3-Pin Microprocessor Reset Monitors The MAX809 and MAX810 are cost–effective system supervisor circuits designed to monitor $V_{\rm CC}$ in digital systems and provide a reset signal to the host processor when necessary. No external components are required. The reset output is driven active within 20 µsec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a minimum of 140msec after V_{CC} rises above the reset threshold. The MAX810 has an active–high RESET output while the MAX809 has an active–low \overline{RESET} output. The output of the MAX809 is guaranteed valid down to V_{CC} = 1V. Both devices are available in a SOT–23 package. The MAX809/810 are optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 17 μ A (V_{CC} = 3.3V) makes these devices suitable for battery powered applications. #### **Features** - Precision V_{CC} Monitor for 3.0V, 3.3V, and 5.0V Supplies - 140msec Guaranteed Minimum RESET, RESET Output Duration - RESET Output Guaranteed to $V_{CC} = 1.0V$ (MAX809) - Low 17μA Supply Current - V_{CC} Transient Immunity - Small SOT-23 Package - No External Components - Wide Operating Temperature: -40°C to 85°C #### **Typical Applications** - Computers - Embedded Systems - Battery Powered Equipment - Critical µP Power Supply Monitoring #### TYPICAL APPLICATION DIAGRAM SOT-23 (TO-236) CASE 318 #### **PIN CONFIGURATION** (Top View) NOTE: *SOT-23 is equivalent to JEDEC (TO-236) ** RESET is for MAX809 ** RESET is for MAX810 #### ORDERING INFORMATION | Device | Package | Shipping | |-----------|---------|----------------| | MAX809xTR | SOT-23 | 3000 Tape/Reel | | MAX810xTR | SOT-23 | 3000 Tape/Reel | NOTE: The "x" denotes a suffix for V_{CC} threshold – see table below | Suffix | Reset V _{CC} Threshold (V) | | | |--------|-------------------------------------|--|--| | L | 4.63 | | | | M | 4.38 | | | | J* | 4.00 | | | | T | 3.08 | | | | S | 2.93 | | | | R | 2.63 | | | NOTE: *J version is available for MAX809 only #### **ABSOLUTE MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | | |------------------|---|---------------------------------|--------|--| | | Supply Voltage (V _{CC} to GND) | 6.0 | V | | | | RESET, RESET | -0.3 to (V _{CC} + 0.3) | V | | | | Input Current, V _{CC} | 20 | mA | | | | Output Current, RESET, RESET | 20 | mA | | | | dV/dt (VCC) | 100 | V/µsec | | | PD | Power Dissipation (T _A ≤ 70°C)
SOT–23 (derate 4mW/°C above +70°C) | 230 | mW | | | TA | Operating Temperature Range | -40 to +85 | °C | | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | | T _{SOI} | Lead Temperature (Soldering, 10 Seconds) | +260 | °C | | $^{^{\}star}$ Maximum Ratings are those values beyond which damage to the device may occur. **ELECTRICAL CHARACTERISTICS** (V_{CC} = Full Range, T_A = -40°C to +85°C unless otherwise noted. typical values are at T_A = +25C, V_{CC} = 5V for L/M/J, 3.3V for T/S, 3.0V for R) (Note NO TAG) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------|--|--|---|--|--------| | | V_{CC} Range
$T_A = 0^{\circ}C$ to +70°C
$T_A = -40^{\circ}C$ to +85°C | 1.0
1.2 | _
_ | 5.5
5.5 | V | | ICC | Supply Current MAX8xxL/M/J: V _{CC} < 5.5V MAX8xxR/S/T: V _{CC} < 3.6V | _
_ | 24
17 | 60
50 | μА | | VTH | Reset Threshold (Note NO TAG) $MAX8xxL: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX8xxM: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX809J: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX809J: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX8xxT: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX8xxS: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $MAX8xxR: T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = -40^{\circ}C$ to +85°C | 4.56
4.50
4.31
4.25
3.93
3.89
3.04
3.00
2.89
2.85
2.59
2.55 | 4.63
—
4.38
—
4.00
—
3.08
—
2.93
—
2.63 | 4.70
4.75
4.45
4.50
4.06
4.10
3.11
3.15
2.96
3.00
2.66
2.70 | V | | | Reset Threshold Temperature Coefficient | _ | 30 | _ | ppm/°C | | | V_{CC} to Reset Delay $V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{mV})$ | _ | 20 | _ | μsec | | | Reset Active Timeout Period | 140 | 240 | 560 | msec | | V _{OL} | RESET Output Voltage Low (MAX809) MAX809R/S/T: V _{CC} = V _{TH} min, I _{SINK} = 1.2mA MAX809L/M/J: V _{CC} = V _{TH} min, I _{SINK} = 3.2mA V _{CC} > 1.0V, I _{SINK} = 50µA | _
_
_ | _
_
_ | 0.3
0.4
0.3 | V | | VOH | RESET Output Voltage High (MAX809) MAX809R/S/T: V _{CC} > V _{TH} max, I _{SOURCE} = 500μA MAX809L/M/J: V _{CC} > V _{TH} max, I _{SOURCE} = 800μA | 0.8 V _{CC}
V _{CC} – 1.5 | _
_ | | V | | VOL | RESET Output Voltage Low (MAX810) MAX810R/S/T: V _{CC} = V _{TH} max, I _{SINK} = 1.2mA MAX810L/M/J: V _{CC} = V _{TH} max, I _{SINK} = 3.2mA | _
_ | _
_ | 0.3
0.4 | V | | VOH | RESET Output Voltage High (MAX810) 1.8 < V _{CC} < V _{TH} min, I _{SOURCE} = 150μA | 0.8 V _{CC} | _ | _ | V | ^{1.} Production testing done at $T_A = 25$ °C, over temperature limits guaranteed by design. #### **PIN DESCRIPTION** | Pin No. | Symbol | Description | | | |---------|----------------|--|--|--| | 1 | GND | Ground | | | | 2 | RESET (MAX809) | $\overline{\text{RESET}} \text{ output remains low while V}_{\text{CC}} \text{ is below the reset voltage threshold, and for 240msec (typ.)}$ after V_{CC} rises above reset threshold | | | | 2 | RESET (MAX810) | RESET output remains high while V_{CC} is below the reset voltage threshold, and for 240msec (typ.) after V_{CC} rises above reset threshold | | | | 3 | Vcc | Supply Voltage (typ.) | | | #### APPLICATIONS INFORMATION #### **VCC Transient Rejection** The MAX809/810 provides accurate V_{CC} monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches) on the power supply line. Figure 1 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies **under** the curve will **not** generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the MAX809/810. Figure 1. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25° C #### **RESET** Signal Integrity During Power–Down The MAX809 \overline{RESET} output is valid to $V_{CC}=1.0V$. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the μP will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where \overline{RESET} must be maintained valid to $V_{CC}=0V$, a pull–down resistor must be connected from \overline{RESET} to ground to discharge stray capacitances and hold the output low (Figure 2). This resistor value, though not critical, should be chosen such that it does not appreciably load \overline{RESET} under normal operation (100k Ω will be suitable for most applications). Similarly, a pull–up resistor to V_{CC} is required for the MAX810 to ensure a valid high \overline{RESET} for V_{CC} below 1.0V. Figure 2. Ensuring RESET Valid to V_{CC} = 0 V #### **Processors With Bidirectional I/O Pins** Some μP 's (such as Motorola 68HC11) have bi–directional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7k Ω resistor in series with the output of the MAX809/810 (Figure 3). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the μP , the buffer should be connected as shown with the solid line. Figure 3. Interfacing to Bidirectional Reset I/O #### TYPICAL CHARACTERISTICS Figure 4. Supply Current vs Temperature (No Load, MAX8xxR/S/T) Figure 5. Supply Current vs Temperature (No Load, MAX8xxL/M/J/) Figure 6. Power–Down Reset Delay vs Temperature and Overdrive (MAX8xxR/S/T) Figure 7. Power–Down Reset Delay vs Temperature and Overdrive (MAX8xxL/M/J) Figure 8. Power–Up Reset Timeout vs Temperature Figure 9. Normalized Reset Threshold vs Temperature #### **TAPING FORM** # MAX809, MAX810 # Component Taping Orientation for 3L SOT-23 (JEDEC-236) Devices **Tape & Reel Specifications Table** | Package | Carrier Width (W) | Pitch (P) | Part Per Full Reel | Reel Size | |---------|-------------------|-----------|--------------------|-----------| | SOT-23 | 8 mm | 4 mm | 3000 | 7 inches | #### **MARKING DIAGRAM** #### **MARKING** | ON Semiconductor Part # | Reset Threshold or Address | Marking | |-------------------------|----------------------------|---------| | MAX809L | 4.63 | J1YW | | MAX809M | 4.38 | J2YW | | MAX809T | 3.08 | J3YW | | MAX809S | 2.93 | J4YW | | MAX809R | 2.63 | J5YW | | MAX809J | 4.00 | J6YW | | MAX810L | 4.63 | K1YW | | MAX810M | 4.38 | K2YW | | MAX810T | 3.08 | K3YW | | MAX810S | 2.93 | K4YW | | MAX810R | 2.63 | K5YW | YW = Date code #### **PACKAGE DIMENSIONS** SOT-23 PLASTIC PACKAGE (TO-236) CASE 318-08 ISSUE AF - TTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. | | INCHES | | MILLIMETERS | | |-----|--------|--------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.1102 | 0.1197 | 2.80 | 3.04 | | В | 0.0472 | 0.0551 | 1.20 | 1.40 | | С | 0.0350 | 0.0440 | 0.89 | 1.11 | | D | 0.0150 | 0.0200 | 0.37 | 0.50 | | G | 0.0701 | 0.0807 | 1.78 | 2.04 | | Н | 0.0005 | 0.0040 | 0.013 | 0.100 | | J | 0.0034 | 0.0070 | 0.085 | 0.177 | | K | 0.0140 | 0.0285 | 0.35 | 0.69 | | L | 0.0350 | 0.0401 | 0.89 | 1.02 | | S | 0.0830 | 0.1039 | 2.10 | 2.64 | | V | 0.0177 | 0.0236 | 0.45 | 0.60 |