. If the driving circuit cannot fully settle by

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 7. MAX1156/MAX1158/MAX1174 Reference Adjust Circuit

Figure 9. MAX1158 Transfer Function
the end of acquisition, the accuracy of the system can be compromised. To avoid this situation, increase the acquisition time, use a driving circuit that can settle within tACQ, or leave the MAX1158/MAX1174 powered up by setting the voltage at R/C low during the second falling edge of $\overline{\mathrm{CS}}$.

Layout, Grounding, and Bypassing
For best performance, use printed circuit boards. Do not run analog and digital lines parallel to each other, and do not layout digital signal paths underneath the

Figure 8. MAX1156 Transfer Function

Figure 10. MAX1174 Transfer Function

ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible.
Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise onto the analog lines. If the analog and digital sections share the same supply, isolate the digital and analog

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 11. MAX1156/MAX1158/MAX1174 Fast-Settling Input Buffer
supply by connecting them with a low value (10 $)$ resistor or ferrite bead.
The ADC is sensitive to high-frequency noise on the $A V_{D D}$ supply. Bypass $A V_{D D}$ to $A G N D$ with a $0.1 \mu F$ capacitor in parallel with a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance.

Definitions

Integral Nonlinearity

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1156/MAX1158/ MAX1174 are measured using the endpoint method.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step-width and the ideal value of 1LSB. A DNL error specification of 1LSB guarantees no missing codes and a monotonic transfer function.

Figure 12a. MAX1174 Analog Input Current

Figure 12b. MAX1158 Analog Input Current

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=14$ bits.
In reality, there are other noise sources besides quantization noise; thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion

Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals.

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log \left[\frac{\text { Signal }_{\mathrm{RMS}}}{(\text { Noise }+ \text { Distortion })_{\mathrm{RMS}}}\right]
$$

Effective Number of Bits
Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quanti-
zation noise only. With an input range equal to the fullscale range of the ADC, calculate the effective number of bits as follows:

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left[\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right]
$$

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest frequency component.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Pin Configuration

TOP VIEW		
	-	$20 \mathrm{D} 3 / \mathrm{D} 11$
		$19 \mathrm{D} 2 / \mathrm{D} 10$
		18 D1/D9
	תМХХIM	$17 \mathrm{DO} / \mathrm{D8}$
	MAX1156	${ }^{16} \mathrm{PV} \mathrm{VD}$
	MAX1158 MAX1174	15 DGND
		14 $\overline{\mathrm{CS}}$
		13 HBEN
		12 REF
		11 ReFadj
	TSSOP	

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	INPUT VOLTAGE RANGE
MAX1158ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 10 \mathrm{~V}$
MAX1158BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 10 \mathrm{~V}$
MAX1158AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 10 \mathrm{~V}$
MAX1158BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 10 \mathrm{~V}$
MAX1174ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 5 \mathrm{~V}$
MAX1174BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 5 \mathrm{~V}$
MAX1174AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 5 \mathrm{~V}$
MAX1174BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 5 \mathrm{~V}$

Chip Information
TRANSISTOR COUNT: 15,383
PROCESS: BiCMOS

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

