8-bit Proprietary Microcontrollers

CMOS

F²MC-8L MB89590B/BW Series

MB89593B/595B/P595B/ MB89593BW/595BW/P595BW

■ DESCRIPTION

The MB89590B/BW series is a line of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, these microcontrollers contain a variety of peripheral functions, such as PLL clock control, timers, a serial interface, a PWM timer, the USB hub function, and the USB function. The USB hub function, in particular, supports five ports (one of them is dedicated to an internal function) allowing them to interface with other USB devices. The microcontrollers also contain one USB function channel to support high speeds.

■ FEATURES

- Package type

64-pin LQFP package (0.5 mm pitch)

- High-speed operations at low voltage

Minimum execution time : $0.33 \mu \mathrm{~s}$ (Automatically generates a 12 MHz main clock and a 48 MHz USB interface synchronization clock with an externally supplied 6 MHz clock and the internal PLL circuit.)

- F²MC-8L CPU core

Instruction set that is optimum to the controllers
Multiplication and division instructions,
16-bit arithmetic operations,
Branch instructions by bit testing,
Bit manipulation instructions, etc.

PACKAGE

\square

MB89590B/BW Series

(Continued)

- PLL clock control

The internal PLL clock circuit allows the use of low-speed clocks which are advantageous to noise characteristics.
(6 MHz externally supplied clock : Internal system clock oscillated at 12 MHz)

- Various timers

8 -bit PWM timer (can be used as either 8 -bit PWM timer $\times 2$ channels or PPG timer $\times 1$ channel)
Internal 21-bit timebase timer

- Internal USB transceiver circuit (Compatible with high and low speeds)
- USB hub

Compliant to USB Protocol Revision 1.0
Five downstream port channels (One of these channels is dedicated to a function.)
Automatically responds to all USB protocols by hardware.
Descriptor configuration information is provided as ROM data for automatic responding by hardware (vendor
ID and product ID).

* String data is not supported.

Allows switching between BUS power supply and own power supply modes.
Power supply to the USB down ports is controlled port by port.

- USB function

Compliant to USB Protocol Revision 1.0
Support for full speed
Allows four endpoints to be specified at maximum.
Types of transfer supported : control/interrupt/bulk/isochronous
Built-in DMAC (Maps the buffer for each endpoint on to the internal RAM to directly access the memory for function's send and receive data.)

- UART/serial interface

Built-in UART/SIO function (selectable by switching)

- External interrupt

External interrupt (level detection $\times 8$ channels)
Eight inputs are independent of one another and can also be used for resetting from low-power consumption mode (the L-level detection feature available).

- Low power consumption (standby mode supported)

Stop mode (There is almost no current consumption since oscillation stops.)
Sleep mode (This mode stops the running CPU.)

- A maximum of 45 general-purpose I/O ports

General-purpose I/O ports (CMOS) : 34
General-purpose output ports (CMOS) : 8
General-purpose I/O ports (Nch open drain) : 3

- Power supply

Supply voltage : 3.0 to 5.5 V

MB89590B/BW Series

- PRODUCT LINEUP

Part number Parameter			MB89593B	MB89595B	MB89P595B	MB89593BW	MB89595BW	MB89P595BW
ROM size			8 KB		KB	8 KB		KB
RAM size			512 B		KB	512 B		KB
Package			LQFP-64 (FPT-64P-M03)					
Operation at USB reset			High impedance state			Low-level output		
Others			MASK product	MASK product	OTP/EVA product	MASK product	MASK product	OTP/EVA product
CPU functions			Number of instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$, and 16 bits Minimum execution time $: 0.33 \mu \mathrm{~s}(6 \mathrm{MHz})$ Interrupt processing time $: 3 \mu \mathrm{~s}(6 \mathrm{MHz})$					
Peripheral functions	Generalpurpose ports		General-purpose I/O ports General-purpose output ports			(34 : CMOS; 3 : Nch open drain) (8:CMOS)		
	USB hub		Upstream port : 1 channel Downstream port : 5 channels (One is dedicated to an internal function.) Port power supply control method : By individual port Allows selection between own power supply and bus power supply					
	USB function		Supports full speed. Four endpoints at maximum Built-in DMAC (Allows DMA transfer to the internal RAM)					
	PWM timer		8 -bit PWM timer operation $\times 2$ channels (can also be used as a PPG $\times 1$ channel timer)					
	UART	SIO	Allows switching between UART (clock-synchronous/asynchronous data transfer allowed) and SIO (simple serial transfer) .					
	Timebase timer		21-bit timebase timer					
	Clock output		Allows output of two main clock divisions					
Standby mode			Sleep mode and Stop mode					

MB89590B/BW Series

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTP product, verify its differences from the product that will actually be used.

2. Current Consumption

When operated at low speeds, a product mounted with either one-time PROM or EPROM consumes more current than a product mounted with a mask ROM. However, in sleep/stop mode the current consumption is the same.
For detailed information on each package, see "■ PACKAGE DIMENSIONS."

3. Differences Between the MB89590B series and the MB89590BW Series

MB89590B series : Remains in high impedance state until USB connection takes place. Before the USB connection, use one general-purpose port output to control pullup resistance connection of this port by software.
MB89590BW series : Outputs at low level until USB connection takes place.

- Example MB89590B product connection

- Example MB89590BW product connection

MB89590B/BW Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-64P-M03)

MB89590B/BW Series

PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
1	P44/UCK	E	General-purpose CMOS I/O pin UART/S10 clock I/O
2	P45/UO	B	General-purpose CMOS I/O pin UART/S10 serial data output
3	P46/UI/ PWM1	E	General-purpose CMOS I/O pin UART/S10 serial data input PWM timer
4	P47/PWM2	B	General-purpose CMOS I/O pin PWM timer
5	$\begin{aligned} & \text { P30/INT0/ } \\ & \text { CLK } \end{aligned}$	E	General-purpose CMOS I/O pin Clock output pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
6	P31/INT1	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
7	P32/INT2	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
8	P33/INT3	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
9	P34/INT4	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
10	P35/INT5	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
11	P36/INT6	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
12	P37/INT7	E	General-purpose CMOS I/O pin This pin also serves as an external interrupt input pin. The external interrupt input is a hysteresis input. (Level detection)
13	P50	B	General-purpose CMOS I/O pin
14	Vss	-	Power supply pin (GND)
15	P51	B	General-purpose CMOS I/O pin
16	P52	K	General-purpose Nch open drain I/O pin
17	P53	K	General-purpose Nch open drain I/O pin
18	P54	K	General-purpose Nch open drain I/O pin
19	RST	I	Reset pin. (Reset on the negative logic low level.)

(Continued)

MB89590B/BW Series

Pin No.	Pin name	Circuit type	Function
20	MOD0	F	An operating mode designation pin. Connect directly to Vss.
21	MOD1	F	An operating mode designation pin. Connect directly to Vss.
22	X0	A	Pins for the Crystal oscillator (6 MHz)
23	X1	A	Pins for the Crystal osciliator (6 MHz
24	Vss	-	Power supply pin (GND)
25	P27	B	General-purpose CMOS output pin
26	P26	B	General-purpose CMOS output pin
27	P25	B	General-purpose CMOS output pin
28	P24	B	General-purpose CMOS output pin
29	P23	B	General-purpose CMOS output pin
30	P22	B	General-purpose CMOS output pin
31	P21	B	General-purpose CMOS output pin
32	P20	B	General-purpose CMOS output pin
33	P17	B	General-purpose CMOS I/O pin
34	P16	B	General-purpose CMOS I/O pin
35	P15	B	General-purpose CMOS I/O pin
36	P14	B	General-purpose CMOS I/O pin
37	P13	B	General-purpose CMOS I/O pin
38	P12	B	General-purpose CMOS I/O pin
39	P11	B	General-purpose CMOS I/O pin
40	P10	B	General-purpose CMOS I/O pin
41	P07	B	General-purpose CMOS I/O pin
42	P06	B	General-purpose CMOS I/O pin
43	P05	B	General-purpose CMOS I/O pin
44	P04	B	General-purpose CMOS I/O pin
45	P03	B	General-purpose CMOS I/O pin
46	P02	B	General-purpose CMOS I/O pin
47	P01	B	General-purpose CMOS I/O pin
48	P00	B	General-purpose CMOS I/O pin
49	V cc	-	Power supply pin
50	C	-	Connect an external capacitor of $0.1 \mu \mathrm{~F}$. When using with 3.3 V power supply, connect this pin with the Vcc pin to set to 3.3 V input.
51	RPVP	USBDRV	USB route port + pin
52	RPVM	USBDRV	USB router port - pin

(Continued)

MB89590B/BW Series

(Continued)

Pin No.	Pin name	Circuit type	Function
53	D1VP	USBDRV	USB down port 1 + pin
54	D1VM	USBDRV	USB down port 1 - pin
55	D2VP	USBDRV	USB down port 2 + pin
56	D2VM	USBDRV	USB down port 2 - pin
57	D3VP	USBDRV	USB down port 3 + pin
58	D3VM	USBDRV	USB down port 3 - pin
59	D4VP	USBDRV	USB down port 4 + pin
60	D4VM	USBDRV	USB down port 4 - pin
61	P40/POW1	B	General-purpose CMOS I/O pin. This pin also serves as a USB Down Port power control signal pin.
62	P41/POW2	B	General-purpose CMOS I/O pin. This pin also serves as a USB Down Port power control signal pin.
63	P42/POW3	B	General-purpose CMOS I/O pin. This pin also serves as a USB Down Port power control signal pin.
64	P43/POW4	B	General-purpose CMOS I/O pin. This pin also serves as a USB Down Port power control signal pin.

MB89590B/BW Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Oscillation feedback resistance Approx. $1 \mathrm{M} \Omega$
B		CMOS I/O
E		CMOS I/O Hysteresis input
F	$\square \gg$ Input	CMOS input
I		Hysteresis I/O Pullup resistance

(Continued)

MB89590B/BW Series

(Continued)

Type	Circuit	Remarks
USBDRV		USB I/O
K		Nch open drain I/O

MB89590B/BW Series

- HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input or output pins other than the medium- and high-voltage pins or if voltage higher than the rating is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also take care to prevent the analog input from exceeding the digital power supply (Vcc) when the power supply to the analog power system is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions and latchup leading to permanent damage to the pins. These unused pins should be connected to a pullup or pulldown resistance of at least $2 \mathrm{k} \Omega$ between the pin and the power supply.
Unused I/O pins should be placed in output state to leave it open or pins that are in input state should be handled the same as unused input pins.

3. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

MB89590B/BW Series

ONE-TIME PROM AND EPROM MICROCONTROLLER PROGRAMMING SPECIFICATIONS

PROM mode is available on the MB89P595B/BW microcontrollers. The use of a dedicated adapter allows you to program the devices with a general-purpose ROM programmer. However, keep in mind that electronic signature mode is not available.

1. Memory Space

2. ROM programmer adapter and its compatible programmers

Package	Compatible adapter	Compatible programmers and models
	Sun Hayato Co, Ltd.	Ando Denki K. K.
FTP-64P-M03	ROM2-64LQF-32DP-8LA	AF9708 (Version 1.40 or higher)
		AF9709 (Version 1.40 or higher)

Inquiry:
Sun Hayato Co., Ltd. : TEL. 81-3-3986-0403
Ando Denki K. K. : TEL. 81-3-3733-1160
3. Programming the EPROM (Using the Ando Denki K.K. programmer)
(1) Set the EPROM programmer type code to 17209.
(2) Load program data on to the EPROM programmer at 0000н to 3FFFн.
(3) Program $\mathrm{COOO}_{\text {н }}$ to FFFF н with the EPROM programmer.

MB89590B/BW Series

BLOCK DIAGRAM

MB89590B/BW Series

- CPU CORE

1. Memory Space

The MB89590B/BW microcontrollers offer a memory space of 64 Kbytes consisting of the I/O, RAM and ROM areas. The memory space contains areas that are used for specific purposes, such as a general-purpose register and a vector table.

- I/O area (addresses : 0000н through 007Fн)

This area is assigned with the control and data registers, for example, of peripheral functions to be built in. The I/O area is as accessible as the memory since the area is assigned to a part of the memory space. Direct addressing also allows the area to be accessed faster.

- RAM area

As an internal data area, a static RAM is built in.
The internal RAM capacity varies with the product type.
The area $8^{8} \mathrm{H}$ to FF_{H} can be accessed at high speed with direct addressing.
The area 100 to 1 FFн can be used a general-purpose register area. (The usable area is limited depending on the product.)
When reset, RAM data becomes undefined.

- ROM area

As an internal program area, a ROM is built in.
The internal ROM capacity varies with the product type.
The area FFCO $_{\text {н }}$ to FFFF $_{\boldsymbol{H}}$ should be used for a vector table, for example.

- Memory Map

MB89590B/BW Series

2. Registers

The MB89590B/BW series has two types of registers; the registers dedicated to specific purposes in the CPU and the general-purpose registers.
The dedicated registers are as follows:
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.
Accumulator (A) : A 16-bit register for temporary storage of operations. In the case of an 8-bit data processing instruction, the lower one byte is used.
Temporary accumulator (T) : A 16-bit register which performs operations with the accumulator. In the case of an 8-bit data processing instruction, the lower one byte is used.
Index register (IX) : A 16-bit register for index modification.
Extra pointer (EP) : A 16-bit register to point to a memory address.
Stack pointer (SP) : A 16-bit register to indicate a stack area.
Program status (PS) : A 16-bit register to store a register pointer or a condition code.

16 bits			
			Initial value
PC		: Program counter	FFFD ${ }_{\text {н }}$
A		: Accumulator	Indeterminate
T		: Temporary accumulator	Indeterminate
IX		: Index register	Indeterminate
EP		Extra pointer	Indeterminate
SP		Stack pointer	Indeterminate
RP	CCR	: Program status	I-flag $=0, I L 1,0=11$ Initial values for
PS			bits are indeterminate.

MB89590B/BW Series

The PS register can further be divided into the register bank pointer in the higher 8 bits (RP) and the condition code register in the lower 8 bits (CCR) . (See the diagram below.)

The RP points to the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule shown next.

Rule for Conversion of Actual Addresses in the General-purpose Register Area

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at the time of an interrupt.

H flag : The flag is set to " 1 " when an arithmetic operation results in a carry from bit 3 to bit 4 or in a borrow from bit 4 to bit 3 . The bit is cleared to " 0 " in other instances. The flag is for decimal adjustment instructions; do not use for other than additions and subtractions.
I flag : Interrupt is enabled when this flag is set to " 1 ." Interrupt is disabled when this flag is set to " 0 ." The flag is set to " 0 " when reset.
IL1, 0 : Indicates the level of the interrupt currently enabled. An interrupt is processed only if its level is higher than the value this bit indicates.

IL1	ILO	Interrupt level	High-low
0	0	1	Higher 0
1			
1	0	2	
1	1	3	Lower $=$ no interruption

MB89590B/BW Series

N flag : The flag is set to " 1 " when an arithmetic operation results in setting of the MSB to " 1 " or is cleared to " 0 " when the MSB is set to " 1 ."
Z flag : The flag is set to " 1 " when an arithmetic operation results in " 0 " or is set to " 0 " in other instances.
V flag : The flag is set to " 1 " when an arithmetic operation results in two's complement overflow or is cleared to " 0 " if no overflow occurs.
C flag : The flag is set to " 1 " when an arithmetic operation results in a carry from bit 7 or in a borrow to bit 7. The flag is cleared to " 0 " if neither of them occurs. In the case of a shift instruction, the flag is set to the shift-out value.

The following general-purpose registers are provided:
General-purpose registers : 8-bit data storage registers

The general-purpose registers are 8 bits in length and located in the register banks in the memory. One bank contains eight registers and the MB89590B/BW microcontrollers allow a total of 16 banks to be used at maximum.

The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

This address $=0100 \mathrm{H}+8 \times(\mathrm{RP})$

MB89590B/BW Series

I/O MAP

Address	Register name	Register description	Read/write	Initial value
00н	PDR0	Port 0 data register	R/W	XXXXXXXX
01н	DDR0	Port 0 direction register	W	00000000
02н	PDR1	Port 1 data register	R/W	XXXXXXXX
03н	DDR1	Port 1 direction register	W	00000000
04	PDR2	Port 2 data register	R/W	0000000
05	Vacancy			
06н	Vacancy			
07	SYCC	System clock control register	R/W	XXX11X00
08н	STBC	Standby control register	R/W	0001 XXXX
09н	WDTC	Watchdog timer control register	R/W	0XXXXXXX
ОАн	TBTC	Timebase timer control register	R/W	00XXX000
ОВн	Vacancy			
ОСн	PDR3	Port 3 data register	R/W	XXXXXXXX
0D	DDR3	Port 3 direction register	R/W	00000000
ОЕн	Vacancy			
OF\%	Vacancy			
10н	PDR4	Port 4 data register	R/W	XXXXXXXX
11н	DDR4	Port 4 direction register	R/W	00000000
12H	PDR5	Port 5 data register	R/W	XXX 111 XX
13н	DDR5	Port 5 direction register	R/W	XXXXXX00
$\begin{gathered} 14 \mathrm{H} \\ \text { to } \\ 20_{\mathrm{H}} \end{gathered}$	Vacancy			
21,	PURR0	Port 0 pullup option setting register	R/W	11111111
22н	PURR1	Port 1 pullup option setting register	R/W	11111111
23н	PURR2	Port 2 pullup option setting register	R/W	11111111
24 +	PURR3	Port 3 pullup option setting register	R/W	11111111
25	PURR4	Port 4 pullup option setting register	R/W	11111111
26	PURR5	Port 5 pullup option setting register	R/W	XXX11111
27 +	CTR1	PWM control register 1	R/W	00000000
28н	CTR2	PWM control register 2	R/W	000X0000
29н	CTR3	PWM control register 3	R/W	X000XXXX
2 Ан $^{\text {¢ }}$	CMR1	PWM compare register 1	W	XXXXXXXX
2 BH	CMR2	PWM compare register 2	W	XXXXXXXX
2 CH	CKR	Clock output control register	R/W	XXXXXXX0

(Continued)

MB89590B/BW Series

Address	Register name	Register description	Read/write	Initial value
2Dн	SCS	Serial clock switching register	R/W	XXXXXXX0
2 Ен $^{\text {¢ }}$	Vacancy			
2 F	SMC1	Serial mode control register 1	R/W	00000000
30н	SMC2	Serial mode control register 2	R/W	00000000
31н	SSD	Serial status and control register	R	00001 XXX
32н	SIDR/SODR	Serial input/serial output data register	R/W	XXXXXXXX
33-	SRC	Serial rate control register	R/W	XXXXXXXX
$\begin{gathered} 34 н \\ \text { to } \\ 3 \mathrm{~B}_{\mathrm{H}} \end{gathered}$	Vacancy			
$3 \mathrm{CH}_{\boldsymbol{H}}$	EIE	External interrupt control register	R/W	00000000
3D	EIF	External interrupt flag register	R/W	XXXXXXX 0
ЗЕн	Vacancy			
$3 \mathrm{FH}_{\mathrm{H}}$	Vacancy			
40н	HMDR	HUB mode register	R/W	10XXXXXX
41н	HDSR1	Hub descriptor register 1	R/W	XXXXXXXX
42н	HDSR2	Hub descriptor register 2	R/W	XXXXXXXX
43н	HDSR3	Hub descriptor register 3	R/W	XXXXXXXX
44	HSTR	Hub status register	R/W	00000000
45	OCCR	Overcurrent register	R/W	0XXX0000
46н	DADR	Descriptor ROM address register	R/W	XXXXXXXX
47 ${ }^{\text {H}}$	SDSR	String 0 descriptor select register	R/W	XXXXX000
$\begin{gathered} 48 \mathrm{H} \\ \text { to } \\ 4 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Vacancy			
50н	UMDR	USB reset mode register	R/W	1000XX00
51н	DBAR	DMA base address register	R/W	XXXXXXXX
52н	TDCR0	Transfer data count register 0	R/W	X0000000
53н	TDCR1	Transfer data count register 1	R/W	X0000000
54	Vacancy			
55	TDCR21	Transfer data count register 2	R/W	X0000000
56н	Vacancy			
57	TDCR3	Transfer data count register 3	R/W	X0000000
58н	UCTR	USB control register	R/W	00000000
59н	USTR1	USB status register 1	R/W	00000000
5 Ан	USTR2	USB status register 2	R	XXXXXX00

(Continued)

MB89590B/BW Series

(Continued)

Address	Register name	Register description	Read/write	Initial value
5Вн	UMSKR	USB interrupt mask register	R/W	00000000
$5 \mathrm{CH}_{\mathrm{H}}$	UFRMR1	USB frame status register 1	R	XXXXXXXX
5D	UFRMR2	USB frame status register 2	R	XXXXXXXX
5Ен	EPER	USB endpoint enable register	R/W	XXXX0001
$5 \mathrm{~F}_{\mathrm{H}}$	EPBR0	Endpoint setup register 0	R/W	X0000000
60н	EPBR11	Endpoint setup register 11	R/W	XX0000XX
61н	EPBR12	Endpoint setup register 12	R/W	X0000000
62н	EPBR21	Endpoint setup register 21	R/W	XX0000XX
63н	EPBR22	Endpoint setup register 22	R/W	X0000000
64	EPBR31	Endpoint setup register 31	R/W	XX0000XX
65	EPBR32	Endpoint setup register 32	R/W	X0000000
$\begin{gathered} \hline 66 н \\ \text { to } \\ 7 \mathrm{~B}_{\mathrm{H}} \end{gathered}$	Vacancy			
7 CH	ILR1	Interrupt level setting register 1	W	11111111
7D	ILR2	Interrupt level setting register 2	W	11111111
7Ен	ILR3	Interrupt level setting register 3	W	11111111
$7 \mathrm{~F}_{\mathrm{H}}$	Vacancy			
- Information about read/write R/W : Read or write enabled, R : Read only, W : Write only - Information about initial values 0 : The initial value of this bit is " 0 ." 1 : The initial bit of this bit is " 1 ." X : The initial value of this bit is undefined.				

Note : Vacancies are not for use.

MB89590B/BW Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
(\mathrm{V} s \mathrm{ss}=0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
Input voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss -0.3	V cc +0.3	V	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
" H " level maximum output current	Іон	-	-15	mA	
" H " level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	Eloн	-	-50	mA	
" H " level total average output current	Elohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	PD	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89590B/BW Series

2. Recommended Operating Conditions

$$
(\mathrm{V} s \mathrm{~s}=0 \mathrm{~V})
$$

Parameter	Symbol	Value				Unit
Remarks						
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	3.0	-	5.5	V	
Operating temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	
Smoothing capacitor	Cs	0.1	-	1.0	$\mu \mathrm{~F}$	at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}^{*}$
Series resistance	Rs	-	16	-	Ω	When the USB function is in use

*: Use either a ceramic capacitor or a capacitor with similar frequency characteristics. The capacity of the smoothing capacitor for the Vcc pin should be greater than that of the Cs. When using with a supply voltage of 3.3 V , connect pin C with Vcc to input 3.3 V .

- C and USB Port Pin Connection Diagram

MB89590B/BW Series

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89590B/BW Series

3. DC Characteristics

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	$\mathrm{V}_{\text {H }}$	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, MOD0, MOD1	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Vihs	$\overline{\mathrm{RST}}$, $\overline{\mathrm{INTO}}$ to $\overline{\mathrm{NT} 7}$, UCK, UI	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, MODO, MOD1	-	Vss - 0.3	-	0.3 Vcc	V	
	Vııs	$\overline{\mathrm{RST}}$, $\overline{\mathrm{INTO}}$ to $\overline{\mathrm{NT} 7}$, UCK, UI	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output application voltage	V D_{1}	P52 to P54	-	Vss - 0.3	-	V cc +0.3	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P24, } \\ & \text { P30 to P37, } \\ & \text { P40 to P47, } \\ & \text { P50, P51 } \end{aligned}$	Іон $=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Voı	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40 to P47, P50 to P54, RST	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	IL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P30 to P37, } \\ & \text { P40 to P47, } \\ & \text { P50, P51 } \end{aligned}$	$0.0<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+5	$\mu \mathrm{A}$	When no pullup resistance is specified

(Continued)

MB89590B/BW Series

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Open-drain output leakage current	ILIod	P52 to P54	$\begin{aligned} & 0.0<V_{1} \\ & <V_{s s}+5.5 \end{aligned}$	-	-	+5	$\mu \mathrm{A}$	
Pullup resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	$\overline{\mathrm{RST}}$ is excluded when pullup resistance available is specified.
Power supply current	Icc	Vcc	$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=12.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }=0.333 \mu \mathrm{~s} \end{aligned}$	-	25	38	mA	MB89P595B/ BW MB89595B/ BW
	Iccs1		$\begin{aligned} & \text { FcH }=12.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }=0.333 \mu \mathrm{~s} \end{aligned}$	-	20	30	mA	Sleep mode
	Icch		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	5	20	$\mu \mathrm{A}$	Stop
Input capacitance	Cin	Other than Vcc and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

MB89590B/BW Series

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST }} \mathrm{L}$ " pulse width	tzLZH	-	16 tHcLy	-	ns	

Note : thcyL is the internal main clock oscillating cycle ($1 / 2 \mathrm{Fc}$) .

(2) Power-on Reset

Parameter			(Vss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)			
	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	0.066	50	ms	
Power supply cutoff time	toff	-	4	-	ns	Due to repeated operations

Note : The power supply must be up within the selected oscillation stabilization time. When the supply voltage needs to be varied while operating, it is recommended to smoothly start up the voltage.

MB89590B/BW Series

(3) Clock Timing
(Vss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fc	$\mathrm{X} 0, \mathrm{X} 1$	-	-	6	-	MHz	
Clock cycle time	txcy	X0, X1		-	166.6	-	ns	
Internal main clock frequency	Fch	-		-	12	-	MHz	Twice the Fc
Internal clock cycle	thcyL	-		-	83.3	-	ns	txcy/2

- X0 and X1 Timing and Conditions

- Clock Conditions

When a crystal resonator is used

(4) Instruction Cycle

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (Min. execution time)	tinst		$\mu \mathrm{S}$	When operating at $\mathrm{F}_{\mathrm{CH}}=12 \mathrm{MHz}$ tinst $=0.33 \mu \mathrm{~s}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

MB89590B/BW Series

(5) UART Serial I/O Timing

$$
\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	UCK	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
UCK $\downarrow \rightarrow$ UO	tstov	UCK, UO		-200	200	ns	
Valid UI \rightarrow UCK \uparrow	tivsh	UI, UCK		200	-	ns	
UCK $\uparrow \rightarrow$ Rvalid UI hold time	tshix	UCK, UI		200	-	ns	
Serial clock "H" pulse width	tshsL	UCK	External shift clock mode	1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
UCK $\downarrow \rightarrow$ UO time	tslov	UCK, UO		0	200	ns	
Valid UI \rightarrow UCK \uparrow	tivsh	UI, UCK		200	-	ns	
UCK $\uparrow \rightarrow$ Rvalid UI hold time	tshix	UCK, UI		200	-	ns	

*: For information about tinst see "Instruction Cycle."

- Internal shift clock mode

- External shift clock mode

MB89590B/BW Series

(6) Peripheral Input Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıнн	$\overline{\text { INT0 }}$ to $\overline{\mathrm{NTT7}}$	-	2 tins**	-	$\mu \mathrm{s}$	
Peripheral input " L " pulse width 1	thwll		-	2 tins*	-	$\mu \mathrm{s}$	

*: For information about tinst, see "Instruction Cycle."

MB89590B/BW Series

- INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((\times)	The address indicated by the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: \quad The number of instructions
\#: \quad The number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89590B/BW Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(A)$	-	-	-	----	46
MOV ext,A	4	3	$($ (ext) $\leftarrow(A)$	-	-	-		61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(A)$	-	-	-		47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	(A) \leftarrow d 8	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow($ (IX) + off $)$	AL	-	-	+ + - -	06
MOV A,ext	4	3	(A) $\leftarrow($ ext $)$	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(A)\end{array}\right)$	AL	-	-	+ +--	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	---	85
MOV @IX +off,\#d8	5	3	$($ (IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8 F
MOVW dir,A	4	2	$($ dir $) \leftarrow(A H),($ dir +1$) \leftarrow(A L)$	-	-	-		D5
MOVW @IX +off,A	5	2	$\left\lvert\, \begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}\right.$	-	-	-	---	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-		D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + --	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(A L) \leftarrow((I X)+o f f+1)$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow($ ext + 1)	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow(\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A})+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}), \mathrm{l}(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	-	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	---	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	---	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	--	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	--	E1
MOVW A,SP	2		$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH		F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow(\mathrm{~T})$	-	-	-		82
MOVW @A,T	4	1	$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	---	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow$ (PS)	_	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	--- -	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {¢ }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	(A) $\leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Note During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.
Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89590B/BW Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(A) \leftarrow(A)+((I X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(A) \leftarrow(A)-((I X)+$ off $)-C$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(A) \leftarrow(A)+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(R i) \leftarrow(R i)-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(A) \leftarrow(A L) \times(T L)$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	-	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	$++++$	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	$++++$	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ d8	-	-	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

MB89590B/BW Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A, @EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+	97
CMP @IX +off,\#d8	5	3	$((1 \mathrm{X})+\mathrm{off})-\mathrm{d} 8$	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall N=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FF
BGE rel	3	2	If $V \forall \mathrm{~N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	- +--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then PC $\leftarrow P \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	-	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1		-	-	90		

MB89590B/BW Series

INSTRUCTION MAP

	0	1	2	3	4	5	6				A			D		
0	NOP	SWAP	RET	RETI		POPW ${ }_{\text {A }}$	$\mathrm{MOV}_{\mathrm{A}, \text { ext }}$	$\operatorname{Mown}_{A, P S}$	CLRI	SETI	${ }^{\text {R dir: }} 0$	BCi:0, rele	${ }^{\text {NCW }}{ }_{\text {a }}$	A	@A	$\mathrm{va}_{\mathrm{A}, \mathrm{C}}$
1	A	${ }^{\text {DivU }}$ A					$\mathrm{MOV}_{\text {ext }, \mathrm{A}}$	Mown	CLRC	SETC	$\text { dir: } 1$	$c: 1, \text { rel }$	${ }_{\text {SP }}$	${ }^{\mathrm{w}} \mathrm{sP}$	$\mathrm{sP}, \mathrm{~A}^{\mathrm{s}}$	$\mathrm{Na}_{\mathrm{A}, \mathrm{~S}}$
2	ROLC ${ }_{\text {a }}$	$\mathrm{CMP}^{\text {a }}$			$\left\lvert\, \begin{array}{\|c\|} \mathrm{XCH}, \mathrm{~T} \end{array}\right.$	${ }^{\mathrm{XOR}} \mathrm{A}$	AND A	OR	MOV	$\underset{\mathrm{A}, \mathrm{CA}}{\mathrm{MOV}}$	${ }_{\text {dir: }}{ }^{2}$	BBC	${ }^{1 \times}$	${ }^{\text {deCw }}{ }_{\text {Ix }}$	$\underset{\mid X, A}{M O V W}$	$\underset{A, 1 x}{ }$
3				$\begin{array}{cc} \\ 3 C W_{A} \end{array}$	$H_{A, T}$	XORw	ANDW	ORW ${ }_{\text {a }}$	$\underset{@ A, T}{\operatorname{Movw}}$	$\underset{\mathrm{A}, \mathrm{CA}}{ } \mid$	$\begin{array}{l\|l\|} \hline \text { dir: } 31 \end{array}$	$\begin{array}{ll} \text { if: } \\ \text { C } \\ \text { relel } \end{array}$	$w_{E P}$	$\mathrm{DECW}_{E P}$	$\operatorname{viven}_{\text {EP, }}$	$\mathrm{va}_{\mathrm{A}, \mathrm{EP}}$
4	$\underset{A, \pm 08}{\operatorname{mov}}$	$\underset{\mathrm{A}, \mathrm{fd} 8}{\mathrm{CMP}}$	$\underset{A, A d 8}{A D D C}$	$\underset{A}{\mathrm{UBC}}$		$\underset{\mathrm{A}, \mathrm{fd8}}{\mathrm{XOR}}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{f} \mathrm{~d} 8}$	A.f\#8	DAA	DAS	$\begin{array}{l\|l\|} \hline 8 B r: 4 \end{array}$	$3 \mathrm{BCl} 4, \mathrm{rel}$	$\mid \text { Moww }_{\text {A,ext }} \mid$	$\mid \underset{\text { ext }, ~ A ~}{\|c\|}$	$\underset{A, \neq 016}{\operatorname{Movw}}$	$\mathrm{Ha}_{\mathrm{A}, \mathrm{PC}}$
5	$\mathrm{VF}_{\mathrm{A}, \mathrm{di}}$	${ }^{\text {MP, dir }}$	$\left.\right\|_{\text {A, dir }} ^{A D C D}$	SUBC A.dir	$\mathrm{MOV}_{\text {dir, }}$	${\underset{A O R}{ }{ }_{\text {A,dir }} \mid}^{2}$	$\mathrm{AND}_{\text {A, dir }}$	or A,dir	dir, \#d8	$\underset{\text { dirifded }}{\substack{\text { CMP }}}$	$\underset{\text { dir: } 5}{\text { CLRB }}$	$3 \mathrm{BC}$	$\mid \operatorname{mow}_{\mathrm{A}, \text { dir }}$	$\mathrm{Movw}_{\text {dir, }}$	$\begin{gathered} \text { Movw } \\ \text { SPP\#d16 } \end{gathered}$	Hw,
6		$\begin{aligned} & \text { CMP } \\ & \mathrm{A}, @ \mathrm{XX} \end{aligned}$	$\begin{array}{\|l\|} \mathrm{ADC} \\ \mathrm{~A}, \varrho \end{array}$	$\begin{array}{\|l\|} \hline \text { SUBC } \\ \mathrm{A}, @ \mathrm{X}+\mathrm{d} \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{XOR} \\ \mathrm{~A}, @ \mid \mathrm{X}+\mathrm{d} \end{array}$	$\begin{array}{\|l\|l\|} \text { AND } \\ A, @ \mid X+d \end{array}$	OR A,@IX+d	$\left\lvert\, \begin{aligned} & \text { MOV } \\ & @ X+d, \pm d 88 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { CMP } \\ @ X+d, d t 88 \end{array}$	$\underset{\substack{\text { dir: } 6}}{\text { CLRB }}$	$\begin{array}{\|c\|} \text { BBC } \\ \text { dir: }, \text { rel } \end{array}$	$\begin{aligned} & \mathrm{MOVW} \\ & \mathrm{~A}, @ \mathrm{CX}+\mathrm{d} \end{aligned}$	$\begin{aligned} & \text { Movw } \\ & @ \mid X+d, A \end{aligned}$	$\operatorname{Mow}_{\mid X, \neq 1616}$	w
7	$\underset{\mathrm{A}, \text { MOEP }}{\mathrm{MOV}}$	$\underset{\mathrm{A}, @ \mathrm{CEP}}{\mathrm{CMP}}$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline A D D C \\ \text { A,@EP } \end{array}\right.$	$\begin{array}{\|c\|c\|} \hline \text { AUBC } \\ \text { SUEP } \\ \hline \end{array}$	$\underset{\text { @OVPA }}{ }$	$\underset{\mathrm{A}, \text { © © }}{\mathrm{XOR}}$	$\underset{A, \text { AND }}{\text { AND }}$	or A.@EP		$\begin{aligned} & \text { CMP } \\ & \text { @EP } P+08 \end{aligned}$	$\begin{gathered} \text { CLRB } \\ \text { dir: } 7 \end{gathered}$	rel	Mow	$\underset{@ \in P, A}{\substack{\text { Movw }}}$	$\underset{\substack{\text { Movw } \\ E P+P d 16}}{ }$	$\overline{\mathrm{H}, \mathrm{EP}}$
${ }^{8}$	$\mathrm{FV}_{\mathrm{A}, \mathrm{Bo}}$	${ }_{P R, R 0}$	$\mathrm{ADDC}_{\mathrm{A}, \mathrm{BO}}$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { SUBC } \\ \hline \end{array}\right.$	$\mathrm{MOV}_{\mathrm{RO}, \mathrm{~A}}$	$\mathrm{XOR}_{\mathrm{A}, \mathrm{BO}}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{BO}}$	${ }^{\mathrm{OR}}{ }_{\mathrm{A}, \mathrm{RO}}$	$\mathrm{MOV}_{\mathrm{Ro}, \mathrm{fd8}}$	$\underset{\substack{\text { CMP } \\ \text { Ro } \# \mathrm{dq}}}{ }$	$\begin{gathered} \text { SETB } \\ \text { dir: } 0 \end{gathered}$	$\begin{array}{\|l\|} \text { BBS } \\ \text { dir: } 0 \text { el } \end{array}$	Ro	$\begin{array}{\|l\|} \hline \text { DEC } \\ \text { RO } \end{array}$	${ }_{\text {call }}{ }_{\text {\#0 }}$	${ }^{\text {BNC }}$ rel
9	A,R1	${ }_{A, R 1}{ }_{A, R 1}$	$\begin{array}{\|c\|c\|} \hline A D D C \\ A, R 1 \end{array}$	$\underset{\mathrm{A}, \mathrm{R} 1}{\mathrm{SUBC}}$	$\mathrm{MOV}_{\mathrm{R}, \mathrm{~A}}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R1}}$	${ }_{\mathrm{A}, \mathrm{R} 1}^{\mathrm{AND}}$	${ }^{\mathrm{OR}}{ }_{\mathrm{A}, \mathrm{R} 1}$	$\mathrm{MOV}_{\text {R1, } 1 \mathrm{dd8}}$	$\begin{gathered} \text { CMP } \\ \mathrm{R}_{1}^{\prime \pm 088} \end{gathered}$	$\mathrm{SETB}_{\text {dir: }: 1}$	$\underset{\text { dir: } 1, \text { rel }}{\text { BBS }}$	R1	${ }_{\text {R1 }}$	\#1	
A	$\mathrm{MOV}_{\mathrm{A}, \mathrm{R} 2}$	${ }_{A, R 2}$	$\underset{\mathrm{A}, \mathrm{R} 2}{\mathrm{ADDC}}$	$\underset{\mathrm{A}, \mathrm{R} 2}{ }$	$\mathrm{MOV}_{\mathrm{R} 2, \mathrm{~A}}$	$\begin{aligned} & \text { OR,R2 } \end{aligned}$	${ }_{\mathrm{A}, \mathrm{R} 2}^{\mathrm{AND}}$	${ }^{\mathrm{OR}} \mathrm{~A}, \mathrm{R} 2$	$\mathrm{MOV}_{\mathrm{R} 2, \pm \pm 8}$	$\underset{R 2 \# \# 88}{\mathrm{CMP}}$	${ }_{\text {dir: } 2}$	$\int_{\text {dir 2, 2el }}^{\text {BBS }}$	R2	R2	\#2	${ }^{\text {BP }}$ re
B	$\mathrm{MOV}_{\mathrm{A}, \mathrm{R} 3}$	${ }_{M P, R 3}$	$\mathrm{ADDC}_{\mathrm{A}, \mathrm{~B} 3}$	$\underset{\mathrm{A}, \mathrm{R}}{\mathrm{SUBC}}$	$\mathrm{MOV}_{\mathrm{R} 3, \mathrm{~A}}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R3}}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{R} 3}$	${ }^{\text {R }} \text { A,R3 }$	$\mathrm{MOV}_{\mathrm{R} 3, \pm \mathrm{di}}$	$\underset{\mathrm{R} 3, \pm \mathrm{dq} 8}{\substack{\text { CMP }}}$	$\mathrm{SETB}_{\text {dir } 3}$	$\underset{\text { dir } 3, \text { rel }}{\text { BBS }}$	R3	R3	\#3	${ }^{\text {BN }}$ rel
c	${ }_{\mathrm{A}, \mathrm{~B} 4}$	${ }_{A, R 4}{ }_{A, R 4}$	$\begin{array}{\|c} \mathrm{ADDC} \\ \mathrm{~A}, \mathrm{R4} \end{array}$	$\begin{array}{\|c\|c\|c\|} \hline \text { SUBC } \\ \hline \end{array}$	$\mathrm{MOV}_{\mathrm{R} 4, \mathrm{~A}}$	$\underset{A, R 4}{O R}$	A,R4	R,R4	$\mathrm{MOV}_{\mathrm{R} 4, \pm \mathrm{ta8}}$		$\mathrm{SETB}_{\text {di: } 4}$	$\begin{aligned} & \text { BBS } \\ & \text { diri } 4, \text { rel } \end{aligned}$	${ }^{\text {NC }} \mathrm{R}$ R4	R4	$v_{\# 4}$	BNZ rel
D	$\stackrel{\text { MOV }}{\text { A } 55}$	$\mathrm{CMP}_{\mathrm{A}, \mathrm{B5}}$	$\left\|\begin{array}{c} \text { ADDC } \\ A, R 5 \end{array}\right\|$	$\underset{A, B 5}{S U B C}$	$\left.\right\|_{\mathrm{MOFA}} ^{\mathrm{MOV}}$	$\begin{gathered} \mathrm{OR}, \mathrm{RS} \end{gathered}$	${ }_{\text {ND,R5 }}$	A,R5	$\mathrm{MOV}_{\text {R5, } \mathrm{fd8}}$		$\mathrm{SETB}_{\text {dir: } 5}$	$\underset{\text { dir: } 5 \text { rel }}{\text { BBS }}$	${ }^{\text {NC }}$ R5	R5	\#5	B2 rel
E	${ }_{\mathrm{CV}, \mathrm{~B} 6}$	${ }^{\text {CMP }}{ }_{\mathrm{A}, \mathrm{R6}}$	$\left\|\begin{array}{c} A D D C \\ A, R 6 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { SUBC }, R 6 \end{gathered}\right.$	$\mid \mathrm{MOV}_{\mathrm{RG}, \mathrm{~A}}$	$\begin{gathered} \mathrm{OR}, R 6 \\ \hline \end{gathered}$	${ }^{A N D}{ }_{A, R 6}$	${ }^{\text {OR }}{ }_{\mathrm{A}, \mathrm{R6}}$	$\mathrm{MOV}_{\mathrm{R}, \mathrm{fd8}}$	$\underset{\substack{\mathrm{CMP} \\ \mathrm{R} 6 \pm \pm 88 \\ \hline}}{ }$	$\underbrace{\text { SETB }}_{\text {dir: } 6}$	$\begin{array}{\|l\|l\|} \text { BBS } \\ \text { dir: } \mathrm{rel} \end{array}$	R6	$c^{c_{R 6}}$	$\mathrm{CALLV}_{\# 6}$	${ }^{\text {BGE }}$ rel
F	$\stackrel{\text { MOV }}{\mathrm{A}, \mathrm{B7}}$	$\mathrm{CMP}_{\mathrm{A}, \mathrm{B7}}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline A D C D \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline \text { SUBC } \end{array}\right.$	$\begin{array}{\|c\|} \hline \mathrm{ROV}, \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \mathrm{XAR}^{2} \end{array}$	${ }^{A_{N, R 7}}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{~B} 7}$	$\underset{\text { MOV }}{\substack{\text { MOU } \\ \hline}}$	$\begin{gathered} \text { CMP } \\ \mathrm{R}_{7}, \pm 08 \end{gathered}$	$\begin{aligned} & \text { SETB } \\ & \text { di: } 7 \end{aligned}$	$\underset{\text { dir:7, rel }}{\text { BBS }}$	R7	$\mathrm{C}_{\text {R7 }}$	${ }_{\text {\#7 }}$	${ }^{\text {BLT }}$ rel

MB89590B/BW Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89593BPFV		
MB89595BPFV	64-pin plastic LQFP	
MB89P595BPFV	(FPT-64P-M03)	
MB89593BWPFV		
MB89595BWPFV		

MB89590B/BW Series

PACKAGE DIMENSION

64-pin plastic LQFP (FPT-64P-M03)

Note: Pins width and pins thickness include plating thickness.

© 1998 FUJITSU LIMITED F64009S-3C-6

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280

Korea

Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0012
© FUJITSU LIMITED Printed in Japan

