8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89143A/144A Series

MB89143A/144A

■ DESCRIPTION

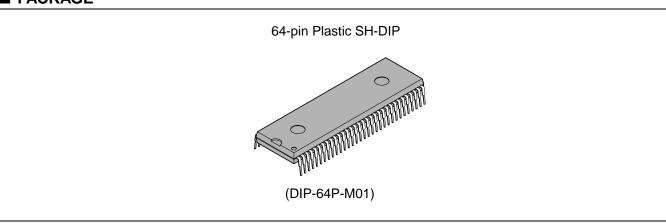
The MB89143A/144A has been developed as a general-purpose version of the F²MC-8L* family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, an A/D converter, buzzer output, high voltage driver, watch prescaler, and an external interrupt. The MB89143A/144A is applicable to a wide range of applications from welfare products to industrial equipment.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: 0.50 μs/8.0-MHz oscillation
- Interrupt servicing time: 4.50 μs/8.0-MHz oscillation
- F²MC-8L family CPU core


Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- · Dual-clock control system
- High-voltage ports: 24 channel

(Continued)

■ PACKAGE

(Continued)

· Two types of timers

8/16-bit timer/counter (also usable as two 8-bit timers)

21-bit time-base timer

• One 8-bit serial interface

Switchable transfer direction allows communication with various equipment.

• 8-bit A/D converter: 8 channels

Successive approximation type

• External interrupt: 2 channels

Two channels are independent and capable of wake-up from low-power consumption modes. (Rising edge/falling edge/both edges selectability)

-0.3 V to +7.0 V can be applied to INT1 (N-ch open-drain)

• Low-power consumption modes

Subclock mode (The main clock stops, and the device operates at the subclock.)

Watch mode (Only the watch prescaler is operating.)

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

- · Watch prescaler
- Buzzer output
- Watchdog reset, reset output, and power-on reset functions

■ PRODUCT LINEUP

Part number Parameter	MB89143A MB89144A		MB89P147	MB89PV140		
Classification	Mass produc (mask ROM	tion products // products)	One-time PROM product	Piggyback/evaluation product (for evaluation and development)		
ROM size	8 K × 8 bits	12 K × 12 bits	32 K × 8 bits Internal PROM	32 K × 8 bits External ROM (Piggyback)		
RAM size	256 ×	8 bits		× 8 bits ernal		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1, 8, 16 bits Minimum execution time: 0.5 μ s/8 MHz to 8.0 μ s/8 MHz, 61 μ s/32.768 kHz Note: The above times change according to the gear function.					
Ports	High-voltage output ports (P-ch open-drain): 24 (P40 to P47, P50 to P57, and P60 to P67) Buzzer output (P-ch open-drain, high-voltage):1 Output ports (CMOS): Input ports (CMOS): 2 (P70 and P71, function as X0A and X1A pins when dual-clock system is used.) I/O ports (CMOS): 23 (P00 to P07, P10 to P17, P30, and P32 to P37) I/O port (N-channel open-drain): 1 (P31) Total:					
Time-base timer	Capable		different intervals (at 8.0-1 ms, 1.02 ms, and 0.524			
8/16-bit timer counter			erating clock, internal clock Rising edge/falling edge/b			
8-bit Serial I/O	(one external	One clock select	8 bits t/MSB first selectability ctable from four transfer cl ternal shift clocks: 4, 8, 16			
A/D converter	8-bit resolution × 8 channels A/D conversion mode (with conversion time of 22 μs/8 MHz, and highest gear speed) Continuous activation by external activation capable 10-bit resolution × 12 channels A/D conversion mode (with conversion time of 16.5 8 MHz, and highest gear Sense mode (with conversion time of 9.0 μs/8 MHz and highest gear speed) Continuous activation enabled by external activatio capable					
External interrupt	2 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge/both edges selectability Built-in analog noise canceller Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)					
Buzzer output			selectable (at 8-MHz oscil to a high-voltage pin	llation)		

(Continued)

Part number Parameter	MB89143A	MB89144A	MB89P147	MB89PV140				
Watchdog reset	Internal reset in 52	Internal reset in 524 ms to 1049 ms (at 8 MHz oscillation) when the program runway occurs						
8-bit PWM timer	No	None 8-bit timer operation/8-bit resolution PWM operation						
12-bit MPG timer	No	ne	12-bit resolution PWM operation/reload timer operation/PPG operation					
Standby mode		Sleep mode,	stop mode, and watch mod	e				
Process			CMOS					
Package		DIP-64P-M01 MDP-64C-P02						
EPROM for use	MBM27C256A-20							
Operating voltage*	4.0 V to	4.0 V to 6.0 V 2.7 V to 6.0 V						

^{*:} Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS".)

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89143A MB89144A	MB89P147	MB89PV140		
DIP-64P-M01	0	0	×		
MDP-64C-P02	×	×	0		

○ : Available ×: Not available

Note: For more information about each package, see section "■ PACKAGE DIMENSION".

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89143A/144A, the upper half of the register bank cannot be used.
- The stack area etc. are set at the upper limit of the RAM.

2. Functions

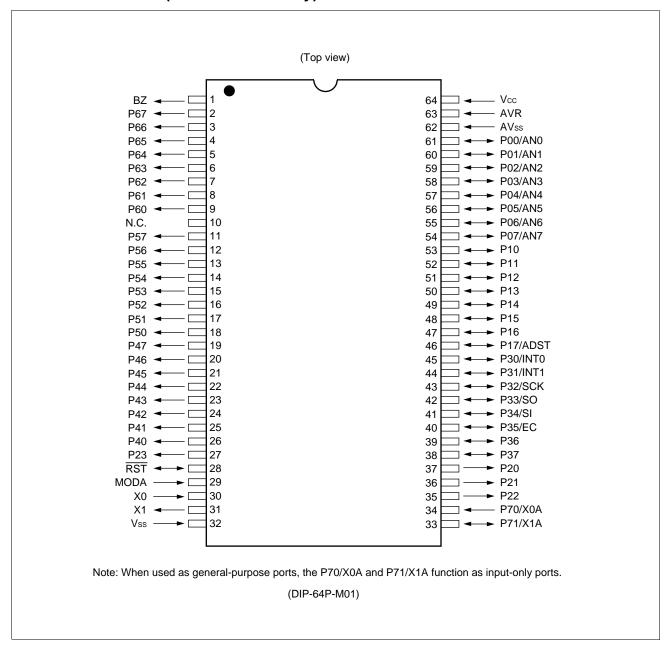
Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following point:

• The A/D converter in the MB89143A/144A is an 8-bit resolution type. The MB89143A/144A contains neither the 8-bit PWM timer nor the 12-bit MPG timer.

3. Current Consumption

- In the case of the MB89PV140, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see section "■ ELECTRICAL CHARACTERISTICS".)


4. Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ MASK OPTIONS".

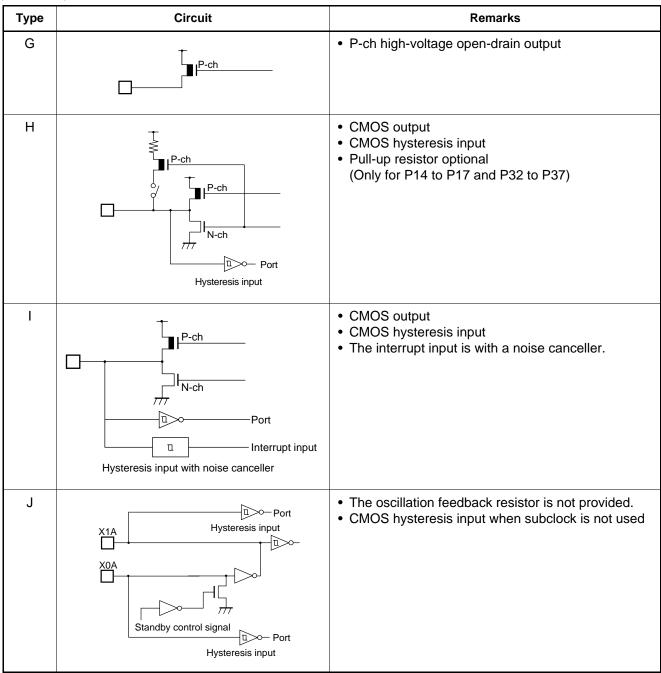
Take particular care on the following point:

• A pull-up resistor option is not provided for the MB89PV140.

■ PIN ASSIGNMENT (MB89143A/4A only)

■ PIN DESCRIPTION (MB89143A/4A only)

Pin no. SDIP*	Pin name	Circuit type	Function
30 31	X0 X1	А	Main clock oscillator pins Use a crystal oscillator.
29	MODA	В	Operating mode selection pin Connect directly to Vss in normal operation.
28	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L". This pin is with a noise canceller.
54 to 61	P07/AN7 to P00/AN0	F	General-purpose I/O ports These ports are a hysteresis input type. Also serve as an analog input.
46	P17/ADST	Н	General-purpose I/O port This port is a hysteresis input type. Also serves as an A/D converter external activation.
47 to 53	P16 to P10	Н	General-purpose I/O ports These ports are a hysteresis input type.
34, 33	P70/X0A, P71/X1A	J	Selectable either general-purpose input ports or the subclock oscillator pins by the mask option. These ports are a hysteresis input type when used as general-purpose input ports.
27, 35 to 37	P23 to P20	D	General-purpose output ports
38, 39	P37, P36	Н	General-purpose I/O ports These ports are a hysteresis input type.
40	P35/EC		General-purpose I/O port This port is a hysteresis input type. Also serves as the external clock input for the 8/16-bit timer/counter.
41	P34/SI		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial data input for the 8-bit serial interface.
42	P33/SO		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial data output for the 8-bit serial interface.
43	P32/SCK		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial transfer clock for the 8-bit serial interface.


^{*:} DIP-64P-M01

Pin no.	Pin name	Circuit type	Function
SDIP*			
44	P31/INT1	E	General-purpose I/O port This port is an N-ch open-drain output and hysteresis input type. Also serves as an external interrupt. The interrupt input is a hysteresis input type and with a built-in noise canceller.
45	P30/INT0	l	General-purpose I/O port This port is a hysteresis input type. Also serves as an external interrupt. The interrupt input is a hysteresis input type and with a built-in noise canceller.
1	BZ	G	Buzzer output-only pin P-ch high-voltage open-drain output port
19 to 26, 11 to 18, 2 to 9	P47 to P40, P57 to P50, P67 to P60	G	P-ch high-voltage open-drain output port
10	N.C.	_	Be sure to leave them open.
64	Vcc	_	Power supply pin Also serves as an A/D converter power supply.
32	Vss	_	Power supply (GND) pin
63	AVR	_	A/D converter reference voltage input pin
62	AVss	_	A/D converter power supply pin Use this pin at the same voltage as Vss.

^{*:} DIP-64P-M01

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X0 X0 X0 X1 X0 X0 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	
В	Hysteresis input	CMOS input
С	R P-ch N-ch Hysteresis input	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V CMOS hysteresis input
D	P-ch N-ch	CMOS output
E	N-ch N-ch Port Hysteresis input Interrupt input With noise canceller	 N-ch open-drain output CMOS hysteresis input The interrupt input is with a noise canceller.
F	N-ch Port Hysteresis input Analog input	CMOS output CMOS hysteresis input

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss. (However, up to 7.0 V can be applied to P31/INT1 pin, regardless of Vcc.)

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

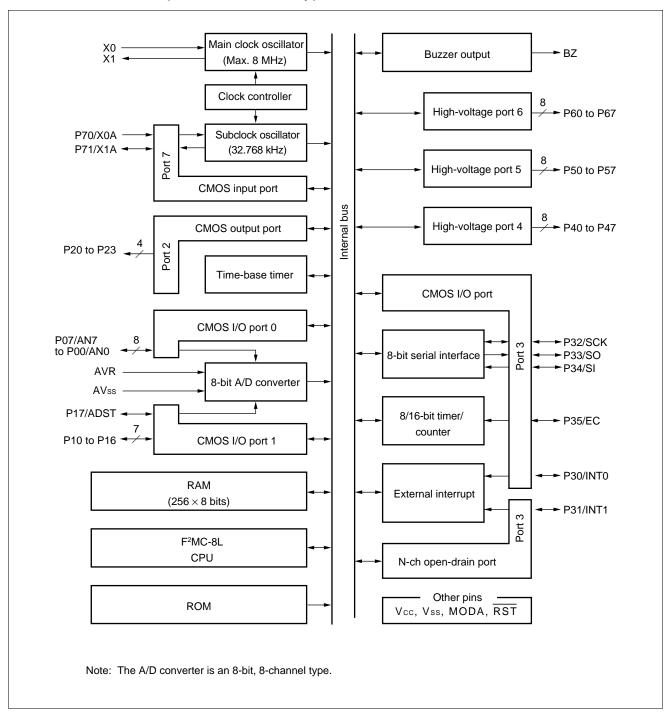
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

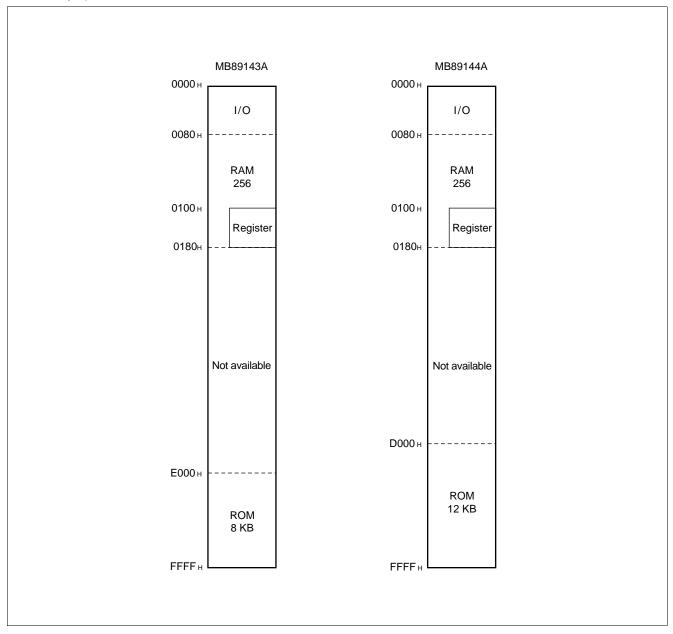
Be sure to leave (internally connected) N.C. pins open.


5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency(50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.


■ BLOCK DIAGRAM (MB89143A/4A only)

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89143A/144A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89143A/144A series is structured as illustrated below.

2. Registers

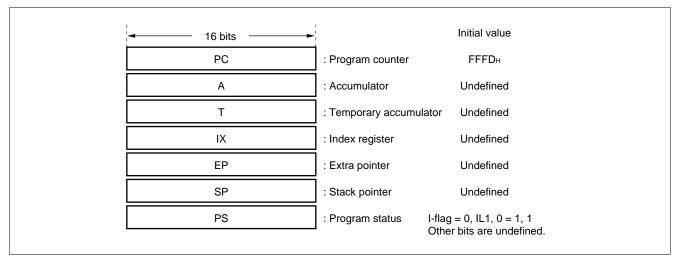
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

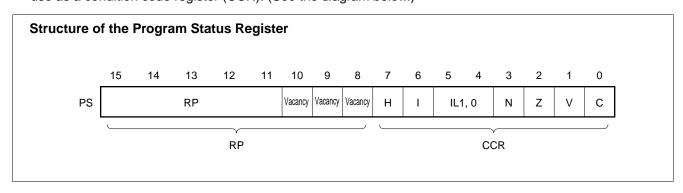
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

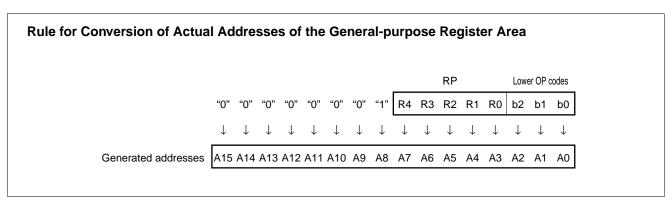
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

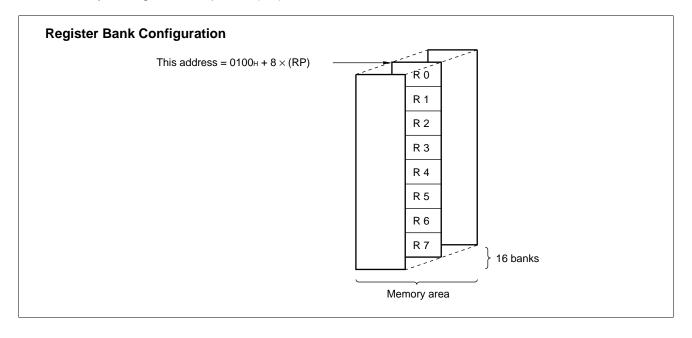
IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	<u> </u>
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set to 1 when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set to 1 if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set to 1 when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation.


Cleared otherwise.

Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89143A/144A. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description			
00н	(R/W)	PDR0	Port 0 data register			
01н	(W)	DDR0	Port 0 data direction register			
02н	(R/W)	PDR1	Port 1 data register			
03н	(W)	DDR1	Port 1 data direction register			
04н	(R/W)	PDR2	Port 2 data register			
05н, 06н			Vacancy			
07н	(R/W)	SYCC	System clock control register			
08н	(R/W)	STBC	Standby control register			
09н	(R/W)	WDTE	Watchdog timer control register			
ОАн	(R/W)	TBCR	Time-base timer control register			
0Вн	(R/W)	WPCR	Watch prescaler control register			
ОСн	(R/W)	PDR3	Port 3 data register			
ОДн	(W)	DDR3	Port 3 data direction register			
0Ен	(R/W)	BUZR	Buzzer register			
0Fн	(R/W)	EIC	External interrupt control register			
10н	(R/W)	PDR4	Port 4 data register			
11н	(R/W)	PDR5	Port 5 data register			
12н	(R/W)	PDR6	Port 6 data register			
13н	(R)	PDR7	Port 7 data register			
14н to 17н			Vacancy			
18н	(R/W)	T3CR	Timer 3 control register			
19н	(R/W)	T2CR	Timer 2 control register			
1Ан	(R/W)	T3DR	Timer 3 data register			
1Вн	(R/W)	T2DR	Timer 2 data register			
1Сн	(R/W)	SMR	Serial mode register			
1Dн	(R/W)	SDR	Serial data register			
1Ен	(R/W)	ADC1	A/D converter control register 1			
1Fн	(R/W)	ADC2	A/D converter control register 2			
20н	(R/W)	ADDH	A/D data register (H)			
21н	(R/W)	ADDL	A/D data register (L)			
22н	(W)	PCR0	Port input control register 0			
23н	(W)	PCR1	Port input control register 1			
24н to 7Вн		Vacancy				
7Сн	(W)	ILR1	Interrupt level setting register 1			
7Dн	(W)	ILR2	Interrupt level setting register 2			
7Ен	(W)	ILR3 Interrupt level setting register 3				
7Fн			Vacancy			

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS (MB89143A/4A only)

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol		ting	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Offic	Remarks
Power supply voltage	Vcc AVR	Vss - 0.3	Vss + 7.0	V	AVR ≤ Vcc +0.3*1
	Vıı	Vss - 0.3	Vcc + 0.3	V	P00 to P07, P10 to P17, P30, P32 to P37, P70, P71
Input voltage	V ₁₂	Vss - 0.3	7	V	P31
	V _{I3}	Vcc – 40	Vcc + 0.3	V	P40 to P47, P50 to P57, P60 to P67, BZ ²
Output voltage	V _{O1}	Vss - 0.3	Vcc + 0.3	V	P00 to P07, P10 to P17, P20 to P23, P30 to P37
Output voltage	V _{O2}	_	Vcc + 0.3	V	P40 to P47, P50 to P57, P60 to P67, BZ ²
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current	ΣΙομαν	_	-75	mA	Average value (operating current × operation rate)
"H" level maximum output current	Іон	_	-12	A	P00 to P07, P30, P32 to P37, P10 to P17, P20 to P23
"H" level average output current	Іонач	_	-6	- mA	Average value (operating current × operation rate)
"H" level maximum output current	Іон	_	-20		P40 to P47, P50 to P57, P60 to P67, BZ
"H" level average output current	Іонач	_	-10	- mA	Average value (operating current × operation rate)
"L" level total maximum output current	ΣΙοι	_	50	mA	
"L" level total average output current	ΣΙοιαν	_	30	mA	Average value (operating current × operation rate)
"L" level maximum output current	loL	_	12	m ^	P00 to P07, P10 to P17,
"L" level average output current	Iolav	_	6	- mA	P20 to P23, P30 to P37
Power consumption	P _D	_	470	mW	SH-DIP64: DIP-64P-M01
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*1:} Take care so that AVR does not exceed Vcc + 0.3 V, and does not exceed Vcc when power is turned on.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks	
r ai ailletei	Syllibol	Min.	Max.	Oilit	ixemarks	
		4.0*	6.0*	V	Normal operation assurance range* at highest gear speed	
Power supply voltage	Vcc	3.5*	6.0*	V	Normal operation assurance range* at highest gear speed	
		2.5	6.0	V	When in watch mode or subclock operation mode	
		1.5	6.0	V	Retains the RAM state in stop mode	
A/D converter reference input voltage	AVR	0.0	Vcc	V		
Operating temperature	Та	-40	+85	°C		

^{*:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

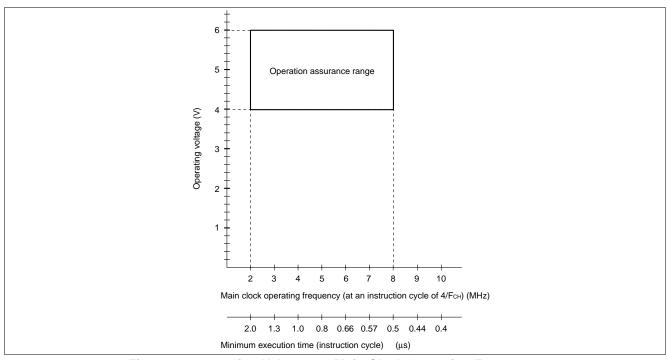


Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fch. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

 $(AVR = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

			(AVR = Vcc	0.0 1, 2	Value		ĺ	
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input voltage	Vihs	P00 to P07, P10 to P17, P30 to P37, P70, P71, X0, RST, X1, MODA	_	0.8 Vcc	_	Vcc + 0.3	V	
"L" level input voltage	Vils	P00 to P07, P10 to P17, P30 to P37, P70, P71, X0, RST, X1, MODA	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin application voltage	V _{D1}	P31	_	Vss - 0.3	_	7.0	V	
"H" level output voltage	Vон1	P00 to P07, P10 to P17, P20 to P23, P30 to P37	Iон = −2.0 mA	2.4	_	_	>	Except P31
output voltage	V _{OH2}	P40 to P47, P50 to P57, P60 to P67	lон = −10 mA	3.0	_	_	٧	
"L" level output voltage	V _{OL1}	P00 to P07, P10 to P17, P20 to P23, P30 to P37	IoL = 1.8 mA	_	_	0.4	V	
	V _{OL2}	RST	IoL = 4.0 mA	_	_	0.6	V	
Input leakage current	Іш	P00 to P07, P10 to P17, P30 to P37, P70, P71	0 V < V1 < Vcc	_	_	±5	μΑ	Except pins with pull-up resistor
Current	I _{L12}	P14 to P17, P32 to P37	V _I = 0.0 V	-200	-100	-50	μΑ	Only for pins with pull-up resistor
Output leakage current	ILO1	P40 to P47, P50 to P57, P60 to P67	Vi = Vcc - 35 V	_	_	-10	μΑ	
Pull-up resistance	Rpull	RST, P14 to P17, P32 to P37	V _I = 0.0 V	25	50	100	kΩ	
Power supply current	Icc1	Vcc	$F_{\text{CH}} = 8 \text{ MHz},$ $V_{\text{CC}} = 5.0 \text{ V},$ $t_{\text{inst}} = 0.5 \mu\text{s},$ when A/D conversion is stopped	_	9	15	mA	

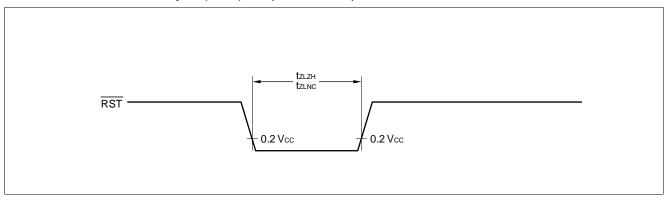
Note: The power supply current is measured at the external clock.

(Continued)

 $(AVR = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Donom et en	Comple at	D .	·	0.0 1,71	Value		D	
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	lcc2		FcH = 8 MHz, Vcc = 3.5 V, t_{inst} = 8.0 μ s, when A/D conversion is stopped	_	1.5	2	mA	
	Iccs ₁		P CH = 8 MHz Vcc = 5.0 V tinst = 0.5 μs	_	3	7	mA	
	Iccs ₂		FcH = 8 MHz $\frac{0}{00}$ Vcc = 3.5 V t_{inst} = 8.0 μ s	_	1	1.5	mA	
	Іссь		FcL = 32.768 kHz Vcc = 3.0 V Subclock mode	_	50	150	μА	
	Iccls	Voc	FcL = 32.768 kHz Vcc = 3.0 V Subclock mode	_	25	50	μА	
Power supply current	Ісст	- Vcc	FcL = 32.768 kHz Vcc = 3.0 V • Watch mode • Main clock stop mode at dual-clock system	_	3	15	μА	
	Іссн		FcL = 32.768 kHz TA = +25°C • Subclock stop mode • Main clock stop mode at single-clock system	_	_	10	μА	
	Icca		$F_{CH} = 8 \text{ MHz},$ $V_{CC} = 5.0 \text{ V},$ $T_A = +25^{\circ}\text{C},$ $t_{inst} = 0.5 \mu\text{s},$ when A/D conversion is activated	_	11.5	19.5	mA	When the gear function is used, the power supply current varies with the measurement point.
	l _R	AVR	Fch = 8 MHz, TA = +25°C, when A/D conversion is activated	_	200	_	μΑ	
	I RH	AVIN	FcH = 8 MHz, TA = +25°C, when A/D conversion is stopped	_	_	10	μΑ	
Input capacitance	Cin	Other than AVss, AVR, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

Note: The power supply current is measured at the external clock.

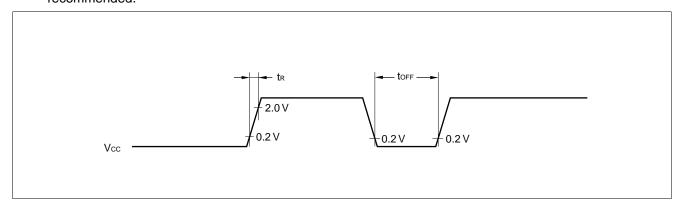

4. AC Characteristics

(1) Reset Timing

 $(AVR = Vcc = 5.0 V\pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Condition	Value		Unit	Remarks		
raiametei	Symbol	Condition	Min.	Тур.	Max.	Offic	Remarks	
RST "L" pulse width	t zlzh	_	48 txcyL	_	_	ns		
RST noise limit width	tzlnc	_	20	40	60	ns		

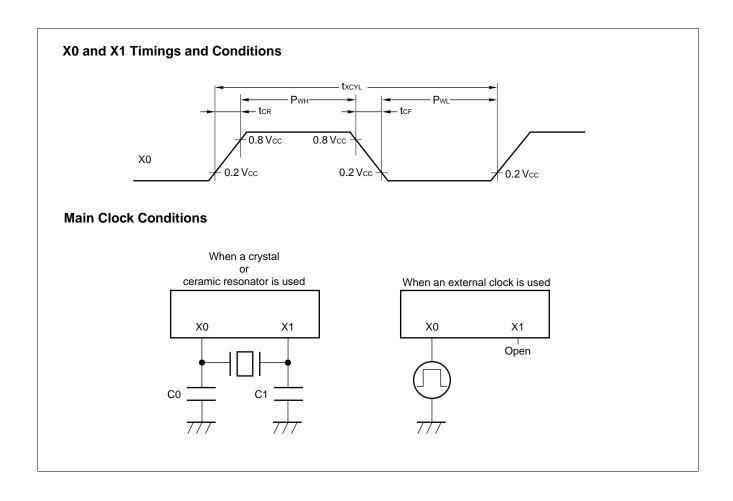
Note: txcyL is the oscillation cycle (1/FcH) to input to the X0 pin.

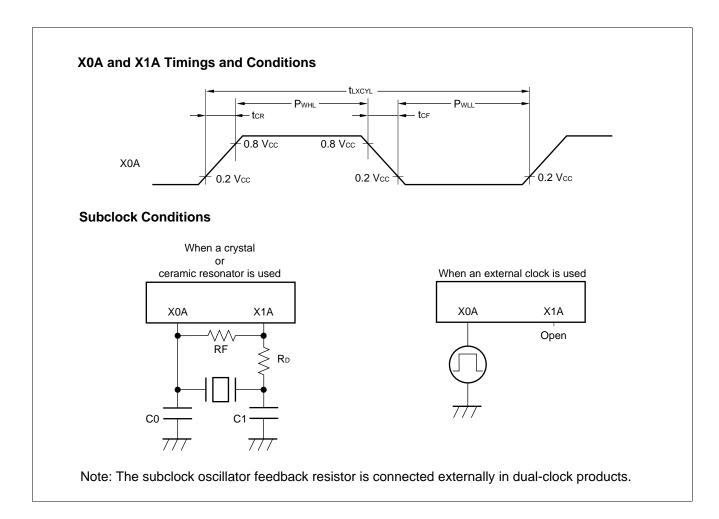

(2) Power-on Reset

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Condition	Min.	Max.	Oilit	Nemarks
Power supply rising time	tr	_	_	50	ms	Power-on reset function only
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



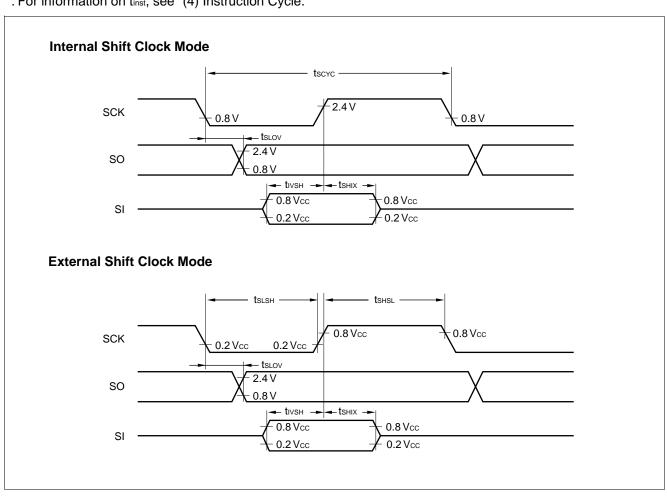
(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

(*************************************								
Parameter	Symbol	Pin	Condition	Value		ue		Remarks
Farameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Unit	Remarks
Clock froquency	Fсн	X0, X1	_	2	_	8	MHz	
Clock frequency	FcL	X0A, X1A	_	_	32.768	_	kHz	
Clock avalo timo	txcyL	X0, X1	_	125	_	500	ns	
Clock cycle time	tLXCYL	X0A, X1A	_	_	30.5	_	μs	
Input clock pulse	Pwh PwL	X0	_	30	_	_	ns	External clock
width	P _{WHL} P _{WLL}	X0A	_	_	15.2	_	ns	External clock
Input clock rising/ falling time	tcr tcr	X0, X0A	_	_	_	10	ns	External clock

(4) Instruction Cycle

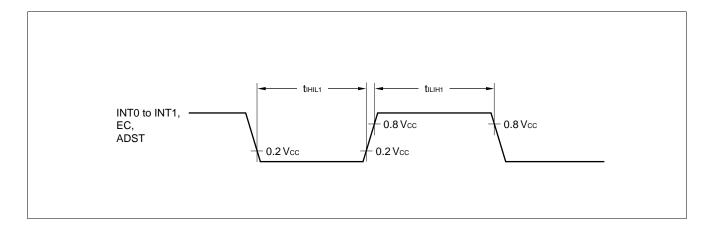
Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle time	tions	4/Гсн, 8/Гсн, 16/Гсн, 32/Гсн	μs	(4/FcH) t_{inst} = 0.5 μs when operating at FcH = 8 MHz
mstruction cycle time	unst	2/FcL	μs	$t_{\text{inst}} = 61.036~\mu s$ when operating at FcL = 32.768 kHz


Note: When operating at 8 MHz, the cycle varies with the set execution time.

(5) Serial I/O timing

 $(AVR = Vcc = 5.0 V\pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

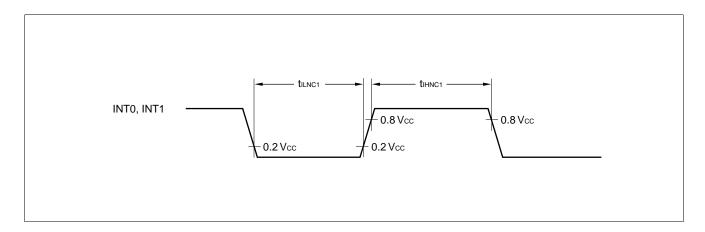
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
rarameter	Syllibol	FIII	Condition	Min.	Max.	Oilit	Remarks
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	t sLov	SCK, SO	Internal shift	-200	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK	clock mode	1/2 t inst*	_	μs	
$SCK \uparrow \rightarrow valid SI hold time$	t shix	SCK, SI		1/2 t inst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK		1 tinst*	_	μs	
Serial clock "L" pulse width	t slsh	SCK	External shift	1 tinst*	_	μs	
$SCK \downarrow \to SO$ time	t sLov	SCK, SO	clock mode	0	200	ns	
Valid SI \rightarrow SCK $↑$	t ıvsH	SI, SCK		1/2 t inst*	_	μs	
$SCK \uparrow \to valid \; SI \; hold \; time$	t shix	SCK, SI		1/2 t inst*	_	μs	


^{*:} For information on tinst, see "(4) Instruction Cycle."

(6) Peripheral Input Timing

 $(AVR = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Value				Unit	Remarks
Faranietei	Symbol	FIII	Condition	Min.	Max.	Oill	Remarks		
Peripheral input "H" pulse width 1	tılıH1	EC, ADST, INT0 to INT1	_	2 tinst	_	μs			
Peripheral input "L" pulse width 1	t _{IHIL1}	EC, ADST, INT0 to INT1	_	2 tinst	_	μs			

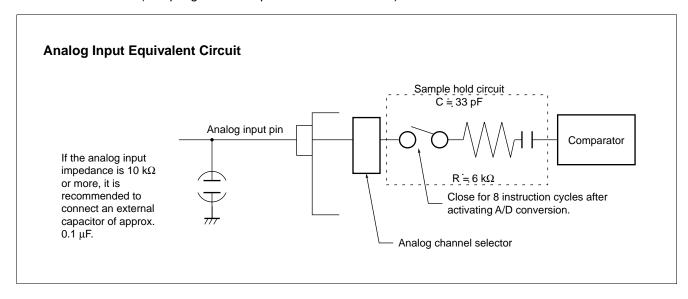


(7) Peripheral Input Noise Limit Width

 $(AVR = Vcc = 5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin		Unit	Remarks		
Parameter			Min.	Тур.	Max.	Offic	Remarks
Peripheral input "H" level noise limit width 1	tihnc1	INT1, INT0	50	100	250	ns	
Peripheral input "L" level noise limit width 1	tilnc1	INT1, INT0	50	100	250	ns	

Note: The minimum values is always canceled, while values over the maximum value are not canceled.


5. A/D Converter Electrical Characteristics

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, Fch = 8 MHz, T_A = -40°C to +85°C)$

Parameter	Symbol	Pin	Condition		Value			Remarks
Parameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Unit	Remarks
Resolution		_	_	_	_	8	bit	
Total error		_	_	_	_	±3.0	LSB	
Linearity error	_	_	_	_	_	±1.0	LSB	
Differential linearity error	_	_	_	_	_	±0.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	_	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	VFST	AN0 to AN7	_	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity	_	_	_	_	_	1.0	LSB	
A/D conversion time	_	_	_	_	44 tinst	_	μs	
Sense mode conversion time	_	_	_	_	12 tinst	_	μs	
Analog port input current	IAIN	AN0 to AN7	AVR = Vcc = 5.0 V	_	_	10	μА	
Analog input voltage	_	AN0 to AN7	_	0	_	AVR	V	
Reference voltage	_	AVR	_	4.5	_	Vcc	V	
Reference-voltage supply current	lr	AVR	AVR = 5.0 V	_	200	_	μА	

Notes: • The smaller the | AVR – AVss |, the greater the error would become relatively.

• The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 k Ω If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 22 μ s at 8 MHz oscillation).

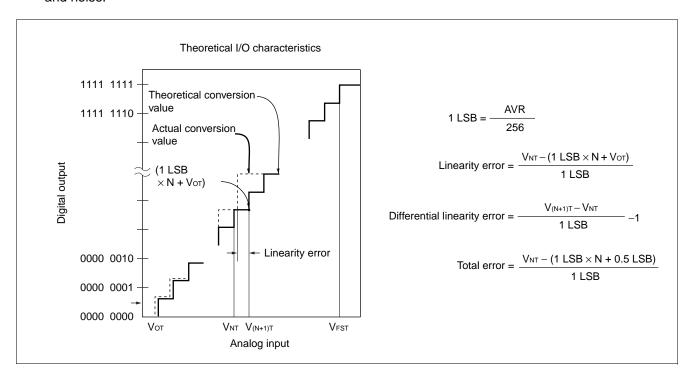
6. A/D Glossary

Resolution

Analog changes that are identifiable with the A/D converter

· Linearity error

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics

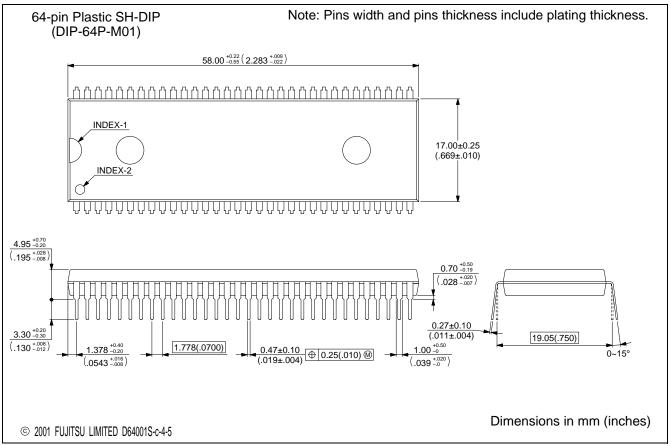

• Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error

The difference between actual and theoretical value

This error is caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.


■ MASK OPTIONS

No.	Part number Parameter	MB89143A/144A	MB89	PV140	MB89P147V1	
140.	Specification method	Specify when ordering masking	101	102	Set in EPROM	
1	Clock mode selection Single-clock mode Dual-clock mode	Can be set	Single clock	Dual clock	Can be set	
2	Pull-up resistors P14 to P17, P32 to P37	Specify by pin	Without pull- up resistor	Without pull- up resistor	Can be set per pin	
3	Power-on reset With Without	With power-on rest	With power- on reset	With power- on reset	Can be set	
4	Reset output With Without	Can be set	With reset output	With reset output	Can be set	
5	Pull-down resistors P40 to P47 P50 to P57 P60 to P67	Without pull-down resistor	Without pull- down resistor	Without pull- down resistor	Without pull-down resistor	

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89143AP-SH MB89144AP-SH MB89P147V1P-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0107 © FUJITSU LIMITED Printed in Japan