the rails.

supplies.

data sheet.

Avionics Signal Routing

Fault-Protected, High-Voltage Single 8-to-1/Dual 4-to-1 Multiplexers

General Description

Applications

The MAX4508/MAX4509 are 8-to-1 and dual 4-to-1 fault-

protected multiplexers that are pin-compatible with the

industry-standard DG508/DG509. The MAX4508/

MAX4509 operate with dual supplies of ±4.5V to ±20V or

a single supply of +9V to +36V. These multiplexers fea-

ture fault-protected inputs, Rail-to-Rail® signal handling

capability, and overvoltage clamping at 150mV beyond

Both parts offer ±40V overvoltage protection with sup-

plies off and ±25V protection with supplies on. On-

resistance is 400Ω max and is matched between channels to 15Ω max. All digital inputs have TTL logic

thresholds, ensuring both TTL and CMOS logic com-

patibility when using a single +12V supply or dual $\pm 15V$

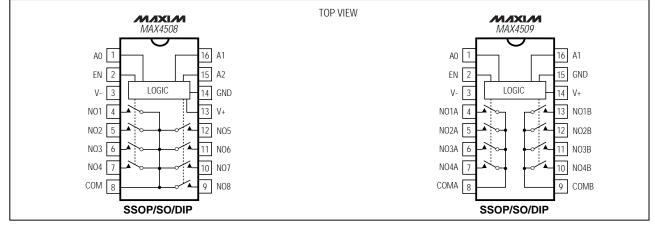
Data-Acquisition Systems Industrial and Process Control

Redundant/Backup Systems

Functional Diagrams/Truth Tables appear at end of

_Features

- ±40V Fault Protection with Power Off
 ±25V Fault Protection with ±15V Supplies
- Rail-to-Rail Signal Handling
- No Power-Supply Sequencing Required
- + All Channels Off with Power Off
- Output Clamped to Appropriate Supply Voltage During Fault Condition
- 1kΩ Output Clamp Resistance During Overvoltage
- 400Ωmax On-Resistance
- + 20ns Fault-Response Time
- ±4.5V to ±20V Dual Supplies +9V to +36V Single Supply
- TTL/CMOS-Compatible Logic Inputs


__Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4508CAE	0°C to +70°C	16 SSOP
MAX4508CSE	0°C to +70°C	16 Narrow SO
MAX4508CPE	0°C to +70°C	16 Plastic DIP
MAX4508C/D	0°C to +70°C	Dice*
MAX4508EAE	-40°C to +85°C	16 SSOP
MAX4508ESE	-40°C to +85°C	16 Narrow SO
MAX4508EPE	-40°C to +85°C	16 Plastic DIP
MAX4508MJE	-55°C to +125°C	16 CERDIP**

Ordering Information continued at end of data sheet.

*Contact factory for dice specifications.

** Contact factory for availability.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Pin Configurations/Functional Diagrams

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Continuous Power Dissipation (T _A = +70°C)
V+0.3V to +44.0V	16 SSOP (derate 8.70mW/°C above +70°C)667mW
V44.0V to +0.3V	16 Narrow SO (derate 8.70mW/°C above +70°C)471mW
V+ to V0.3V to +44.0V	16-Pin Plastic DIP (derate 10.53mW/°C above +70°C) 842mW
COM_, A_ (Note 1) (V+ + 0.3V) to (V 0.3V)	16-Pin CERDIP (derate 10.00mW/°C above +70°C)800mW
NO(V+ - 40V) to (V- + 40V)	Operating Temperature Ranges
NO_ to COM36V to +36V	MAX4508C_ E/MAX4509C_E0°C to +70°C
NO_ Overvoltage with Switch Power On30V to +30V	MAX4508E_ E/MAX4509E_E40°C to +85°C
NO_ Overvoltage with Switch Power Off40V to +40V	MAX4508MJE/MAX4509MJE55°C to +125°C
Continuous Current into Any Terminal±30mA	Storage Temperature Range65°C to +160°C
Peak Current, Into Any Terminal	Lead Temperature (soldering, 10sec)+300°C
(pulsed at 1ms, 10% duty cycle)±100mA	

Note 1: COM_, EN, and A_ pins are not fault protected. Signals on COM_, EN, or A_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(V+ = +15V, V- = -15V, VA_H = +2.4V, VA_L = +0.8V, VEN = +2.4V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIC	TA	MIN	TYP	MAX	UNITS											
ANALOG SWITCH																		
Fault-Free Analog Signal Range (Notes 3, 4)	V _{NO} _	V+ = +15V, V- = -15 V _{NO} _= ±15V	V,	С, Е, М	V-		V+	V										
				+25°C		300	400											
On-Resistance	R _{ON}	$V_{COM} = \pm 10V, I_{NO}$	= 0.2mA	C, E			500	Ω										
				М			700											
				+25°C			15											
On-Resistance Match Between Channels (Note 5)	ΔR_{ON}	$V_{COM} = \pm 10V$, I_{NO}	= 0.2mA	C, E			20	Ω										
				М			25											
		INO_(OFF) V _{NO} = ±10V, V _{COM} = ∓10V		+25°C	-0.5		0.5	nA										
NO_ Off-Leakage Current (Note 6)	INO_(OFF)			C, E	-5		5											
(1010-0)				М	-50		50											
		V _{COM} = ±10V,	MAX4508	+25°C	-2		2	- nA										
				C, E	-20		20											
COM_ Off-Leakage Current				М	-200		200											
(Note 6)	ICOM_(OFF)	$V_{NO_{-}} = \mp 10V$,		+25°C	-1		1											
	MAX4509		Ν	C, E	-10		10											
				М	-100		100											
				+25°C	-2		2											
			MAX4508	C, E	-25		25	1										
COM_ On-Leakage Current		$V_{COM} = \pm 10V$, $V_{NO} = \pm 10V$ or		М	-300		300	nA										
(Note 6)	ICOM_(ON)	floating		+25°C	-1		1											
				5	5	5	6	5	5		5		ÿ	MAX4509	C, E	-15		15
				М	-150		150											

ELECTRICAL CHARACTERISTICS--Dual Supplies (continued)

(V+ = +15V, V- = -15V, V_{A_H} = +2.4V, V_{A_L} = +0.8V, V_{EN} = +2.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	ТА	MIN	TYP	MAX	UNITS
FAULT PROTECTION	1		I	1			
Fault-Protected Analog Signal		Applies with power on, Figure 9	2540	-25		25	
Range (Notes 3, 4)	V _{NO} _	Applies with power off	+25°C	-40		40	V
			+25°C	-10		10	
COM_ Output Leakage Current, Supplies On	ICOM_	$V_{NO_{=}} \pm 25V, V_{EN} = 0$	C, E	-20		20	nA
Supplies Off			М	-100		100	μA
			+25°C	-20		20	
NO_ Input Leakage Current, Supplies On	I _{NO} _	V _{NO} _= ±25V, V _{COM} _ = ∓10V, V _{FN} = 0	C, E	-200		200	nA
Supplies on		VEN - O	М	-50		50	μA
		101111	+25°C	-20		20	nA
NO_ Input Leakage Current, Supplies Off	I _{NO} _	$V_{NO_{-}} = \pm 40V$, $V_{COM} = 0$, $V_{+} = 0$, $V_{-} = 0$	C, E	-5		5	
		v + = 0, v = 0	М	-100		100	μA
COM_ On Clamp Output	lagu	$V_{NO} = 25V$	+25°C	7	10	13	mA
Current, Supplies On	ICOM_	$V_{COM} = 0$ $V_{NO_{-}} = -25V$	- +25 C	-13	-11	-7	IIIA
COM_ On Clamp Output Resistance, Supplies On	R _{COM} _	V _{NO} = ±25V	+25°C	100	1.0	2.5	kΩ
± Fault Output Clamp Turn-On Delay (Note 4)		$R_L = 10k\Omega$, $V_{NO_} = \pm 25V$	+25°C		20		ns
± Fault Recovery Time (Note 4)		$R_{L} = 10k\Omega, V_{NO_{-}} = \pm 25V$	+25°C		2.5		μs
LOGIC INPUT							
A_ Input Logic Threshold High	VA_H		C, E, M	2.4			V
A_ Input Logic Threshold Low	VA_L		C, E, M			0.8	V
A_ Input Current Logic High or Low	I _{A_H} , I _{A_L}	V _A _= 0.8V or 2.4V	C, E, M	-1		1	μA
SWITCH DYNAMIC CHARACTE	RISTICS						
			+25°C		160	275	
Enable Turn-On Time	ton	$V_{NO_} = \pm 10V$, $R_L = 1k\Omega$, Figures 2 and 3	C, E			400	ns
		Figures 2 and 5	М			600	
T W T			+25°C		170	350	
Transition Time	t _{TRANS}	Figure 2	C, E, M			500	ns
			+25°C		120	200	
Enable Turn-Off Time	toff	$V_{NO_} = \pm 10V$, $R_L = 1k\Omega$, Figures 2 and 3	C, E			250	ns
	Figures 2 and 3		М			400	
Break-Before-Make Time Delay (Note 4)	t _{BBM}	$V_{NO_{-}} = \pm 10V$, $R_{L} = 1k\Omega$, Figure 4	С, Е, М	10	80		ns
Charge Injection (Note 4)	Q	$C_L = 1.0nF$, $V_{NO_{-}} = 0$, $R_S = 0$, Figure 5	+25°C		2	10	рС
Off-Isolation (Note 7)	VISO	$R_L = 75\Omega$, $C_L = 15pF$, $V_{NO_{-}} = 1V_{RMS}$, f = 1MHz, Figure	6 +25°C		-70		dB

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = +15V, V- = -15V, V_{A_H} = +2.4V, V_{A_L} = +0.8V, V_{EN} = +2.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
Channel-to-Channel Crosstalk (Note 8)	V _{CT}	$R_L = 75\Omega$, $C_L = 15pF$ $V_{NO_} = 1V_{RMS}$, $f = 1N$		+25° C		-62		dB
NO_Off-Capacitance	C _{N_(OFF)}	f = 1MHz, Figure 8		+25° C		10		рF
COM_ Off-Capacitance		f = 1MHz, Figure 8	MAX4508	+25° C		19		pF
	CCOM_(OFF)	r = nviriz, rigure o	MAX4509	723 0		14		pi
COM_ On-Capacitance		f = 1MHz, Figure 8	MAX4508	+25° C		28		pF
	CCOM_(ON)	r = nviriz, rigure o	MAX4509 +25 C		22			pi pi
POWER SUPPLY	·							
Power-Supply Range	V+, V-			С, Е, М	±4.5		±20	V
				+25°C		370	500	
V+ Supply Current	l+	$\begin{array}{l} \text{All V}_{A_} = 0 \text{ or } 5\text{V}, \\ \text{V}_{NO} = 0, \text{V}_{EN} = 5\text{V} \end{array}$		C, E			600	μA
				М			800	
				+25°C		200	300	
V- Supply Current	-	I- $AII V_{A} = 0 \text{ or } 5V,$ $V_{NO} = 0, V_{FN} = 5V$		C, E			400	μA
		V = 0, V = 0		М			500	
GND Supply Current		All $V_{A} = 0$ or $5V_{A}$		+25°C		200	300	
	IGND	$V_{NO} = 0, V_{EN} = 5V$		С, Е, М			500	- μΑ

ELECTRICAL CHARACTERISTICS—Single +12V Supply

(V+ = +12V, V- = 0, VA_H = +2.4V, VA_L = +0.8V, VEN = +2.4V, TA = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS		
ANALOG SWITCH									
Fault-Free Analog Signal Range (Note 3)	V _{NO} _	$V_{+} = 12V, V_{-} = 0, V_{NO_{-}} = 12V$	С, Е, М	0		V+	V		
			+25°C		650	950			
On-Resistance	R _{ON}	$V_{COM} = +10V, I_{NO} = 200\mu A$	C, E			1100	Ω		
			М			1300			
			+25°C		10	25			
On-Resistance Match Between Channels (Note 5)	ΔR_{ON}	$V_{COM} = 10V, I_{NO} = 200\mu A$	C, E			50	Ω		
			М			75			
		101/11/	+25°C	-0.5	0.01	0.5			
NO_ Off-Leakage Current (Notes 6, 9)	I _{NO_(OFF)}	V _{COM} = 10V, 1V; V _{NO} = 1V, 10V	C, E	-10		10	nA		
			М	-200		200			

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

 $(V_{+} = +12V, V_{-} = 0, V_{A_{-}H} = +2.4V, V_{A_{-}L} = +0.8V, V_{EN} = +2.4V, T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_{A} = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIO	NS	TA	MIN	TYP	MAX	UNITS
				+25°C	-2		2	
			MAX4508	C, E	-20		20	
COM_ Off-Leakage Current		V _{COM} = 10V, 1V;		М	-200		200	1.
(Note 6)	ICOM_(OFF)	$V_{NO_{}} = 1V, 10V$		+25°C	-1		1	nA
			MAX4509	C, E	-10		10	
				М	-100		100	
				+25°C	-2		2	
			MAX4508	C, E	-25		25	
COM_ On-Leakage Current	1	$V_{COM} = 10V, 1V;$		М	-300		300	5
(Note 6)	ICOM_(ON)	V _{NO} = 10V, 1V, or floating		+25°C	-1		1	nA
			MAX4509	C, E	-15		15	
				М	-150		150	
FAULT PROTECTION								
Fault-Protected Analog Signal		Applies with all powe	er on	+25°C	-25		25	V
Range (Notes 3, 10)	V _{NO} _	Applies with all power off		+25 C	-40		40	v
				+25°C	-20		20	nA
COM_ Output Leakage Current, Supply On (Notes 3, 10)	ICOM_	$V_{NO_{-}} = \pm 25V, V_{+} = 12V$		C, E	-20		20	
				М	-100		100	μA
			_	+25°C	-20		20	nA
NO_ Input Leakage Current, Supply On (Notes 3, 10)		$V_{NO_{-}} = \pm 25V, V_{COM_{-}}$ V+ = 12V	_ = 0,	C, E	-5		5	
		V - 12V		М	-100		100	- μΑ
				+25°C	-20	0.1	20	nA
NO_ Input Leakage Current, Supply Off (Notes 3, 10)	I _{NO} _	$V_{NO} = \pm 40V, V + = 0$, V- = 0	C, E	-5		5	
				М	-100		100	μA
COM_ ON Output Current, Supply On	ICOM_	V _{NO} = 25V, V+ = 12	2V	+25°C	2	3	5	mA
COM_ ON Output Resistance, Supply On	R _{COM} _	V _{NO_} = 25V, V+ = 12V		+25°C		2.4	6	kΩ
LOGIC INPUT	1	I		1				
A_ Input Logic Threshold High	V _{IN_H}			C, E, M		1.8	2.4	V
A_ Input Logic Threshold Low	VIN_L			C, E, M	0.8	1.8		V
A_ Input Current Logic High or Low	linh_, linl_	V _{IN} _= 0.8V or 2.4V		С, Е, М	-1	0.03	1	μΑ

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

(V+ = +12V, V- = 0, V_{A_H} = +2.4V, V_{A_L} = +0.8V, V_{EN} = +2.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS			
SWITCH DYNAMIC CHARACTERISTICS										
Enable Turn-On Time	ton	$V_{COM} = 10V, R_{L} = 2k\Omega,$	+25°C		220	500	ns			
	UN	Figure 3	С, Е, М			700	115			
Enable Turn-Off Time	toff	$V_{COM_{-}} = 10V$, $R_{L} = 2k\Omega$,	+25°C		100	250	ns			
	UFF	Figure 3	С, Е, М			350	113			
Break-Before-Make Time Delay (Note 4)	t _{BBM}	$V_{COM_} = 10V$, $R_{L} = 2k\Omega$, Figure 4	+25°C	50	100		ns			
Charge Injection (Note 4)	Q	$C_L = 1.0nF$, $V_{NO_} = 0$, $R_S = 0$, Figure 5	+25°C		2	10	рС			
NO_Off-Capacitance	C _{NO_(OFF)}	$V_{NO_{-}} = 0, f = 1MHz$, Figure 8	+25°C		10		рF			
COM_ Off-Capacitance	CCOM_(OFF)	$V_{COM} = 0$, f = 1MHz, Figure 8	+25°C		19		рF			
COM_ On-Capacitance	C _{COM_(ON)}	$V_{COM_} = V_{NO_} = 0, f = 1MHz,$ Figure 8 +25°			28		pF			
Off-Isolation (Note 7)	VISO	$ \begin{array}{l} R_L = 75 \Omega \text{, } C_L = 15 p \text{F} \text{,} \\ V_{NO_} = 1 V_{RMS} \text{, } f = 1 M \text{Hz} \text{, } \text{Figure 6} \end{array} $	+25°C		-70		dB			
Channel-to-Channel Crosstalk (Note 8)	V _{CT}	$\begin{array}{l} R_L = 75 \Omega, \ C_L = 15 p \text{F}, \\ V_{NO_} = 1 V_{RMS}, \ f = 1 M \text{Hz}, \ \text{Figure 7} \end{array}$	+25°C		-62		dB			
POWER SUPPLY										
Power-Supply Range	V+		С, Е, М	9		36	V			
V+ Supply Current	+	All $V_{A} = 0$ or 5V,	+25°C		200	300	μA			
	IT	$V_{NO_{-}} = 0, V_{EN} = 5V$	С, Е, М			450	μΑ			
		All $V_{A} = 0$ or $5V$,	+25°C		150	250				
V- and GND Supply Current	IGND	$V_{NO} = 0, V_{EN} = +5V$	С, Е, М			375	μA			
v- and Grub Supply Current	GND	All V _A = 0 or 5V	+25°C		250	400	μ~			
		/ v _A _ = 0 01 3 v	С, Е, М			600				

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

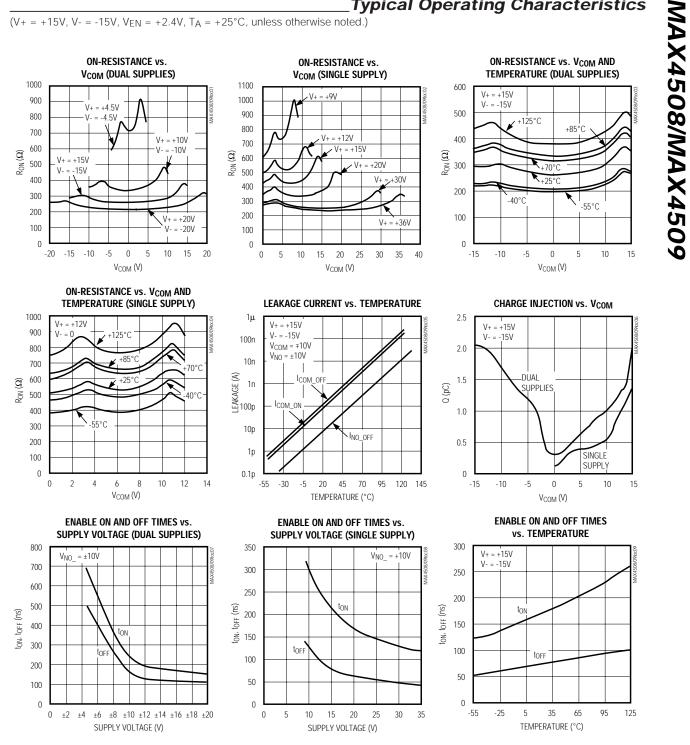
Note 3: NO_pins are fault protected and COM_ pins are not fault protected. The max input voltage on NO_ pins depends on the COM_ load configuration. Generally the max input voltage is ±36V with ±15V supplies and a load referred to ground. For more detailed information refer to *NO_ Input Voltage* section.

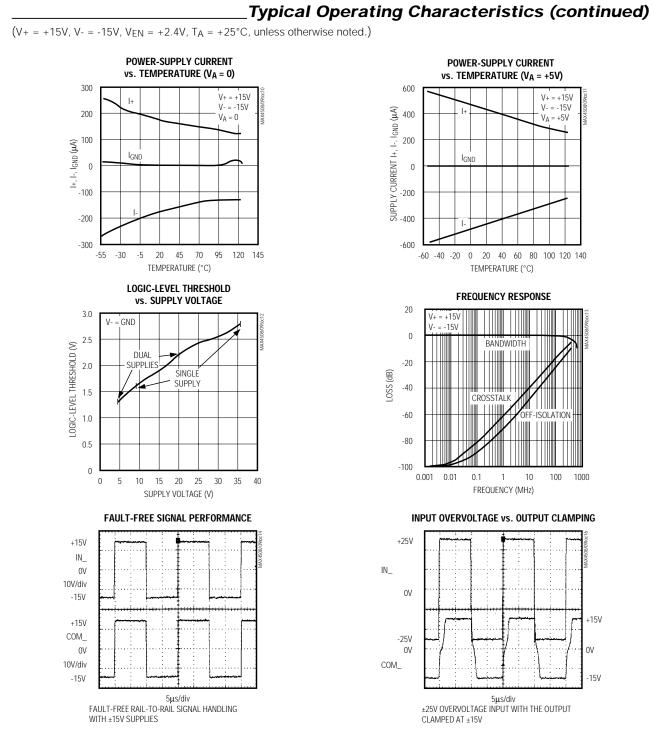
Note 4: Guaranteed by design.

Note 5: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

Note 6: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $T_A = +25^{\circ}C$.

Note 7: Off-isolation = $20\log_{10} (V_{COM_{-}} / V_{NO_{-}})$, where $V_{COM_{-}}$ = output and $V_{NO_{-}}$ = input to off switch.


Note 8: Between any two analog inputs.


Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.

Note 10: Guaranteed by testing with dual supplies.

Typical Operating Characteristics

 $(V + = +15V, V - = -15V, V_{EN} = +2.4V, T_A = +25^{\circ}C, unless otherwise noted.)$

M/IXI/M

MAX4508 (Single 8-to-1 Mux)

MAX4509	Dual 4-to-1	Mux)
INIANTJUJ I		INIGA)

PIN	NAME	FUNCTION			
1	A0	Address Bit 0			
2	EN	Mux Enable			
3	V-	Negative Supply Voltage			
4	NO1	Channel Input 1			
5	NO2	Channel Input 2			
6	NO3	Channel Input 3			
7	NO4	Channel Input 4			
8	COM	Analog Output			
9	NO8	Channel Input 8			
10	NO7	Channel Input 7			
11	NO6	Channel Input 6			
12	NO5	Channel Input 5			
13	V+	Positive Supply Voltage			
14	GND	Ground			
15	A2	Address Bit 2			
16	A1	Address Bit 1			

PIN NAME FUNCTION A0 Address Bit 0 1 Mux Enable 2 FΝ 3 V-Negative Supply Voltage 4 NO1A Channel Input 1A 5 NO2A Channel Input 2A NO3A Channel Input 3A 6 7 NO4A Channel Input 4A 8 COMA Mux Output A 9 COMB Mux Output B 10 NO4B Channel Input 4B 11 NO3B Channel Input 3B 12 NO2B Channel Input 2B 13 NO1B Channel Input 1B 14 V+ Positive Supply Voltage 15 GND Ground 16 A1 Address Bit 1

MAX4508/MAX4509

_Truth Tables

MAX4	MAX4508 (Single 8-to-1 Mux)										
A2	A1	A0	EN	ON SWITCH							
х	х	х	0	None							
0	0	0	1	NO1							
0	0	1	1	NO2							
0	1	0	1	NO3							
0	1	1	1	NO4							
1	0	0	1	NO5							
1	0	1	1	NO6							
1	1	0	1	NO7							
1	1	1	1	NO8							

MAX4509 (Dual 4-to-1 Mux)

A1	A0	EN	СОМА	СОМВ
х	х	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

Detailed Description

Pin Descriptions

Traditional fault-protected multiplexers are constructed with three series FET switches. This produces good off protection, but limits the switches input voltage range to as much as 3V below the supply rails, reducing its usable dynamic range. As the voltage on one side of the switch approaches within about 3V of either supply rail (a fault condition), the switch impedance increases, limiting the output signal range to approximately 3V less than the appropriate polarity supply voltage.

The MAX4508/MAX4509 differ considerably from traditional fault-protected multiplexers, offering several advantages. First, they are constructed with two parallel FETs, allowing very low resistance when the switch is on. Second, they allow signals on the NO_ pins that are within or beyond the supply rails to be passed through the switch to the COM terminal. This allows railto-rail signal operation. Third, when a signal V_{NO}_ exceeds the supply rails (i.e., a fault condition), the voltage on COM_ is limited to the supply rails. Operation is identical for both fault polarities.

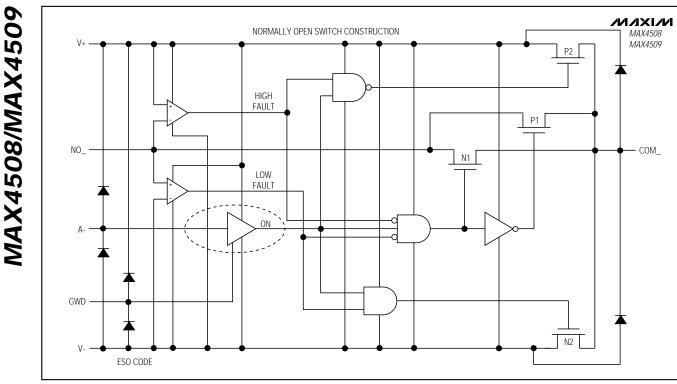


Figure 1. Functional Diagram

When the NO_ voltage goes beyond supply rails (fault condition), the NO_ input becomes high impedance regardless of the switch state or load resistance. When power is removed, and the fault protection is still in effect, the NO_ terminals are a virtual open circuit. The fault can be up to $\pm 40V$, with V+ = V- = 0. If the switch is on, the COM_ output current is furnished from the V+ or V- pin by "booster" FETs connected to each supply pin. These FETs can source or sink up to 10mA.

The COM_ pins are not fault protected. If a voltage source is connected to any COM_ pin, it should be limited to the supply voltages. Exceeding the supply voltage will cause high currents to flow through the ESD protection diodes, damaging the device (see *Absolute Maximum Ratings*).

Figure 1 shows the internal construction, with the analog signal paths shown in bold. A single normally open (NO) switch is shown. The analog switch is formed by the parallel combination of N-channel FET N1 and P-channel FET P1 which are driven on and off simultane-

ously, according to the input fault condition and the logic level state.

NO_ Input Voltage

The maximum allowable input voltage for safe operation depends on whether supplies are on or off and the load configuration at the COM output. If COM is referred to a voltage other than ground, but within the supplies, V_{NO} may range higher or lower than the supplies provided the absolute value of V_{NO} - V_{COM} is less than 40V. For example, if the load is referred to +10V at COM_, then the NO_ voltage range can be from +50V to -30V. As another example, if the load is connected to -10V at COM_, the NO_ voltage range is limited to -50V to +30V.

If the supplies are $\pm 15V$ and COM is referenced to ground through a load, the maximum NO_ voltage is $\pm 25V$. If the supplies are off and the COM output is referenced to ground, the maximum NO_ voltage is $\pm 40V$.

Normal Operation

Two comparators continuously compare the voltage on the NO_ pin with V+ and V- supply voltages. When the signal on NO_ is between V+ and V-, the multiplexer behaves normally, with FETs N1 and P1 turning on and off in response to A_ signals (Figure 1). The parallel combination of N1 and P1 forms a low-value resistor between NO_ and COM_ so that signals pass equally well in either direction.

Positive Fault Condition

When the signal on NO_ exceeds V+ by about 150mV, the positive fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET P2 turns on, clamping COM_ to V+.

Negative Fault Condition

When the signal on NO_ goes about 150mV below V-, the negative fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET N2 turns on, clamping COM_ to V-.

Transient Fault Condition

When a fast rising or falling transient on NO_ exceeds V+ or V-, the output (COM_) follows the input (NO_) to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time. For positive faults, the recovery time is typically 2.5µs (see *Typical Operating Characteristics*). For negative faults, the recovery time is typically 1.3µs. These values depend on the COM_ output resistance and capacitance. The delays do not depend on the fault amplitude. Higher COM_ output resistance and capacitance increase the recovery times.

COM and A_ FETs N2 and P2 can source about ± 10 mA from V+ or V- to the COM_ pin in the fault condition (Figure 1). Ensure that if the COM_ pin is connected to a lowimpedance load, the absolute maximum current rating of 30mA is never exceeded, either in normal or fault conditions. The GND, COM_, and A_ pins do not have fault protection. Reverse ESD protection diodes are internally connected between GND, COM_, A_, and both V+ and V-. If a signal on GND, COM_, or A_ exceeds V+ or V- by more than 300mV, one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak a few nanoamps of current to V+ and V-

Fault Protection Voltage and Power Off

The maximum fault voltage on the NO_ pins is $\pm 40V$ from ground when the power is off. With $\pm 15V$ supply voltages, the highest voltage on NO_ can be V- + 40V, and the lowest voltage on NO can be V+ - 40V. Exceeding these limits can damage the chip.

Logic Level Thresholds

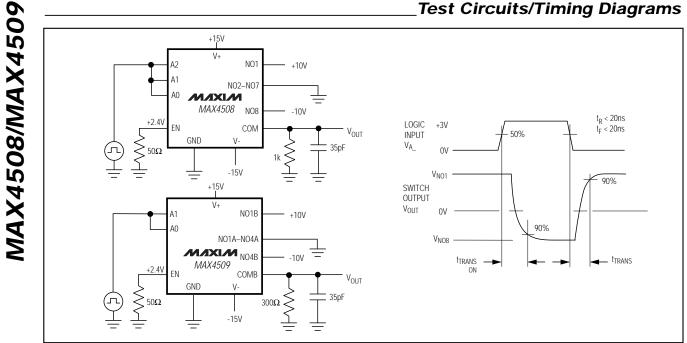
The logic level thresholds are CMOS and TTL compatible with $V_{+} = 13.5V$ to $V_{+} = 16.5V$.

Applications Information

Ground

There is no connection between the analog signal paths and GND. The analog signal paths consist of an N-channel and a P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to V+ and V- by the logic-level translators.

V+ and GND power the internal logic and logic level translators and set the input logic thresholds. The logic-level translators convert the logic levels to switched V+ and V- signals to drive the gates of the multiplexers. This drive signal is the only connection between the power supplies and the analog signals. GND, A_, and COM_ have ESD protection diodes to V+ and V-.


Supply Current Reduction

When the logic signals are driven rail-to-rail from 0 to +15V or -15V to +15V, the current consumption will be reduced from $370\mu A$ (typ) to $200\mu A$.

Power Supplies

The MAX4508/MAX4509 operate with bipolar supplies between $\pm 4.5V$ and $\pm 20V$. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the 44V absolute maximum rating.

The MAX4508/MAX4509 operate from single supplies between +9V and +36V when V- is connected to GND.

Test Circuits/Timing Diagrams

Figure 2. Address Transition Time

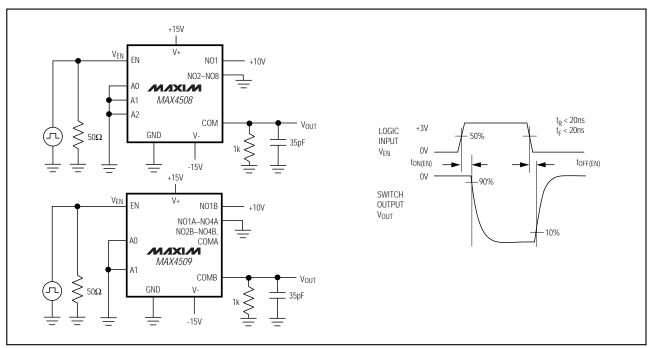


Figure 3. Enable Switching Time

_Test Circuits/Timing Diagrams (continued)

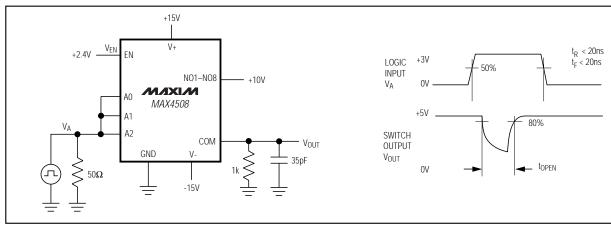
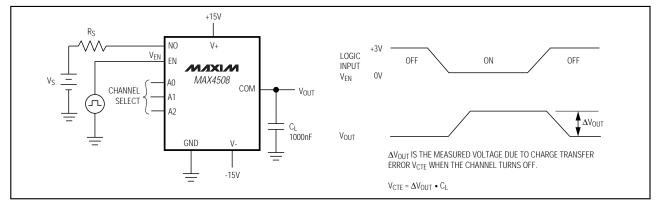
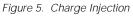
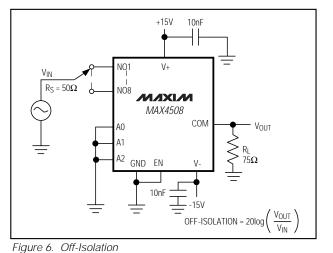
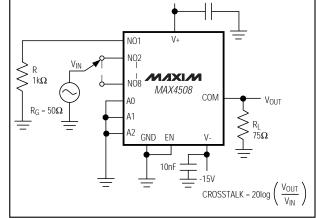
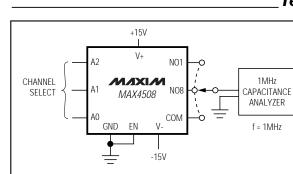
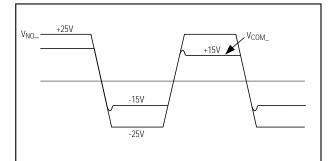
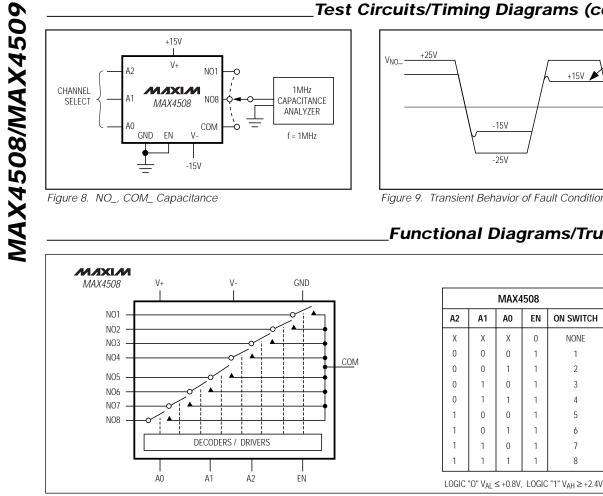






Figure 4. MAX4508 Break-Before-Make Interval


+15V

10nF




MAX4508/MAX4509

Test Circuits/Timing Diagrams (continued)

Functional Diagrams/Truth Tables

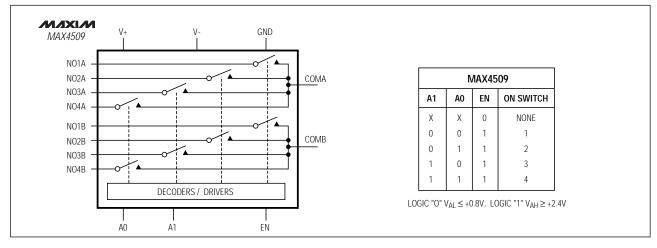
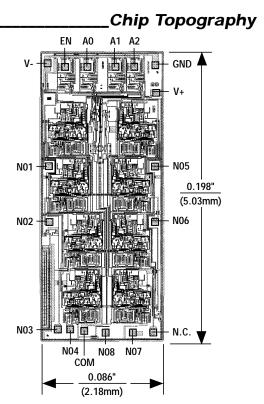
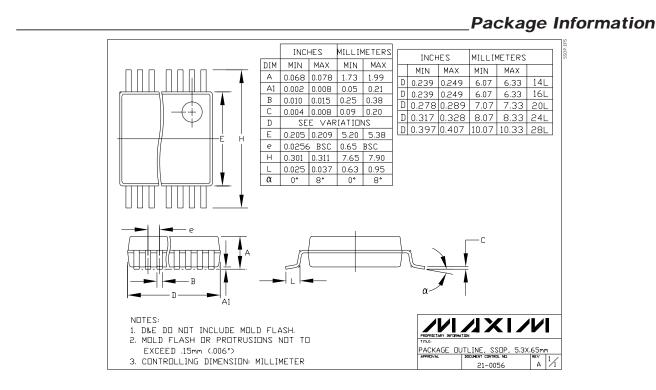


Figure 8. NO_, COM_ Capacitance


Figure 9. Transient Behavior of Fault Condition

_Ordering Information (continued)


PART	TEMP. RANGE	PIN-PACKAGE
MAX4509CAE	0°C to +70°C	16 SSOP
MAX4509CSE	0°C to +70°C	16 Narrow SO
MAX4509CPE	0°C to +70°C	16 Plastic DIP
MAX4509C/D	0°C to +70°C	Dice*
MAX4509EAE	-40°C to +85°C	16 SSOP
MAX4509ESE	-40°C to +85°C	16 Narrow SO
MAX4509EPE	-40°C to +85°C	16 Plastic DIP
MAX4509MJE	-55°C to +125°C	16 CERDIP**

* Contact factory for dice specifications.

** Contact factory for availability.

TRANSISTOR COUNT: 543 SUBSTRATE IS INTERNALLY CONNECTED TO V+. MAX4508/MAX4509

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.