SPANSION ${ }^{\text {™ }}$ MCP

Data Sheet

September 2003

This document specifies SPANSION ${ }^{T M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{\top M}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\text {TM }}$ memory solutions.

Stacked MCP (Multi-Chip Package) FLASH MEMORY \& SRAM cMOS
 16M ($\times 8 / \times 16$) FLASH MEMORY \& 2M ($\times 8 / \times 16$) STATIC RAM

MB84VD2108XEM-7o/MB84VD2109XEM-70

FEATURES

- Power Supply Voltage of 2.7 V to 3.3 V
- High Performance

70 ns maximum access time (Flash)
70 ns maximum access time (SRAM)

- Operating Temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package 56-ball BGA
(Continued)

PRODUCT LINE UP

Part No.	MB84VD2108XEM/MB84VD2109XEM	
Supply Voltage(V)	V ccf $^{2} 3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.3 \mathrm{~V}}$	$\mathrm{~V}_{\mathrm{ccS}}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.3 \mathrm{~V}}$
Max Address Access Time (ns)	70	70
Max $\overline{\mathrm{CE}}$ Access Time (ns)	70	70
Max $\overline{\text { OE Access Time (ns) }}$	30	35

Note: Both $\mathrm{V}_{\text {ccf }}$ and $\mathrm{V}_{\mathrm{ccs}}$ must be in recommended operation range when either part is being accessed.

PACKAGE

56-ball plastic BGA
(BGA-56P-M02)

MB84VD2108XEM/2109XEM-70

(Continued)

- FLASH MEMORY

- Simultaneous Read/Write Operations (Dual Bank)

Miltiple devices available with different bank sizes (Please refer to ORDERING INFORMATION)
Host system can program or erase in one bank, then immediately and simultaneously read from the other bank Zero latency between read and write operations
Read-while-erase
Read-while-program

- Minimum 100,000 Write/Erase Cycles
- Sector Erase Architecture

Eight 4 K words and thirty one 32 K words.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

MB84VD2108XEM: Top sector MB84VD2109XEM: Bottom sector

- Embedded Erase ${ }^{\text {TM* }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM* }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit Feature for Detection of Program or Erase Cycle Completion
- Ready-Busy Output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic Sleep Mode

When addresses remain stable, automatically switch themselves to low power mode.

- Low Vcc Write Inhibit $\leq 2.5 \mathrm{~V}$
- HiddenROM Region

64 K byte of HiddenROM, accessible through a new "HiddenROM Enable" command sequence Factory serialized and protected to provide a secure electronic serial number (ESN)

- WP/ACC Input Pin

At VIL, allows protection of boot sectors, regardless of sector protection/unprotection status (MB84VD2108XEM:SA37,SA38 MB84VD2109XEM:SA0,SA1)
At V_{I}, allows removal of boot sector protection
At $V_{A c c}$, program time will reduse by 40%.

- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Please refer to "MBM29DL16XTE/BE" Datasheet in Detailed Function
* : Embedded Erase ${ }^{\text {TM }}$ and Embedded Program ${ }^{\text {TM }}$ are trademarks of Advanced Micro Devices, Inc.
- SRAM
- Power Dissipation

Operating : 40 mA Max
Standby : $7 \mu \mathrm{~A}$ Max

- Power Down Features using CE1s and CE2s
- Data Retention Supply Voltage: 1.5 V to 3.3 V
- CE1s and CE2s Chip Select
- Byte Data Control: $\overline{\mathrm{LB}}\left(\mathrm{DQ}_{7}\right.$ to $\left.\mathrm{DQ}_{0}\right)$, $\overline{\mathrm{UB}}\left(\mathrm{DQ}_{15}\right.$ to $\left.\mathrm{DQ}_{8}\right)$

MB84VD2108XEM/2109XEM-70

PIN ASSIGNMENT

(Top View)
Marking side

* : There is no solder ball. This land should be open electrically.
(BGA-56P-M02)

MB84VD2108XEM/2109XEM-70

PIN DESCRIPTION

Pin Name	Function	Input/Output
A_{16} to A_{0}	Address Inputs (Common)	I
A_{19} to $\mathrm{A}_{17}, \mathrm{~A}_{-1}$	Address Input (Flash)	I
SA	Address Input (SRAM)	1
DQ15 to DQ0	Data Inputs / Outputs (Common)	I/O
$\overline{\mathrm{CEf}}$	Chip Enable (Flash)	I
$\overline{\mathrm{CE}}$ /s	Chip Enable (SRAM)	1
CE2s	Chip Enable (SRAM)	I
$\overline{\mathrm{OE}}$	Output Enable (Common)	I
WE	Write Enable (Common)	1
RY/ $\overline{B Y}$	Ready/Busy Outputs (Flash) Open Drain Output	0
$\overline{\text { UB }}$	Upper Byte Control (SRAM)	1
$\overline{\mathrm{LB}}$	Lower Byte Control (SRAM)	1
CIOf	I/O Configuration (Flash) CIOf $=$ Vccf is Word mode ($\times 16$), $\mathrm{ClOf}=\mathrm{Vss}$ is Byte mode $(\times 8)$	1
ClOs	I/O Configuration (SRAM) CIOs $=V_{\text {ccs }}$ is Word mode ($\times 16$), $\mathrm{ClOs}=\mathrm{V}$ ss is Byte mode ($\times 8$)	1
RESET	Hardware Reset Pin / Sector Protection Unlock (Flash)	1
$\overline{\text { WP/ACC }}$	Write Protect / Acceleration (Flash)	1
N.C.	No Internal Connection	-
Vss	Device Ground (Common)	Power
Vccf	Device Power Supply (Flash)	Power
V ccs	Device Power Supply (SRAM)	Power

MB84VD2108XEM/2109XEM-70

BLOCK DIAGRAM

MB84VD2108XEM/2109XEM-70

DEVICE BUS OPERATIONS

User Bus Operations Table (Flash = Word mode; CIOf = Vccf, SRAM = Word mode; CIOs = Vccs)

Operation *1,*3	$\overline{\mathrm{CEf}}$	$\overline{\mathrm{CE1}}$ s	CE2s	$\overline{\text { OE }}$	$\overline{\text { WE }}$	SA	$\overline{\text { LB }}$	$\overline{\text { UB }}$	$\begin{aligned} & \mathrm{DQ}_{7} \text { to } \\ & \mathrm{DQ}_{0} \end{aligned}$	D_{15} to DQ8	RESET	$\begin{aligned} & \overline{\mathrm{WP}} / \\ & \mathrm{ACC} \end{aligned}$
Full Standby	H	H	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L									
Output Disable	H	L	H	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	H	H	High-Z	High-Z		
	L	H	X	H	H	X	X	X	High-Z	High-Z		
		X	L									
Read from Flash *2	L	H	X	L	H	X	X	X	Dout	Dout	H	X
		X	L									
Write to Flash	L	H	X	H	L	X	X	X	Din	Din	H	X
		X	L									
Read from SRAM	H	L	H	L	H	X	L	L	Dout	Dout	H	X
							H	L	High-Z	Dout		
							L	H	Dout	High-Z		
Write to SRAM	H	L	H	X	L	X	L	L	Din	Din	H	X
							H	L	High-Z	Din		
							L	H	Din	High-Z		
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	VID	X
Flash Hardware Reset	X	H	X	X	X	X	X	X	High-Z	High-Z	L	X
		X	L									
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}. See DC Characteristics for voltage levels.
*1 : Other operations except for indicated this column are inhibited.
*2 : $\overline{\mathrm{WE}}$ can be V_{L} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*3 : Do not apply $\overline{C E f}=\mathrm{V}_{\mathrm{IL}}, \overline{C E 1 s}=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{IH}}$ at a time .
*4 : It is also used for the extended sector group protections.
*5 : WP/ACC = VIL; protection of boot sectors.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathbf{1}}$; removal of boot sectors protection.
$\overline{W P} / A C C=V_{A C C}(9 \mathrm{~V})$; Program time will reduce by 40%.

MB84VD2108XEM/2109XEM-70

User Bus Operations Table (Flash = Word mode; CIOf = Vccf, SRAM = Byte mode; CIOs = Vss)

Operation *1,*3	CEf	CE1s	CE2s	OE	WE	SA	LB	UB	DQ_{7} to DQ0	DQ ${ }_{15}$ to DQ8	RESET	$\begin{aligned} & \overline{\mathrm{WP}} / \\ & \mathrm{ACC} \end{aligned}$
Full Standby	H	H	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L									
Output Disable	H	L	H	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	H	H	High-Z	High-Z		
	L	H	X	H	H	X	X	X	High-Z	High-Z		
		X	L									
Read from Flash *2	L	H	X	L	H	X	X	X	Dout	Dout	H	X
		X	L									
Write to Flash	L	H	X	H	L	X	X	X	Din	Din	H	X
		X	L									
Read from SRAM	H	L	H	L	H	SA	X	X	Dout	High-Z	H	X
Write to SRAM	H	L	H	X	L	SA	X	X	Din	High-Z	H	X
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	VID	X
Flash Hardware Reset	X	H	X	X	X	X	X	X	High-Z	High-Z	L	X
		X	L									
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}. See DC Characteristics for voltage levels.
*1 : Other operations except for indicated this column are inhibited.
*2 : $\overline{\mathrm{WE}}$ can be V_{LL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*3 : Do not apply $\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}$ s $=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{IH}}$ at a time .
*4 : It is also used for the extended sector group protections.
*5 : $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{L}}$; protection of boot sectors.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathbf{H}}$; removal of boot sectors protection.
$\overline{W P} / A C C=V_{A C C}(9 \mathrm{~V})$; Program time will reduce by 40%.

MB84VD2108XEM/2109XEM-70

User Bus Operations Table (Flash = Byte mode; $\mathrm{CIOf}=\mathrm{Vss}, \mathrm{SRAM}=$ Byte mode; $\mathrm{ClOs}=\mathrm{Vss}$)

Operation *1,*3	$\overline{\text { CEf }}$	CE1s	CE2s	DQ ${ }_{15} / A_{-1}$	OE	WE	SA	$\overline{\text { LB }}$	$\overline{\text { UB }}$	DQ to $_{0}$ DQ。	$\begin{gathered} \mathrm{DQ}_{14} \\ \text { to } \mathrm{DQ}_{8} \end{gathered}$	RESET	$\begin{aligned} & \overline{\mathrm{WP}} / \\ & \mathrm{ACC} \end{aligned}$
Full Standby	H	H	X	X	X	X	X	X	X	High-Z	High-Z	H	X
		X	L										
Output Disable	H	L	H	X	H	H	X	X	X	High-Z	High-Z	H	X
				X	X	X	X	H	H	High-Z	High-Z		
	L	H	X	A-1	H	H	X	X	X	High-Z	High-Z		
		X	L										
Read from Flash *2	L	H	X	A-1	L	H	X	X	X	Dout	High-Z	H	X
		X	L										
Write to Flash	L	H	X	A-1	H	L	X	X	X	Din	High-Z	H	X
		X	L										
Read from SRAM	H	L	H	X	L	H	SA	X	X	Dout	High-Z	H	X
Write to SRAM	H	L	H	X	X	L	SA	X	X	Din	High-Z	H	X
Temporary Sector Group Unprotection *4	X	X	X	X	X	X	X	X	X	X	X	VID	X
Flash Hardware Reset	X	H	X	X	X	X	X	X	X	High-Z	High-Z	L	X
		X	L										
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	X	X	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}. See DC Characteristics for voltage levels.
*1 : Other operations except for indicated this column are inhibited.
*2 : $\overline{\mathrm{WE}}$ can be $\mathrm{V}_{\text {IL }}$ if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations.
*3 : Do not apply $\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{I}}, \overline{\mathrm{CE}} \mathrm{s}=\mathrm{V}_{\mathrm{I}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\boldsymbol{~}}$ at a time.
*4 : It is also used for the extended sector group protections.
*5 : $\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{L}}$; protection of boot sectors.
$\overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathbf{1}}$; removal of boot sectors protection.
$\overline{W P} / A C C=V_{A C C}(9 \mathrm{~V})$; Program time will reduce by 40%.

MB84VD2108XEM/2109XEM-70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except RESET, WP/ACC *1	Vin, Vout	-0.3	Vccf +0.4	V
			$\mathrm{Vccs}+0.4$	V
Vccf/Vccs Supply *1	Vccf, Vocs	-0.3	+4.0	V
RESET * 2	Vin	-0.5	+ 13.0	V
$\overline{\text { WP/ACC *3 }}$	Vin	-0.5	+10.5	V

*1: Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, input or I/O pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input or I/O pins is V ccf +0.4 V or $\mathrm{Vccs}+0.4 \mathrm{~V}$. During voltage transitions, input or $/ / O$ pins may overshoot to $\mathrm{Vccf}+2.0 \mathrm{~V}$ or $\mathrm{Vccs}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
*2 : Minimum DC input voltage on RESET pin is -0.5 V . During voltage transitions, RESET pins may undershoot Vss to -2.0 V for periods of up to 20 ns . Voltage difference between input and supply voltage (VIN-Vccf or Vccs) does not exceed +9.0 V . Maximum DC input voltage on RESET pins is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns .
*3: Minimum DC input voltage on $\overline{W P} / A C C$ pin is -0.5 V . During voltage transitions, $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on WP/ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns , when V ccf is applied.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

- RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value		
Ambient Temperature	T_{A}		-40	+85	${ }^{\circ} \mathrm{C}$
Vccf/Vccs Supply Voltages	Vccf, Vccs	+2.7	+3.3	V	

Note: Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB84VD2108XEM/2109XEM-70

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter	Symbol	Test Conditions			Value			Unit
					Min	Typ	Max	
Input Leakage Current	l,	$\mathrm{V}_{1 \times}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {ccf }}$, $\mathrm{V}_{\text {ccs }}$			-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vout = Vss to Vccf, Vccs			-1.0	-	+1.0	$\mu \mathrm{A}$
$\overline{\text { RESET Inputs Leakage }}$ Current	ІІт	$\begin{aligned} & \text { Vccf }=V_{\text {ccf }} \operatorname{Max}, V_{c c s}=V_{c c s} M a x, \\ & \text { RESET }=12.5 \mathrm{~V} \end{aligned}$			-	-	35	$\mu \mathrm{A}$
Flash Vcc Active Current (Read) * ${ }^{*}$	Icaif	$\begin{aligned} & \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{LL}}, \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	toycle $=5 \mathrm{MHz}$	Byte	-	-	13	mA
			tcycle $=5 \mathrm{MHz}$	Word	-	-	15	
			toycle $=1 \mathrm{MHz}$	Byte	-	-	7	mA
			toycle $=1 \mathrm{MHz}$	Word	-	-	7	
Flash Vcc Active Current (Program/Erase) *2	Iccof	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$			-	-	35	mA
Flash Vcc Active Current (Read-While-Program) *5	Icc3f	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		Byte	-	-	48	mA
				Word	-	-	50	
Flash Vcc Active Current (Read-While-Erase) *5	Iccaf	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$		Byte	-	-	48	mA
				Word	-	-	50	
Flash Vcc Active Current (Erase-Suspend-Program)	Iccsf	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$			-	-	35	mA
ACC Input Leakage Current	ILIA	$\begin{aligned} & V_{c c f}=V_{c c f} M a x, V_{c c S}=V_{c c s} M a x, \\ & \text { WP/ACC }=V_{A C C} M a x \end{aligned}$			-	-	20	mA
SRAM Vcc Active Current	Iccis	$\begin{aligned} & \mathrm{V}_{\mathrm{ccs}}=\mathrm{V}_{\mathrm{ccs}} \mathrm{Max}, \\ & \mathrm{CE}, \mathrm{~V}=\mathrm{V}_{\mathrm{LL}}, \\ & \mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{H} \end{aligned}$	toycle $=10 \mathrm{MHz}$		-	-	40	mA
SRAM Vcc Active Current	Icc2S	$\begin{aligned} & \overline{\mathrm{CE1}} \mathrm{~s}=0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s}=\mathrm{V} c \mathrm{c}-0.2 \mathrm{~V} \end{aligned}$	tcycle $=10 \mathrm{MHz}$		-	-	40	mA
			tcycle $=1 \mathrm{MHz}$		-	-	8	mA
Flash Vcc Standby Current	Isbif	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V}_{\mathrm{ccf}} \mathrm{Max}, \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / A C C=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$
Flash Vcc Standby Current ($\overline{\text { RESET }}$)	Isbzf	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V} \text { cff } \mathrm{Max}, \overline{\mathrm{RESET}}=\mathrm{V} s \mathrm{~m} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / \mathrm{ACC}=\mathrm{V} \mathrm{ccf} \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$
Flash Vcc Current (Automatic Sleep Mode) *3	Isbsf	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V} \text { ccf } \mathrm{Max}, \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{ss}} \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V} \text { cof } \pm 0.3 \mathrm{~V}, \\ & \hline \mathrm{WP} / A C C=V \mathrm{Vcf} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$			-	1	5	$\mu \mathrm{A}$

(Continued)

MB84VD2108XEM/2109XEM-70

(Continued)

Parameter	Symbol	Test Conditions	Value			Unit
			Min	Typ	Max	
SRAM Vcc Standby Current	Isb1s	$\begin{aligned} & \overline{\mathrm{CE} 1 \mathrm{~s}} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V}, \mathrm{CE} 2 \mathrm{~s} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V} \\ & \overline{\mathrm{LB}}=\overline{\mathrm{UB}} \geq \mathrm{V} \operatorname{ccs}-0.2 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$	-	-	7	$\mu \mathrm{A}$
SRAM Vcc Standby Current	Isb2S	$\begin{aligned} & \overline{\mathrm{CE} 1 \mathrm{~s}} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s} \leq 0.2 \mathrm{~V} \\ & \overline{\mathrm{LB}}=\overline{\mathrm{UB}} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$	-	-	7	$\mu \mathrm{A}$
Input Low Level	VIL	-	-0.3	-	0.5	V
Input High Level	V_{H}	-	2.4	-	$V_{c c+0.3}$	V
Voltage for Sector Protection, and Temporary Sector Unprotection (RESET) *4	VID	-	11.5	-	12.5	V
Voltage for Program Acceleration (WP/ACC) *4	V ${ }_{\text {Acc }}$	-	8.5	9.0	9.5	V
SRAM Output Low Level	VoL	$\mathrm{Vccs}=\mathrm{Vccs} \mathrm{Min}, \mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.45	V
SRAM Output High Level	Vон	$\mathrm{V}_{\mathrm{ccs}}=\mathrm{V}_{\text {ccs }} \mathrm{Min}, \mathrm{loH}=-0.5 \mathrm{~mA}$	2.4	-	-	V
Flash Output Low Level	Vol	$\mathrm{V}_{\mathrm{ccf}}=\mathrm{Vccf} \mathrm{Min}$, $\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V
Flash Output High Level	Vон	$\mathrm{V}_{\text {ccf }}=\mathrm{V}_{\text {ccf }} \mathrm{Min}$, $\mathrm{IoH}=-0.5 \mathrm{~mA}$	2.4	-	-	V
Flash Low Vccf Lock-Out Voltage	Vıko	-	2.3	-	2.5	V

* 1 : The Icc current listed includes both the DC operating current and the frequency dependent component.
*2 : Icc active while Embedded Algorithm (program or erase) is in progress.
*3 : Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
*4 : Applicable for only Vccf applying.
*5 : Embedded Algorithm (program or erase) is in progress. (@5 MHz)
*6 : Vcc indicates lower of Vccf or Vccs .

MB84VD2108XEM/2109XEM-70

2. AC Characteristics

- CE Timing

Parameter	Symbol		Test Setup	Value	Unit
	JEDEC	Standard		Min	
$\overline{C E}$ Recover Time	-	tccr	-	0	ns

- Timing Diagram for alternating SRAM to Flash

- Flash Characteristics

Please refer to "■16M FLASH MEMORY CHARACTERISTICS for MCP" part.

- SRAM Characteristics,

Please refer to "■2M SRAM CHARACTERISTICS for MCP" part.

MB84VD2108XEM/2109XEM-70

16M FLASH MEMORY CHARACTERISTICS for MCP

1. Flexible Sector-erase Architecture on Flash Memory

- Eight 4 K words, and thirty one 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

MB84VD2108XEM/2109XEM-70

(Continued)
(Continued)

MB84VD2108XEM/2109XEM-70

Sector Address Table (Top Boot Block, Bank Size=1)

Bank	Sector	Sector Address								Address Range (Byte mode)	Address Range (Word mode)
		Bank Address									
		A_{19}	A18	A17	A16	A15	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	x	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	x	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	x	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	x	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	x	X	OA0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	0B0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	OCO000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	OEO000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	OA0000h to OA7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	OA8000h to OAFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to OB7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	OB8000h to OBFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to OE7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to OF7FFFh
Bank 1	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	OFC000h to OFCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	OFD000h to OFDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FEO00h to 1FFFFFh	OFFO00h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Bottom Boot Block, Bank Size=1)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address					A14	A_{13}	A_{12}		
		A_{19}	A_{18}	A_{17}	A_{16}	A15					
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00EO00h to 00FFFFh	007000h to 007FFFh
Bank 2	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	x	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	x	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	x	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	x	OA0000h to OAFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	OBOOOOh to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	OCOOOOh to OCFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	ODO000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	0E0000h to OEFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1 DFFFFF	0E8000h to OEFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Top Boot Block, Bank Size=2)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SAO	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	x	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	x	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	x	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	x	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	x	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	x	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	x	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	x	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	x	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OBOOOOh to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	ODO000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	OEO000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	x	X	0FO000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	x	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	OB0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
Bank 1	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	OFC000h to OFCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	OFD000h to OFDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFE000h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FEO00h to 1FFFFFh	OFFO00h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Bottom Boot Block, Bank Size=2)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
Bank 2	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	OEO000h to OEFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to OA7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	OA8000h to OAFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to OB7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	180000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	OE8000h to OEFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Top Boot Block, Bank Size=3)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SAO	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	OA0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	OC0000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	OE0000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to OAFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
Bank 1	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to 0DFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to 0EFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFAOOOh to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFBOOOh to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	OFC000h to OFCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	OFDOOOh to OFDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFEO00h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	OFFOOOh to OFFFFFh

Sector Address Table (Bottom Boot Block, Bank Size=3)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 1	SAO	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00E000h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
Bank 2	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	0A0000h to 0AFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	OB0000h to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	OD0000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	OE0000h to OEFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to OA7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	OA8000h to OAFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to OB7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	180000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to 0E7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	OE8000h to OEFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Top Boot Block, Bank Size=4)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A19	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 2	SA0	0	0	0	0	0	X	X	X	000000h to 00FFFFh	000000h to 007FFFh
	SA1	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA2	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA3	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA4	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA5	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA6	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA7	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA8	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA9	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA10	0	1	0	1	0	X	X	X	OA0000h to OAFFFFh	050000h to 057FFFh
	SA11	0	1	0	1	1	X	X	X	OBO000h to OBFFFFh	058000h to 05FFFFh
	SA12	0	1	1	0	0	X	X	X	0C0000h to OCFFFFh	060000h to 067FFFh
	SA13	0	1	1	0	1	X	X	X	0D0000h to ODFFFFh	068000h to 06FFFFh
	SA14	0	1	1	1	0	X	X	X	OEO000h to OEFFFFh	070000h to 077FFFh
	SA15	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
Bank 1	SA16	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA17	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA18	1	0	0	1	0	X	X	X	120000h to 12FFFFh	090000h to 097FFFh
	SA19	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA20	1	0	1	0	0	X	X	X	140000h to 14FFFFh	OA0000h to 0A7FFFh
	SA21	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to 0AFFFFh
	SA22	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA23	1	0	1	1	1	X	X	X	170000h to 17FFFFh	OB8000h to OBFFFFh
	SA24	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA25	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to OCFFFFh
	SA26	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA27	1	1	0	1	1	X	X	X	180000h to 1BFFFFh	0D8000h to ODFFFFh
	SA28	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to OE7FFFh
	SA29	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	OE8000h to OEFFFFh
	SA30	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to 0F7FFFh
	SA31	1	1	1	1	1	0	0	0	1F0000h to 1F1FFFh	0F8000h to 0F8FFFh
	SA32	1	1	1	1	1	0	0	1	1F2000h to 1F3FFFh	0F9000h to 0F9FFFh
	SA33	1	1	1	1	1	0	1	0	1F4000h to 1F5FFFh	OFA000h to OFAFFFh
	SA34	1	1	1	1	1	0	1	1	1F6000h to 1F7FFFh	OFB000h to OFBFFFh
	SA35	1	1	1	1	1	1	0	0	1F8000h to 1F9FFFh	OFC000h to OFCFFFh
	SA36	1	1	1	1	1	1	0	1	1FA000h to 1FBFFFh	OFD000h to OFDFFFh
	SA37	1	1	1	1	1	1	1	0	1FC000h to 1FDFFFh	OFEO00h to OFEFFFh
	SA38	1	1	1	1	1	1	1	1	1FE000h to 1FFFFFh	OFF000h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Address Table (Bottom Boot Block, Bank Size=4)

Bank	Sector	Sector Address								Address Range (BYTE mode)	Address Range (WORD mode)
		Bank Address									
		A 19	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
Bank 1	SA0	0	0	0	0	0	0	0	0	000000h to 001FFFh	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	1	002000h to 003FFFh	001000h to 001FFFh
	SA2	0	0	0	0	0	0	1	0	004000h to 005FFFh	002000h to 002FFFh
	SA3	0	0	0	0	0	0	1	1	006000h to 007FFFh	003000h to 003FFFh
	SA4	0	0	0	0	0	1	0	0	008000h to 009FFFh	004000h to 004FFFh
	SA5	0	0	0	0	0	1	0	1	00A000h to 00BFFFh	005000h to 005FFFh
	SA6	0	0	0	0	0	1	1	0	00C000h to 00DFFFh	006000h to 006FFFh
	SA7	0	0	0	0	0	1	1	1	00EO00h to 00FFFFh	007000h to 007FFFh
	SA8	0	0	0	0	1	X	X	X	010000h to 01FFFFh	008000h to 00FFFFh
	SA9	0	0	0	1	0	X	X	X	020000h to 02FFFFh	010000h to 017FFFh
	SA10	0	0	0	1	1	X	X	X	030000h to 03FFFFh	018000h to 01FFFFh
	SA11	0	0	1	0	0	X	X	X	040000h to 04FFFFh	020000h to 027FFFh
	SA12	0	0	1	0	1	X	X	X	050000h to 05FFFFh	028000h to 02FFFFh
	SA13	0	0	1	1	0	X	X	X	060000h to 06FFFFh	030000h to 037FFFh
	SA14	0	0	1	1	1	X	X	X	070000h to 07FFFFh	038000h to 03FFFFh
	SA15	0	1	0	0	0	X	X	X	080000h to 08FFFFh	040000h to 047FFFh
	SA16	0	1	0	0	1	X	X	X	090000h to 09FFFFh	048000h to 04FFFFh
	SA17	0	1	0	1	0	X	X	X	OA0000h to OAFFFFh	050000h to 057FFFh
	SA18	0	1	0	1	1	X	X	X	OBOOOOh to OBFFFFh	058000h to 05FFFFh
	SA19	0	1	1	0	0	X	X	X	OCO000h to OCFFFFh	060000h to 067FFFh
	SA20	0	1	1	0	1	X	X	X	ODO000h to ODFFFFh	068000h to 06FFFFh
	SA21	0	1	1	1	0	X	X	X	OEOOOOh to OEFFFFh	070000h to 077FFFh
	SA22	0	1	1	1	1	X	X	X	OFO000h to OFFFFFh	078000h to 07FFFFh
Bank 2	SA23	1	0	0	0	0	X	X	X	100000h to 10FFFFh	080000h to 087FFFh
	SA24	1	0	0	0	1	X	X	X	110000h to 11FFFFh	088000h to 08FFFFh
	SA25	1	0	0	1	0	X	X	X	120000 to 12FFFFh	090000h to 097FFFh
	SA26	1	0	0	1	1	X	X	X	130000h to 13FFFFh	098000h to 09FFFFh
	SA27	1	0	1	0	0	X	X	X	140000h to 14FFFFh	0A0000h to 0A7FFFh
	SA28	1	0	1	0	1	X	X	X	150000h to 15FFFFh	0A8000h to OAFFFFh
	SA29	1	0	1	1	0	X	X	X	160000h to 16FFFFh	0B0000h to 0B7FFFh
	SA30	1	0	1	1	1	X	X	X	170000h to 17FFFFh	0B8000h to OBFFFFh
	SA31	1	1	0	0	0	X	X	X	180000h to 18FFFFh	0C0000h to 0C7FFFh
	SA32	1	1	0	0	1	X	X	X	190000h to 19FFFFh	0C8000h to 0CFFFFh
	SA33	1	1	0	1	0	X	X	X	1A0000h to 1AFFFFh	0D0000h to 0D7FFFh
	SA34	1	1	0	1	1	X	X	X	1B0000h to 1BFFFFh	0D8000h to ODFFFFh
	SA35	1	1	1	0	0	X	X	X	1C0000h to 1CFFFFh	0E0000h to OE7FFFh
	SA36	1	1	1	0	1	X	X	X	1D0000h to 1DFFFFh	0E8000h to OEFFFFh
	SA37	1	1	1	1	0	X	X	X	1E0000h to 1EFFFFh	0F0000h to OF7FFFh
	SA38	1	1	1	1	1	X	X	X	1F0000h to 1FFFFFh	0F8000h to OFFFFFh

MB84VD2108XEM/2109XEM-70

Sector Group Addresses Table (Top Boot Block)

Sector Group	A19	A_{18}	A17	A16	A15	A_{14}	A_{13}	A_{12}	Sectors
SGAO	0	0	0	0	0	X	X	X	SA0
SGA1	0	0	0	0	1	X	X	X	SA1 to SA3
	0	0	0	1	0	X	X	X	
	0	0	0	1	1	X	X	X	
SGA2	0	0	1	X	X	X	X	X	SA4 to SA7
SGA3	0	1	0	X	X	X	X	X	SA8 to SA11
SGA4	0	1	1	X	X	X	X	X	SA12 to SA15
SGA5	1	0	0	X	X	X	X	X	SA16 to SA19
SGA6	1	0	1	X	X	X	X	X	SA20 to SA23
SGA7	1	1	0	X	X	X	X	X	SA24 to SA27
SGA8	1	1	1	0	0	X	X	X	SA28 to SA30
	1	1	1	0	1	X	X	X	
	1	1	1	1	0	X	X	X	
SGA9	1	1	1	1	1	0	0	0	SA31
SGA10	1	1	1	1	1	0	0	1	SA32
SGA11	1	1	1	1	1	0	1	0	SA33
SGA12	1	1	1	1	1	0	1	1	SA34
SGA13	1	1	1	1	1	1	0	0	SA35
SGA14	1	1	1	1	1	1	0	1	SA36
SGA15	1	1	1	1	1	1	1	0	SA37
SGA16	1	1	1	1	1	1	1	1	SA38

Sector Group Addresses Table (Bottom Boot Block)

Sector Group	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	1	1	1	SA7
SGA8	0	0	0	0	1	X	X	X	SA8 to SA10
	0	0	0	1	0	X	X	X	
	0	0	0	1	1	X	X	X	
SGA9	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	1	1	1	0	0	X	X	X	SA35 to SA37
	1	1	1	0	1	X	X	X	
	1	1	1	1	0	X	X	X	
SGA16	1	1	1	1	1	X	X	X	SA38

MB84VD2108XEM/2109XEM-70

Flash Memory Autoselect Codes Table

Type			A_{19} to A_{12}	A_{6}	A_{1}	A_{0}	$\mathrm{A}_{-1}{ }^{\text {* }}$	Code (HEX)
Manufacturer's Code			X	VIL	VIL	VIL	VIL	04h
DeviceCode	Top Boot Block Bank Size=1	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	36h
		Word					X	2236h
	Bottom Boot Block Bank Size=1	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	39
		Word					X	2239h
	Top Boot Block Bank Size=2	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	2D
		Word					X	222Dh
	Bottom Boot Block Bank Size=2	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	2E
		Word					X	222Eh
	Top Boot Block Bank Size=3	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	28h
		Word					X	2228h
	Bottom Boot Block Bank Size=3	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	2Bh
		Word					X	222Bh
	Top Boot Block Bank Size=4	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	VIL	33h
		Word					X	2233h
	Bottom Boot Block Bank Size=4	Byte	X	VIL	VIL	V_{H}	VIL	35
		Word					X	2235h
Sector Group protect			Sector Group Address	VIL	$\mathrm{V}_{\text {IH }}$	VIL	VIL	01h*2

*1: A-1 is for Byte mode.
*2: Output 01h at protected sector address and output 00h at unprotected sector address.

MB84VD2108XEM/2109XEM-70

Flash Memory Command Definitions Table

Command Sequence		Bus Write Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		
		Addr.	Data												
Read/Reset *1			1	XXXh	FOh	-	-	-	-	-	-	-	-	-	-
Read/Reset *1	Word	3	555h	AAh	2AAh	55h	555h	FOh	RA	RD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Autoselect	Word	3	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (BA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	-	-	-	-	-	-	
	Byte		AAAh		555h		(BA) AAAh								
Program	Word	4	555h	AAh	2AAh	55h	555h	AOh	PA	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Chip Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h	
	Byte		AAAh		555h		AAAh		AAAh		555h		AAAh		
Sector Erase	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h	
	Byte		AAAh		555h		AAAh		AAAh		555h				
Sector Erase Suspend		1	BA	B0h	-	-	-	-	-	-	-	-	-	-	
Sector Erase Resume		1	BA	30h	-	-	-	-	-	-	-	-	-	-	
Set to Fast Mode	Word	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-	
	Byte		AAAh		555h		AAAh								
Fast Program*2	Word	2	XXXh	A0h	PA	PD	-	-	-	-	-	-	-	-	
	Byte														
Reset from Fast Mode *2	Word	2	BA	90h	XXXh	$\underset{*_{6}}{\mathrm{FOH}}$	-	-	-	-	-	-	-	-	
	Byte														
Extended	Word	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	-	-	-	-	
Protection *3	Byte														
Query *4	Word	1	55h	98h	-	-	-	-	-	-	-	-	-	-	
	Byte		AAh												
HiddenROM Entry	Word	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-	
	Byte		AAAh		555h		AAAh								
HiddenROM Program *5	Word	4	555h	AAh	2AAh	55h	555h	AOh	PA	PD	-	-	-	-	
	Byte		AAAh		555h		AAAh								
HiddenROM Erase *5	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	HRA	30h	
	Byte		AAAh		555h		AAAh		AAAh		555h				
HiddenROM Exit *5	Word	4	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (HRBA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	XXXh	00h	-	-	-	-	
	Byte		AAAh		555h		(HRBA) AAAh		XXXh	Oon	-	-	-	-	

MB84VD2108XEM/2109XEM-70

*1: Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
*2: This command is valid while Fast Mode.
*3: This command is valid while $\overline{\operatorname{RESET}}=\mathrm{V}_{\mathrm{II}}$.
*4: The valid Address is A_{6} to A_{0}.
*5: This command is valid while HiddenROM mode.
*6: The data " 00 h " is also acceptable.

Notes : • Address bits A_{19} to $\mathrm{A}_{12}=\mathrm{X}=$ " H " or " L " for all address commands except for Program Address (PA), Sector Address (SA), and Bank Address (BA).
Bus operations are defined in Table 2 "User Bus Operations".
RA $=$ Address of the memory location to be read.
$\mathrm{PA}=$ Address of the memory location to be programmed.
Addresses are latched on the falling edge of the write pulse.

- $\mathrm{SA}=$ Address of the sector to be erased. The combination of $\mathrm{A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12} will uniquely select any sector.
$\mathrm{BA}=$ Bank address (A_{19} to A_{15})
$S P A=$ Sector group address to be protected. Set sector group address $(S G A)$ and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$. HRA = Address of the HiddenROM area.

Top Boot Block Word mode: 0F8000h to 0FFFFFh
Byte mode : 1F0000h to 1FFFFFh
Bottom Boot Block Word mode : 000000h to 007FFFh
Byte mode : 000000h to 00FFFFh
HRBA = Bank address of the HiddenROM area.
Top Boot Block : A15 = A16 = A17 = A18 = A19 = A $20=1$
Bottom Boot Block : $\mathrm{A}_{15}=\mathrm{A}_{16}=\mathrm{A}_{17}=\mathrm{A}_{18}=\mathrm{A}_{19}=\mathrm{A} 20=0$
$\mathrm{RD}=$ Data read from location RA during read operation.
$\mathrm{PD}=$ Data to be programmed at location PA.
$\mathrm{SD}=$ Sector protection verify data. Output 01h at protected sector addresses and output 00h at unprotected sector addresses.

- The system should generate the following address patterns;

Word mode : 555h or 2AAh to addresses A_{10} to A_{0}
Byte mode : AAAh or 555h to addresses A_{10} to A_{0} and A_{-1}

MB84VD2108XEM/2109XEM-70

- Read Only Operations Characteristics (Flash)

Parameter	Symbol		Test Setup	Value*		Unit
	JEDEC	Standard		Min	Max	
Read Cycle Time	tavav	trc	-	70	-	ns
Address to Output Delay	tavqv	$t_{\text {Acc }}$	$\begin{aligned} & \overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	70	ns
Chip Enable to Output Delay	telav	tcef	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	70	ns
Output Enable to Output Delay	tglav	toe	-	-	30	ns
Chip Enable to Output High-Z	tehaz	tDF	-	-	25	ns
Output Enable to Output High-Z	tGhQz	tDF	-	-	25	ns
Output Hold Time From Addresses, $\overline{\mathrm{CE}} \mathrm{f}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	taxax	toн	-	0	-	ns
$\overline{\text { RESET Pin Low to Read Mode }}$	-	tready	-	-	20	$\mu \mathrm{s}$

* : Test Conditions

Output Load : 1 TTL gate and 30 pF Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level
Input : 1.5 V
Output : 1.5 V

MB84VD2108XEM/2109XEM-70

- Read Cycle (Flash)

MB84VD2108XEM/2109XEM-70

- Erase/Program Operations (Flash)

Parameter		Symbol		Value			Unit
		JEDEC	Standard	Min	Typ	Max	
Write Cycle Time		tavav	twc	70	-	-	ns
Address Setup Time ($\overline{\mathrm{WE}}$ to Addr.)		tavwL	tas	0	-	-	ns
Address Setup Time to $\overline{\text { CEf Low During Toggle Bit Polling }}$		-	taso	12	-	-	ns
Address Hold Time ($\overline{\mathrm{WE}}$ to Addr.)		twLax	taH	45	-	-	ns
Address Hold Time from $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	taht	0	-	-	ns
Data Setup Time		tovwh	tos	30	-	-	ns
Data Hold Time		twhox	toh	0	-	-	ns
Output Enable Setup Time		-	toes	0	-	-	ns
Output Enable Hold Time	Read	-	tоен	0	-	-	ns
	Toggle and $\overline{\text { Data }}$ Polling			10	-	-	ns
$\overline{\text { CEf High During Toggle Bit Polling }}$		-	tcEph	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toEph	20	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{CE}}$)		tGheL	tghel	0	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{WE}}$)		tghwi	tghwL	0	-	-	ns
$\overline{\overline{W E}}$ Setup Time ($\overline{\mathrm{CE}} \mathrm{f}$ to $\overline{\mathrm{WE}}$)		twleL	tws	0	-	-	ns
$\overline{\mathrm{CEf}}$ Setup Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CEf}}$)		teLwL	tcs	0	-	-	ns
$\overline{\text { WE }}$ Hold Time ($\overline{\mathrm{CE}} \mathrm{f}$ to $\overline{\mathrm{WE}}$)		tehwh	twh	0	-	-	ns
$\overline{\text { CEf }}$ Hold Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}}$)		twнен	tch	0	-	-	ns
Write Pulse Width		twLwh	twp	35	-	-	ns
$\overline{\text { CEf Pulse Width }}$		teLeh	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twph	25	-	-	ns
$\overline{\mathrm{CEf}}$ Pulse Width High		tehel	tcPH	25	-	-	ns
Byte Programming Operation		twhwht	twhwh 1	-	8	-	$\mu \mathrm{s}$
Word Programming Operation				-	16	-	$\mu \mathrm{s}$
Sector Erase Operation *1		twHWHz	twнwH2	-	1	-	s
Vccf Setup Time		-	tvos	50	-	-	$\mu \mathrm{s}$
Voltage Transition Time *2		-	tvLht	4	-	-	$\mu \mathrm{s}$
Rise Time to $\mathrm{V}_{10}{ }^{*}$		-	tvidr	500	-	-	ns
Rise Time to $\mathrm{V}_{\text {Acc }}$		-	tvaccr	500	-	-	ns
Recover Time from RY/ $\overline{\mathrm{BY}}$		-	trb	0	-	-	ns
RESET Pulse Width		-	trp	500	-	-	ns
Delay Time from Embedded Output Enable		-	teoe	-	-	70	ns
$\overline{\text { RESET Hold Time Before Read }}$		-	tre	200	-	-	ns
Program/Erase Valid to RY/ $\overline{\overline{B Y}}$ Delay		-	teusy	-	-	90	ns
Erase Time-out Time *3		-	trow	50	-	-	$\mu \mathrm{s}$
Erase Suspend Transition Time *4		-	tspD	-	-	20	$\mu \mathrm{s}$

MB84VD2108XEM/2109XEM-70

*1 : This does not include the preprogramming time.
*2 : This timing is for Sector Protection Operation.
*3 : The time between writes must be less than "trow" otherwise that command will not be accepted and erasure will start. A time-out or "trow" from the rising edge of last $\overline{\mathrm{CEf}}$ or $\overline{\mathrm{WE}}$ whichever happens first will initiate the execution of the Sector Erase command(s).
*4 : When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of "tspo" to suspend the erase operation.

MB84VD2108XEM/2109XEM-70

- Write Cycle (프 control) (Flash)

MB84VD2108XEM/2109XEM-70

- Write Cycle (CEf control) (Flash)

Notes: - PA is address of the memory location to be programmed.

- PD is data to be programmed at byte address.
- $\overline{D Q}_{7}$ is the output of the complement of the data written to the device.
- Dout is the output of the data written to the device.
- Figure indicates last two bus cycles out of four bus cycle sequence.
- These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MB84VD2108XEM/2109XEM-70

- AC Waveforms Chip/Sector Erase Operations (Flash)

* : SA is the sector address for Sector Erase. Addresses $=555 \mathrm{~h}$ for Chip Erase.

Note : These waveform are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

MB84VD2108XEM/2109XEM-70

- AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)

*: DQ7 = Valid Data (The device has completed the Embedded operation.)

MB84VD2108XEM/2109XEM-70

- AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash)

MB84VD2108XEM/2109XEM-70

- Bank-to-bank Read/Write Timing Diagram (Flash)

Note : This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1: Address of Bank 1.
BA2: Address of Bank 2.

MB84VD2108XEM/2109XEM-70

- RY/ $\overline{\mathrm{BY}}$ Timing Diagram during Write/Erase Operations (Flash)

- $\overline{\mathrm{RESET}, \mathrm{RY} / \overline{\mathrm{BY}} \text { Timing Diagram (Flash) }}$

MB84VD2108XEM/2109XEM-70

- Temporary Sector Unprotection (Flash)

- Acceleration Mode Timing Diagram (Flash)

MB84VD2108XEM/2109XEM-70

- Extended Sector Protection (Flash)

SGAx : Sector Group Address to be protected
SGAy : Next Group Sector Address to be protected
TIME-OUT : Time-Out window $=250 \mu \mathrm{~s}(\mathrm{Min})$

MB84VD2108XEM/2109XEM-70

2. Erase and Programming Performance (Flash)

Parameter	Limit			Unit	Comment
	Min	Typ	Max		
Sector Erase Time	-	1	10	s	Excludes programming time prior to erasure
Byte Programming Time	-	8	300	$\mu \mathrm{s}$	Excludes system-level overhead
Word Programming Time	-	16	360	$\mu \mathrm{s}$	Excludes system-level overhead
Chip Programming Time	-	-	50	s	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycle	

MB84VD2108XEM/2109XEM-70

■ 2M SRAM CHARACTERISTICS for MCP

1. AC Characteristics

- Read Cycle (SRAM)

Parameter	Symbol	Value		Unit
		Min	Max	
Read Cycle Time	trc	70	-	ns
Address Access Time	$t_{\text {AA }}$	-	70	ns
Chip Enable ($\overline{\mathrm{CE}}$ 1s) Access Time	tool	-	70	ns
Chip Enable (CE2s) Access Time	tcor	-	70	ns
Output Enable Access Time	toe	-	35	ns
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ to Output Valid	tba	-	70	ns
Chip Enable (CE1s Low and CE2s High) to Output Active	tcoe	5	-	ns
Output Enable Low to Output Active	toee	0	-	ns
$\overline{\text { UB, }} \overline{\mathrm{LB}}$ Enable Low to Output Active	tbe	0	-	ns
Chip Enable ('CE1s High or CE2s Low) to Output High-Z	tod	-	25	ns
Output Enable High to Output High-Z	todo	-	25	ns
$\overline{\text { UB, }}$ LB Output Enable to Output High-Z	tbo	-	25	ns
Output Data Hold Time	tor	10	-	ns

Note: Test Conditions
Output Load:1 TTL gate and 30 pF
Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to V ccs
Timing measurement reference level
Input: $0.5 \times \mathrm{V}$ ccs
Output: $0.5 \times \mathrm{Vccs}$

MB84VD2108XEM/2109XEM-70

- Read Cycle (SRAM)

Note : $\overline{\mathrm{WE}}$ remains " H " for the read cycle.

MB84VD2108XEM/2109XEM-70

- Write Cycle (SRAM)

Parameter	Symbol	Value		Unit
		Min	Max	
Write Cycle Time	twc	70	-	ns
Write Pulse Width	twp	50	-	ns
Chip Enable to End of Write	tcw	55	-	ns
Address valid to End of Write	taw	55	-	ns
$\overline{\overline{U B}}, \overline{\mathrm{LB}}$ to End of Write	tbw	55	-	ns
Address Setup Time	tas	0	-	ns
Write Recovery Time	twr	0	-	ns
$\overline{\text { WE Low to Output High-Z }}$	toow	-	25	ns
$\overline{\text { WE }}$ High to Output Active	toew	0	-	ns
Data Setup Time	tos	30	-	ns
Data Hold Time	toh	0	-	ns

MB84VD2108XEM/2109XEM-70

- Write Cycle *3 (WE control) (SRAM)

*1 : If $\overline{C E 1}$ s goes " L " (or CE2s goes " H ") coincident with or after $\overline{\mathrm{WE}}$ goes " L ", the output will remain at High-Z.
*2 : If $\overline{\mathrm{CE}}$ s goes " H " (or CE2s goes " L ") coincident with or before $\overline{\mathrm{WE}}$ goes " H ", the output will remain at High-Z.
*3 : If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
*4 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

MB84VD2108XEM/2109XEM-70

- Write Cycle *1 (CE1s control) (SRAM)

*1 : If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

MB84VD2108XEM/2109XEM-70

- Write Cycle *1 (CE2s Control) (SRAM)

*1 : If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

MB84VD2108XEM/2109XEM-70

- Write Cycle ${ }^{* 1}$ ($\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Control) (SRAM)

*1 : If $\overline{\mathrm{OE}}$ is " H " during the write cycle, the outputs will remain at High-Z.
*2 : Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied.

MB84VD2108XEM/2109XEM-70

2. Data Retention Characteristics (SRAM)

Parameter		Symbol	Value			Unit	
		Min	Typ	Max			
Data Retention Supply Voltage			VDH	1.5	-	3.3	V
Standby Current	$\mathrm{V}_{\mathrm{DH}}=1.5 \mathrm{~V}$	IdDS2	-	1	4	$\mu \mathrm{A}$	
Chip Deselect to Data Retention Mode Time		tcdr	0	-	-	ns	
Recovery Time		t_{R}	trc	-	-	ns	

Note : trc : Read cycle time

- CE1s Controlled Data Retention Mode *1

*1 : In $\overline{\mathrm{CE} 1}$ s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs-0.2 V or Vss to 0.2 V during data retention mode. Other input and input/output pins can be used between -0.3 V to Vccs+0.3 V .
*2 : When CE1s is operating at the $\mathrm{V}_{\boldsymbol{\prime}} \operatorname{Min}$ level (2.2 V), the standby current is given by Isb1s during the transition of Vccs from 3.3 V to 2.2 V .
- CE2s Controlled Data Retention Mode *

GND

* : In CE2s controlled data retention mode, input and input/output pins can be used between -0.3 V to $\mathrm{Vccs}+0.3 \mathrm{~V}$.

■ PIN CAPACITANCE

Parameter	Symbol	Test Setup	Value		Unit
			Typ	Max	
Input Capacitance	$\mathrm{CIN}^{\text {a }}$	$\mathrm{V}_{\mathrm{IN}}=0$	11	14	pF
Output Capacitance	Cout	Vout $=0$	12	16	pF
Control Pin Capacitance	CIn2	$\mathrm{V}_{\mathrm{IN}}=0$	14	16	pF
$\overline{\text { WP/ACC Pin Capacitance }}$	Сімз	$\mathrm{V}_{\mathrm{IN}}=0$	17	20	pF

Note : Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
HANDLING OF PACKAGE
Please handle this package carefully since the sides of package create acute angles.

CAUTION

- The high voltage ($\mathrm{V}_{I D}$) cannot apply to address pins and control pins except $\overline{\text { RESET. }}$

Exception is when autoselect and sector group protect function are used, then the high voltage ($\mathrm{V}_{\text {ID }}$) can be applied to RESET.

- Without the high voltage (V_{ID}) , sector group protection can be achieved by using "Extended Sector Group Protection" command.

MB84VD2108XEM/2109XEM-70

ORDERING INFORMATION

MB84VD2108XEM/2109XEM-70

PACKAGE DIMENSION

56-pin plastic FBGA

(BGA-56P-M02)

© 2002 FUJTSU LIMTED B5002SS-C.-1
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

MB84VD2108XEM/2109XEM-70

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

