Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

General Description

The MAX481, MAX483, MAX485, MAX487-MAX491, and MAX1487 are low-power transceivers for RS-485 and RS422 communication. Each part contains one driver and one receiver. The MAX483, MAX487, MAX488, and MAX489 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481, MAX485, MAX490, MAX491, and MAX1487 are not limited, allowing them to transmit up to 2.5 Mbps .
These transceivers draw between $120 \mu \mathrm{~A}$ and $500 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with disabled drivers. Additionally, the MAX481, MAX483, and MAX487 have a low-current shutdown mode in which they consume only $0.1 \mu \mathrm{~A}$. All parts operate from a single 5 V supply.
Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.

The MAX487 and MAX1487 feature quarter-unit-load receiver input impedance, allowing up to 128 MAX487/ MAX1487 transceivers on the bus. Full-duplex communications are obtained using the MAX488-MAX491, while the MAX481, MAX483, MAX485, MAX487, and MAX1487 are designed for half-duplex applications.

Applications

Low-Power RS-485 Transceivers
Low-Power RS-422 Transceivers
Level Translators
Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks

Next Generation Device Features

- For Fault-Tolerant Applications MAX3430: $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe, 1/4 Unit Load, +3.3V, RS-485 Transceiver MAX3440E-MAX3444E: $\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10 Mbps , Fail-Safe, RS-485/J1708 Transceivers
- For Space-Constrained Applications MAX3460-MAX3464: +5V, Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422 Transceiver in a SOT23 Package MAX3280E-MAX3284E: $\pm 15 \mathrm{kV}$ ESD-Protected, 52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422, True Fail-Safe Receivers

MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V, SOT23, RS-855/RS-422 Transmitters

- For Multiple Transceiver Applications MAX3030E-MAX3033E: $\pm 15 k V$ ESD-Protected, +3.3V, Quad RS-422 Transmitters
- For Fail-Safe Applications MAX3080-MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers
- For Low-Voltage Applications MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, $\pm 15 k V$ ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers

Ordering Information appears at end of data sheet.

PART NUMBER	HALF/FULL DUPLEX	DATA RATE (Mbps)	SLEW-RATE LIMITED	LOW-POWER SHUTDOWN	RECEIVER/ DRIVER ENABLE	QUIESCENT CURRENT ($\mu \mathrm{A}$)	NUMBER OF TRANSMITTERS ON BUS	PIN COUNT
MAX481	Half	2.5	No	Yes	Yes	300	32	8
MAX483	Half	0.25	Yes	Yes	Yes	120	32	8
MAX485	Half	2.5	No	No	Yes	300	32	8
MAX487	Half	0.25	Yes	Yes	Yes	120	128	8
MAX488	Full	0.25	Yes	No	No	120	32	8
MAX489	Full	0.25	Yes	No	Yes	120	32	14
MAX490	Full	2.5	No	No	No	300	32	8
MAX491	Full	2.5	No	No	Yes	300	32	14
MAX1487	Half	2.5	No	No	Yes	230	128	8

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC)
(...
$-.12 \mathrm{~V}$
Control Input Voltage ($\overline{\mathrm{RE}}, \mathrm{DE}$).................... 0.5 V to (VCC +0.5 V)
Driver Input Voltage (DI)............................-0.5V to (VCC +0.5 V)
Driver Output Voltage (A, B). \qquad .-8 V to +12.5 V
-8 V to +12.5 V
Receiver Output Voltage (RO) \qquad -0.5 V to $(\mathrm{VCC}+0.5 \mathrm{~V})$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 14-Pin Plastic DIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. 800 mW 8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots ~ . ~ 471 \mathrm{~mW}$

14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............... 667 mW 8-Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 830 mW 8-Pin CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 640 mW 14-Pin CERDIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 727 mW Operating Temperature Ranges
MAX4__C_ JMAX1487C_A $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ MAX4__ E- JMAX1487E_A $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ MAX4__MJ」MAX1487MJA $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Differential Driver Output (no load)	VOD1				5	V
Differential Driver Output (with load)	VOD2	$\mathrm{R}=50 \Omega$ (RS-422)		2		V
		$\mathrm{R}=27 \Omega$ (RS-485), Figure 4		1.5	5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 4			0.2	V
Driver Common-Mode Output Voltage	Voc	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 4			3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\Delta \mathrm{VOD}$	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 4			0.2	V
Input High Voltage	V_{IH}	DE, DI, $\overline{\mathrm{RE}}$		2.0		V
Input Low Voltage	VIL	DE, DI, $\overline{\mathrm{RE}}$			0.8	V
Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$			± 2	$\mu \mathrm{A}$
Input Current (A, B)	IIN2	$D E=0 V$ $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 5.25 V , all devices except MAX487/MAX1487	V IN $=12 \mathrm{~V}$		1.0	mA
			V IN $=-7 \mathrm{~V}$		-0.8	
		MAX487/MAX1487, $D E=0 V, V_{C C}=0 \mathrm{~V}$ or 5.25 V	V IN $=12 \mathrm{~V}$		0.25	mA
			$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$		-0.2	
Receiver Differential Threshold Voltage	VTH	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq 12 \mathrm{~V}$		-0.2	0.2	V
Receiver Input Hysteresis	$\Delta V_{\text {TH }}$	$\mathrm{VCM}=0 \mathrm{~V}$			70	mV
Receiver Output High Voltage	VOH	$\mathrm{IO}=-4 \mathrm{~mA}, \mathrm{VID}=200 \mathrm{mV}$		3.5		V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{VID}=-200 \mathrm{mV}$			0.4	V
Three-State (high impedance) Output Current at Receiver	IozR	$0.4 \mathrm{~V} \leq \mathrm{Vo} \leq 2.4 \mathrm{~V}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$, all devices except MAX487/MAX1487		12		k Ω
		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}, \mathrm{MAX} 487 / \mathrm{MAX} 1487$		48		k Ω

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
No-Load Supply Current (Note 3)	IcC	$\begin{aligned} & \text { MAX488/MAX489, } \\ & \text { DE, DI, } \mathrm{RE}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$				120	250	$\mu \mathrm{A}$
		$\begin{aligned} & \text { MAX490/MAX491, } \\ & \text { DE, DI, } \overline{R E}=0 \mathrm{~V} \text { or VCC } \end{aligned}$				300	500	
		MAX481/MAX485, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}	$D E=V_{C C}$			500	900	
			DE $=0 \mathrm{~V}$			300	500	
		$\begin{aligned} & \mathrm{MAX1487} \\ & \mathrm{RE}=0 \mathrm{~V} \text { or } \mathrm{VCC} \end{aligned}$	$D E=\mathrm{Vcc}$			300	500	
			DE $=0 \mathrm{~V}$			230	400	
		MAX483/MAX487, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}	$\mathrm{DE}=5 \mathrm{~V}$	MAX483		350	650	
				MAX487		250	400	
			DE $=0 \mathrm{~V}$			120	250	
Supply Current in Shutdown	ISHDN	MAX481/483/487, DE $=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{VCC}$				0.1	10	$\mu \mathrm{A}$
Driver Short-Circuit Current, Vo $=$ High	IOSD1	$-7 \mathrm{~V} \leq \mathrm{VO}_{0} \leq 12 \mathrm{~V}$ (Note 4)			35		250	mA
Driver Short-Circuit Current, $\mathrm{V}_{\mathrm{O}}=$ Low	IOSD2	$-7 \mathrm{~V} \leq \mathrm{Vo} \leq 12 \mathrm{~V}$ (Note 4)			35		250	mA
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{VO} \leq \mathrm{VCC}$			7		95	mA

SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Driver Input to Output	tPLH	Figures 6 and 8, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		10	30	60	ns
	tPHL			10	30	60	
Driver Output Skew to Output	tSKEW	Figures 6 and 8, RDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$			5	10	ns
Driver Rise or Fall Time	tR, tF	Figures 6 and 8, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	MAX481, MAX485, MAX1487	3	15	40	ns
			MAX490C/E, MAX491C/E	5	15	25	
			MAX490M, MAX491M	3	15	40	
Driver Enable to Output High	tzH	Figures 7 and 9, CL $=100 \mathrm{pF}$, S2 closed			40	70	ns
Driver Enable to Output Low	tZL	Figures 7 and 9, CL $=100 \mathrm{pF}$, S1 closed			40	70	ns
Driver Disable Time from Low	tLZ	Figures 7 and 9, CL $=15 \mathrm{pF}$, S1 closed			40	70	ns
Driver Disable Time from High	thz	Figures 7 and 9, CL $=15 \mathrm{pF}$, S2 closed			40	70	ns
Receiver Input to Output	tPLH, tPHL	$\begin{aligned} & \text { Figures } 6 \text { and } 10, \\ & \text { RDIFF }=54 \Omega \text {, } \\ & C_{L 1}=C_{L 2}=100 \mathrm{pF} \end{aligned}$	MAX481, MAX485, MAX1487	20	90	200	ns
			MAX490C/E, MAX491C/E	20	90	150	
			MAX490M, MAX491M	20	90	200	
\| tPLH - tPHL I Differential Receiver Skew	tSKD	Figures 6 and 10, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$			13		ns
Receiver Enable to Output Low	tZL	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S1 closed			20	50	ns
Receiver Enable to Output High	tzH	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S2 closed			20	50	ns
Receiver Disable Time from Low	tLZ	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S1 closed			20	50	ns
Receiver Disable Time from High	thz	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S2 closed			20	50	ns
Maximum Data Rate	fmax	MAX481 (Note 5)		2.5			Mbps
Time to Shutdown	tSHDN			50	200	600	ns

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487 (continued)
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Enable from Shutdown to Output High (MAX481)	tZH(SHDN)	Figures 7 and 9, CL = 100pF, S2 closed		40	100	ns
Driver Enable from Shutdown to Output Low (MAX481)	tZL(SHDN)	Figures 7 and 9, CL = 100pF, S1 closed		40	100	ns
Receiver Enable from Shutdown to Output High (MAX481)	tZH(SHDN)	Figures 5 and 11, $C_{L}=15 \mathrm{pF}$, S2 closed, $A-B=2 V$		300	1000	ns
Receiver Enable from Shutdown to Output Low (MAX481)	tZL(SHDN)	Figures 5 and 11, $C_{L}=15 \mathrm{pF}$, S 1 closed, $B-A=2 V$		300	1000	ns

SWITCHING CHARACTERISTICS—MAX483, MAX487/MAX488/MAX489

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	tPLH	Figures 6 and 8, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	250	800	2000	ns
	tPHL		250	800	2000	
Driver Output Skew to Output	tSKEW	Figures 6 and 8, RDIFF $=54 \Omega$, $C_{L 1}=C L 2=100 \mathrm{pF}$		100	800	ns
Driver Rise or Fall Time	tR, tF	Figures 6 and 8, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	250		2000	ns
Driver Enable to Output High	tzH	Figures 7 and 9, CL $=100 \mathrm{pF}$, S2 closed	250		2000	ns
Driver Enable to Output Low	tZL	Figures 7 and 9, CL $=100 \mathrm{pF}$, S1 closed	250		2000	ns
Driver Disable Time from Low	tLZ	Figures 7 and 9, CL $=15 \mathrm{pF}$, S1 closed	300		3000	ns
Driver Disable Time from High	thz	Figures 7 and 9, CL $=15 \mathrm{pF}$, S2 closed	300		3000	ns
Receiver Input to Output	tPLH	Figures 6 and 10, RDIFF $=54 \Omega$, $C L 1=C L 2=100 \mathrm{pF}$	250		2000	ns
	tPHL		250		2000	
I tPLH - tPHL I Differential Receiver Skew	tSKD	Figures 6 and 10, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		100		ns
Receiver Enable to Output Low	tZL	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S1 closed		20	50	ns
Receiver Enable to Output High	tzH	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S2 closed		20	50	ns
Receiver Disable Time from Low	tLZ	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S1 closed		20	50	ns
Receiver Disable Time from High	thz	Figures 5 and 11, CRL $=15 \mathrm{pF}$, S2 closed		20	50	ns
Maximum Data Rate	fmax	tPLH, tPHL < 50\% of data period	250			kbps
Time to Shutdown	tSHDN	MAX483/MAX487 (Note 5)	50	200	600	ns
Driver Enable from Shutdown to Output High	tZH(SHDN)	MAX483/MAX487, Figures 7 and 9, $C L=100 \mathrm{pF}$, S2 closed			2000	ns
Driver Enable from Shutdown to Output Low	tZL(SHDN)	MAX483/MAX487, Figures 7 and 9, $C L=100 \mathrm{pF}, \mathrm{S} 1$ closed			2000	ns
Receiver Enable from Shutdown to Output High	tZH(SHDN)	MAX483/MAX487, Figures 5 and 11, $C L=15 \mathrm{pF}, \mathrm{S} 2$ closed			2500	ns
Receiver Enable from Shutdown to Output Low	tZL(SHDN)	MAX483/MAX487, Figures 5 and 11, $C L=15 p F, S 1$ closed			2500	ns

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS

Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 2: All typical specifications are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: Supply current specification is valid for loaded transmitters when $\mathrm{DE}=0 \mathrm{~V}$.
Note 4: Applies to peak current. See Typical Operating Characteristics.
Note 5: The MAX481/MAX483/MAX487 are put into shutdown by bringing $\overline{\mathrm{RE}}$ high and DE low. If the inputs are in this state for less than 50 ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600 ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

Typical Operating Characteristics

($\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
\qquad Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

DRIVER OUTPUT LOW VOLTAGE

OUTPUT CURRENT vs.
DRIVER OUTPUT HIGH VOLTAGE

MAX481/MAX485/MAX490/MAX491 SUPPLY CURRENT vs. TEMPERATURE

MAX1487

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Pin Description

PIN					NAME	FUNCTION
MAX48 MAX485 MA	AX483/ AX487/ 487	MAX488/ MAX490		MAX489/ MAX491		
DIP/SO	$\mu \mathrm{MAX}$	DIP/SO	$\mu \mathrm{MAX}$	DIP/SO		
1	3	2	4	2	RO	Receiver Output: If A > B by 200 mV , RO will be high; If $A<B$ by 200 mV , RO will be low.
2	4	-	-	3	$\overline{\mathrm{RE}}$	Receiver Output Enable. RO is enabled when $\overline{\mathrm{RE}}$ is low; RO is high impedance when $\overline{R E}$ is high.
3	5	-	-	4	DE	Driver Output Enable. The driver outputs, Y and Z , are enabled by bringing $D E$ high. They are high impedance when $D E$ is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if $\overline{\mathrm{RE}}$ is low.
4	6	3	5	5	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
5	7	4	6	6, 7	GND	Ground
-	-	5	7	9	Y	Noninverting Driver Output
-	-	6	8	10	Z	Inverting Driver Output
6	8	-	-	-	A	Noninverting Receiver Input and Noninverting Driver Output
-	-	8	2	12	A	Noninverting Receiver Input
7	1	-	-	-	B	Inverting Receiver Input and Inverting Driver Output
-	-	7	1	11	B	Inverting Receiver Input
8	2	1	3	14	VCC	Positive Supply: $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
-	-	-	-	1, 8, 13	N.C.	No Connect-not internally connected

TOP VIEW

NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH. TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.

Figure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating Circuit

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 2. MAX488/MAX490 Pin Configuration and Typical Operating Circuit

Figure 3. MAX489/MAX491 Pin Configuration and Typical Operating Circuit

Applications Information

The MAX481/MAX483/MAX485/MAX487-MAX491 and MAX1487 are low-power transceivers for RS-485 and RS422 communications. The MAX481, MAX485, MAX490, MAX491, and MAX1487 can transmit and receive at data rates up to 2.5 Mbps , while the MAX483, MAX487, MAX488, and MAX489 are specified for data rates up to 250 kbps . The MAX488-MAX491 are full-duplex transceivers while the MAX481, MAX483, MAX485, MAX487, and MAX1487 are half-duplex. In addition, Driver Enable (DE) and Receiver Enable ($\overline{\mathrm{RE}}$) pins are included on the MAX481, MAX483, MAX485, MAX487, MAX489, MAX491, and MAX1487. When disabled, the driver and receiver outputs are high impedance.

MAX487/MAX1487:

128 Transceivers on the Bus
The $48 \mathrm{k} \Omega, 1 / 4$-unit-load receiver input impedance of the MAX487 and MAX1487 allows up to 128 transceivers on a bus, compared to the 1-unit load ($12 \mathrm{k} \Omega$ input impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX487/ MAX1487 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481/MAX483/MAX485 and MAX488-MAX491 have standard $12 \mathrm{k} \Omega$ Receiver Input impedance.

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 4. Driver DC Test Load

Figure 6. Driver/Receiver Timing Test Circuit

MAX483/MAX487/MAX488/MAX489:

 Reduced EMI and ReflectionsThe MAX483 and MAX487-MAX489 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows the driver output waveform and its Fourier analysis of a 150 kHz signal transmitted by a MAX481, MAX485, MAX490, MAX491, or MAX1487. High-frequency har-

Figure 5. Receiver Timing Test Load

Figure 7. Driver Timing Test Load
monics with large amplitudes are evident. Figure 13 shows the same information displayed for a MAX483, MAX487, MAX488, or MAX489 transmitting under the same conditions. Figure 13's high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 8. Driver Propagation Delays

Figure 10. Receiver Propagation Delays

Figure 9. Driver Enable and Disable Times (except MAX488 and MAX490)

Figure 11. Receiver Enable and Disable Times (except MAX488 and MAX490)

Function Tables (MAX481/MAX483/MAX485/MAX487/MAX1487)

Table 1. Transmitting

INPUTS			OUTPUTS	
$\overline{R E}$	$D E$	$D I$	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	High-Z*	High-Z*

X = Don't care
High-Z = High impedance

* Shutdown mode for MAX481/MAX483/MAX487

Table 2. Receiving

INPUTS			OUTPUT
$\overline{R E}$	DE	A-B	RO
0	0	$\geq+0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs open	1
1	0	x	High-Z*

X = Don't care

High-Z = High impedance

* Shutdown mode for MAX481/MAX483/MAX487

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 12. Driver Output Waveform and FFT Plot of MAX481/ MAX485/MAX490/MAX491/MAX1487 Transmitting a 150 kHz Signal

Low-Power Shutdown Mode (MAX481/MAX483/MAX487)

A low-power shutdown mode is initiated by bringing both $\overline{R E}$ high and DE low. The devices will not shut down unless both the driver and receiver are disabled. In shutdown, the devices typically draw only $0.1 \mu \mathrm{~A}$ of supply current.
$\overline{\mathrm{RE}}$ and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if $\overline{R E}$ is high and $D E$ is low for less than 50 ns . If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.
For the MAX481, MAX483, and MAX487, the tZH and tZL enable times assume the part was not in the lowpower shutdown state (the MAX485/MAX488-MAX491 and MAX1487 can not be shut down). The tZH(SHDN) and tZL(SHDN) enable times assume the parts were shut down (see Electrical Characteristics).
It takes the drivers and receivers longer to become enabled from the low-power shutdown state ($\mathrm{tZH}(\mathrm{SHDN})$, tZL(SHDN)) than from the operating mode (tZH, tZL). (The parts are in operating mode if the $\overline{\mathrm{RE}}$, DE inputs equal a logical 0,1 or 1,1 or 0,0 .)

Figure 13. Driver Output Waveform and FFT Plot of MAX483/ MAX487-MAX489 Transmitting a 150 kHz Signal

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively

Propagation Delay Many digital encoding schemes depend on the difference between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 15-18 using Figure 14's test circuit.
The difference in receiver delay times, I tpLH - tpHL I, is typically under 13ns for the MAX481, MAX485, MAX490, MAX491, and MAX1487 and is typically less than 100ns for the MAX483 and MAX487-MAX489.
The driver skew times are typically 5ns (10ns max) for the MAX481, MAX485, MAX490, MAX491, and MAX1487, and are typically 100ns (800ns max) for the MAX483 and MAX487-MAX489.

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 14. Receiver Propagation Delay Test Circuit

Figure 15. MAX481/MAX485/MAX490/MAX491/MAX1487 Receiver tPHL

Figure 17. MAX483, MAX487-MAX489 Receiver tPHL

Figure 16. MAX481/MAX485/MAX490/MAX491/MAX1487 Receiver tPLH

Figure 18. MAX483, MAX487-MAX489 Receiver tPLH

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Line Length vs. Data Rate
The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.
Figures 19 and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110 kHz into 120Ω loads.

Typical Applications
The MAX481, MAX483, MAX485, MAX487-MAX491, and MAX1487 transceivers are designed for bidirectional data communications on multipoint bus transmission lines.

Figure 19. MAX481/MAX485/MAX490/MAX491/MAX1487 System Differential Voltage at 110 kHz Driving 4000ft of Cable

Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX483 and MAX487-MAX489 are more tolerant of imperfect termination.

Figure 20. MAX483, MAX487-MAX489 System Differential Voltage at 110 kHz Driving 4000ft of Cable

Figure 21. MAX481/MAX483/MAX485/MAX487/MAX1487 Typical Half-Duplex RS-485 Network

Low-Power, Slew-Rate-Limited

 RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487-MAX491/MAX1487

NOTE: $\overline{R E}$ AND DE ON MAX489/MAX491 ONLY

Figure 22. MAX488-MAX491 Full-Duplex RS-485 Network

Isolated RS-485
For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.

Figure 23. Line Repeater for MAX488-MAX491

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX481CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX481CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX481CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX481C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX481EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX481ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX481MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX483CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX483CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX483CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX483C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX483EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX483ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX483MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX485CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX485CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX485CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX485C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX485EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX485ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX485MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX487CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX487CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX487CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX487C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX487EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX487ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX487MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX488CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX488CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX488CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX488C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX488EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX488ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX488MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX489CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX489CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX489C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX489EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX489ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX489MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX490CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX490CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX490CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8μ MAX
MAX490C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX490EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX490ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX490MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX491CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX491CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX491C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX491EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX491ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX491MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP
MAX1487CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX1487CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX1487CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PMAX
MAX1487C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX1487EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX1487ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX1487MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

* Contact factory for dice specifications.

Chip Topographies
MAX481/MAX483/MAX485/MAX487/MAX1487

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

\qquad Chip Topographies (continued)

MAX488/MAX490

MAX489/MAX491

TRANSISTOR COUNT: 248
SUBSTRATE CONNECTED TO GND

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

© 2003 Maxim Integrated Products

