8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89650AR Series 2

MB89653AR/655AR/656AR/657AR/P657A MB89PV650A

- DESCRIPTION

The MB89650AR series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ family consisting of proprietary 8 -bit, single-chip microcontrollers.
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, PWM timers, a serial interface, an A/D converter, external interrupts, an LCD controller/driver, and a watch prescaler.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- $\mathrm{F}^{2} \mathrm{MC}$-8L family CPU core
- Dual-clock control system
- Maximum memory space: 64 Kbytes
- Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- I/O ports: max. 64 channels
- 21-bit time-base counter
- 8 -bit PWM timers: 2 channels (A maximum of 4 channels can be used for output.)
- $8 / 16$-bit timer/counter: 4 channels (16 bits $\times 2$ channels)
- 8 -bit serial I/O: 1 channel
- 8 -bit A/D converter: 8 channels

PACKAGE

100-pin Plastic SQFP

(FPT-100P-M05)

100-pin Plastic QFP

(FPT-100P-M06)

100-pin Ceramic MQFP

(MQP-100C-P02)

MB89650AR Series

(Continued)

- External interrupt 1

Four independent channels with edge detection function

- External interrupt 2 (wake-up function)

Twelve "L" level-interrupt channels

- Watch prescaler
- LCD controller/driver: 16 to 32 segments $\times 2$ to 4 commons
- Power-on reset function
- Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
- SQFP-100 and QFP-100 packages

PRODUCT LINEUP

Part number Parameter	MB89653AR	MB89655AR	MB89656AR	MB89657AR	MB89P657A	MB89PV650A
Classification	Mass production products (mask ROM products)				One-time PROM product	Piggyback/ evaluation product (for evaluation and development)
ROM size	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$24 \mathrm{~K} \times 8$ bits (internal mask ROM)	$32 \mathrm{~K} \times 8$ bits (internal mask ROM)	$32 \mathrm{~K} \times 8$ bits (internal PROM, programming with generalpurpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	256×8 bits	512×8 bits	768×8 bits	$1 \mathrm{~K} \times 8$ bits		
LCD display RAM	16×8 bits					
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $6.4 \mu \mathrm{~s} / 10 \mathrm{MHz}, 61.0 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$ Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $57.6 \mu \mathrm{~s} / 10 \mathrm{MHz}, 549.3 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$					
Ports	Input ports: 8 (All also serve as peripherals.) Output ports: 8 (All also serve as peripherals.) I/O ports: 48 (All also serve as peripherals.) Total: 64					
8-bit timer 1, 8-bit timer 2	8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to $12.8 \mu \mathrm{~s}$) 16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to $12.8 \mu \mathrm{~s}$) 2 output channels are enabled when operating as an 8-bit timer.					
8-bit timer 3, 8-bit timer 4	8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to $12.8 \mu \mathrm{~s}$) 16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to $12.8 \mu \mathrm{~s}$) 2 output channels are enabled when operating as an 8 -bit timer.					
Clock timer	21 bits $\times 1$ (in main clock mode)/15 bits $\times 1$ (at 32.768 kHz)					
8-bit PWM timer 1, 8-bit PWM timer 2	8-bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}$ to 3.3 ms) 8-bit resolution PWM operation (conversion cycle: $102 \mu \mathrm{~s}$ to 839 ms) Both 8-bit PWM timer 1 and 8 -bit PWM timer 2 can output 2 channels.					

(Continued)
(Continued)

Part number	MB89653AR	MB89655AR	MB89656AR	MB89657AR	MB89P657A	MB89PV650A
8-bit serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)					
8 -bit A/D converter	8-bit resolution $\times 8$ channels A/D conversion mode (conversion time: $18 \mu \mathrm{~s}$) Sense mode (conversion time: $5 \mu \mathrm{~s}$) Continuous activation by an internal timer capable Reference voltage input					
External interrupt 1	4 independent channels (edge selection) Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)					
External interrupt 2 (wake-up function)	"L" level interrupt $\times 12$ channels					
Standby mode	Subclock mode, sleep mode, watch mode, and stop mode					
Process	CMOS					
Operating voltage*	2.2 V to 6.0 V				2.7 V to 6.0 V	
EPROM for use	-					MBM27C256A 20TVM

*: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV650A, the voltage varies with the restrictions of the EPROM for use.

■ PACKAGE AND CORRESPONDING PRODUCTS

	MB89653AR Package	MB89655AR MB89656AR MB89657AR MB89P657A

\bigcirc : Available \times : Not available
Note: For more information about each package, see section "■ Package Dimensions."

MB89650AR Series

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89653AR, the upper half of the register bank cannot be used.
- On the MB89P657A, the program area starts from address 8006н but on the MB89PV650A and MB89657AR starts from 8000н.
(On the MB89P657A, addresses 8000 to 8005 н comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV650A and MB89657A, addresses 8000 н to 8005 н could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P657A.)
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- In the case of the MB89PV650A, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section "■ Mask Options."
Take particular care on the following points:

- A pull-up resistor cannot be set for P70 to P75 on the MB89P657A. On this product, a pull-up resistor must be selected in a group of four bits for P14 to P17, P40 to P43, and P44 to P47.
- A pull-up resistor is not selectable for P30 to P37 and P40 to P47 if they are used as LCD pins.
- Options are fixed on the MB89PV650A.

4. Differences between the MB89650A and MB89650AR Series

- Electrical specifications/electrical characteristics

Electrical specifications of the MB89650AR series are the same with that of the MB89650A series.
Electrical characteristics of both series are much the same.

- Oscillation circuit type

In the MB89650A series, the circuit type of using an external clock differs from that of using a crystal or ceramic resonator as follows.
Circuit type of the MB89650AR series is a circuit type in using external clock even when crystal or ceramic resonator is selected.

- Memory access area and other specifications of both the MB89650A and MB89650AR series are the same.

MB89650AR Series

- I/O circuit type

Type	Circuit	Remarks
A		- Crystal or ceramic oscillation type (main clock) MB89PV650A and MB89P657A, external clock input selection versions of MB89653A/655A/656A/657A At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
		- Crystal or ceramic oscillation type (main clock) Crystal or ceramic oscillation selection versions of MB89653A/655A/656A/657A At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$

■ CORRESPONDENCE BETWEEN THE MB89650A AND MB89650AR SERIES

- The MB89650AR series is the reduction version of the MB89650A series.
- The MB89650A and MB89650AR series consist of the following products:

MB89650A series	MB89653A	MB89655A	MB89656A	MB89657A	MB89P657 A	MB89PV650A
MB89650AR series	MB89653A	MB89655A	MB89656A	MB89657A		

MB89650AR Series

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)

MB89650AR Series

(Top view)

Nへ工

 7/TO22
6/TO21/HCLK
5/TO12

(FPT-100P-M06)

MB89650AR Series

(Top view)

(MQP-100C-P02)

- Pin assignment on package top (MB89PV650A only)

Pin no.	Pin name						
101	VPp	109	N.C.	117	O4	125	$\overline{\mathrm{OE}}$
102	A12	110	A2	118	O5	126	N.C.
103	A7	111	A1	119	O6	127	A11
104	A6	112	A0	120	O7	128	A9
105	A5	113	O1	121	O8	129	A8
106	A4	114	O2	122	$\overline{\mathrm{CE}}$	130	A13
107	A3	115	O3	123	A10	131	A14
108	N.C.	116	Vss	124	N.C.	132	Vcc

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
QFP* ${ }^{1}$	$\begin{aligned} & \text { MQFP* } \\ & \text { SQFP }^{*} \end{aligned}$			
4	1	MOD0	J	Operating mode selection pins Connect to Vss (GND) when using.
5	2	MOD1		
6	3	X0	A	Main clock crystal oscillator pins (max. 10 MHz)
7	4	X1		
8	5	Vss	-	Power supply (GND) pin
9	6	$\overline{\text { RST }}$	J	Reset input pin
10 to 17	7 to 14	$\begin{aligned} & \text { P00/INT20 to } \\ & \text { P07/INT27 } \end{aligned}$	F	General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input ($\overline{\mathrm{NT} 20}$ to $\overline{\mathrm{INT} 27}$) is hysteresis input while port input (P00 to P07) is CMOS input.
18 to 21	15 to 18	P10/INT10 to P13/INT13	F	General-purpose I/O ports Also serve as an external interrupt 1 input. External interrupt 1 input (INT10 to INT13) is hysteresis input while port input (P10 to P13) is CMOS input.
22 to 25	19 to 22	$\begin{aligned} & \text { P14//NT28 to } \\ & \text { P15/INT2B } \end{aligned}$	F	General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input ($\overline{\text { (NT28 }}$ to $\overline{\text { INT2B }}$) is hysteresis input while port input (P14 to P17) is CMOS input.
26 to 28	23 to 25	P20 to P22	C	General-purpose I/O ports
$\begin{aligned} & 29, \\ & 30, \\ & 31 \end{aligned}$	$\begin{aligned} & 26, \\ & 27, \\ & 28 \end{aligned}$	$\begin{aligned} & \text { P24/SI, } \\ & \text { P25/SO, } \\ & \text { P26/SCK } \end{aligned}$	F	General-purpose I/O ports The output type can be switched between N-ch opendrain and CMOS. These ports also serve as an 8-bit serial I/O. The P26/SCK pin is a CMOS input type when it functions as the port input (P26) while the pin is a hysteresis input type when it functions as the serial clock input (SCK).
32 to 47	29 to 44	$\begin{aligned} & \text { P36/SEG31 to } \\ & \text { P47/SEG26 } \end{aligned}$	H	General-purpose I/O ports Also serve as an LCD controller/driver segment output.
$\begin{aligned} & 48, \\ & 49 \end{aligned}$	$\begin{aligned} & 45, \\ & 46 \end{aligned}$	$\begin{aligned} & \text { SEG15, } \\ & \text { SEG14, } \end{aligned}$	I	LCD controller/driver segment output pins

*1: FPT-100P-M06
(Continued)
*2: FPT-100P-M05
*3: MQP-100C-P02

MB89650AR Series

(Continued)

Pin no.		Pin name	Circuittype	Function
QFP* ${ }^{1}$	MQFP ${ }^{2}$ SQFP"3			
50	47	Vcc	-	Power supply pin
51 to 58	48 to 55	$\begin{aligned} & \text { SEG13 to } \\ & \text { SEG06 } \end{aligned}$	1	LCD controller/driver segment output pins
59	56	Vss	-	Power supply (GND) pin
60 to 65	57 to 62	$\begin{aligned} & \text { SEG05 to } \\ & \text { SEG00 } \end{aligned}$	1	LCD controller/driver segment output pins
$\begin{aligned} & 66, \\ & 67 \end{aligned}$	$\begin{aligned} & 63, \\ & 64, \end{aligned}$	$\begin{aligned} & \hline \text { P82, } \\ & \text { P83, } \end{aligned}$	C	General-purpose I/O ports
68 to 71	65 to 68	V3 to V0	-	LCD driving power supply pins
$\begin{aligned} & 72, \\ & 73 \end{aligned}$	$\begin{aligned} & 69, \\ & 70, \end{aligned}$	$\begin{aligned} & \text { COM0, } \\ & \text { COM1 } \end{aligned}$	1	LCD controller/driver common output pins
$\begin{aligned} & 74, \\ & 75 \end{aligned}$	$\begin{aligned} & 71, \\ & 72 \end{aligned}$	COM2/P80, COM3/P81	H	General-purpose I/O ports Also serve as an LCD controller/driver common output.
76 to 79	73 to 76	P50/PWM11 to P53/PWM22	G	General-purpose output ports Also serve as an 8-bit PWM timer.
$\begin{aligned} & 80, \\ & 81, \\ & 82, \\ & 83 \end{aligned}$	$\begin{aligned} & 77, \\ & 78, \\ & 79, \\ & 80 \end{aligned}$	$\begin{aligned} & \text { P54/TO11/LCLK, } \\ & \text { P55/TO12, } \\ & \text { P56/TO21/HCLK, } \\ & \text { P57/TO22 } \end{aligned}$	G	General-purpose output ports Also serve as an $8 / 16$-bit timer. P54 and P56 also serve as a 32.768 kHz oscillation output/ 10 MHz divide-by-two output.
84	81	AVss	-	A/D converter power supply (GND) pin
85 to 92	82 to 89	P60/AN0 to P67/AN7	E	General-purpose input ports Also serve as an analog input.
93	90	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin
94	91	AVR	-	A/D converter reference voltage input pin
$\begin{aligned} & 95, \\ & 96 \end{aligned}$	$\begin{aligned} & 92, \\ & 93 \end{aligned}$	$\begin{aligned} & \text { P70/EC1, } \\ & \text { P71/EC2 } \end{aligned}$	K	General-purpose N -ch open-drain I/O ports Also serve as an 8/16-bit timer to input hysteresis.
$\begin{gathered} 97, \\ 98 \text { to } 100 \end{gathered}$	$\begin{gathered} 94, \\ 95 \text { to } 97 \end{gathered}$	P72/BUZ, P73 to P75	D	General-purpose N-ch open-drain I/O ports P72 also serves as a buzzer output.
1	98	Vcc	-	Power supply pin
2	99	X1A	B	Subclock crystal oscillator pins (32.768 kHz)
3	100	X0A		

*1: FPT-100P-M06
*2: FPT-100P-M05
*3: MQP-100C-P02

- External EPROM pins (MB89PV650A only)

Pin no.	Pin name	I/O	Function
101	VPp	0	" H " level output pin
$\begin{aligned} & 102 \\ & 103 \\ & 104 \\ & 105 \\ & 106 \\ & 107 \\ & 110 \\ & 111 \\ & 112 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 113 \\ & 114 \\ & 115 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	1	Data input pins
116	Vss	0	Power supply (GND) pin
$\begin{aligned} & 117 \\ & 118 \\ & 119 \\ & 120 \\ & 121 \end{aligned}$	$\begin{aligned} & \text { O4 } \\ & \text { O5 } \\ & \text { O6 } \\ & \text { O7 } \\ & \text { O8 } \end{aligned}$	I	Data input pins
122	$\overline{C E}$	O	ROM chip enable pin Outputs " H " during standby.
123	A10	0	Address output pin
125	$\overline{\mathrm{OE}}$	O	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & 127 \\ & 128 \\ & 129 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	0	Address output pins
130	A13	O	Address output pin
131	A14	0	Address output pin
132	Vcc	O	EPROM power supply pin
$\begin{aligned} & 108 \\ & 109 \\ & 124 \\ & 126 \\ & \hline \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89650AR Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal or ceramic oscillation type (main clock) MB89PV650A and MB89P657A, external clock input selection versions of MB89653AR/655AR/656AR/ 657AR At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B		- Crystal or ceramic oscillation type (subclock) MB89PV650A, MB89P657A At an oscillation feedback resistor of approximately 4.5 $\mathrm{M} \Omega / 5.0 \mathrm{~V}$
		- Crystal or ceramic oscillation type (subclock) MB89653AR/655AR/656AR/657AR At an oscillation feedback resistor of approximately $4.5 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
C		- CMOS I/O - Pull-up resistor optional (except P82 and P83)
D		- N-ch open-drain I/O - CMOS input - Pull-up resistor optional
E		- A/D converter input - CMOS input - Pull-up resistor optional

(Continued)

MB89650AR Series

(Continued)

MB89650AR Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\text {cc }}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V cc and V ss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AV cc and $A V R$) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V c c=D A V C=V c c$ and $A V s s=A V R=V$ ss even if the A / D and D / A converters are not in use .

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P657A

The MB89P657A is an OTPROM version of the MB89650A series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P657A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.
When the operating ROM area for a single chip is 32 Kbytes (8006н to FFFFH) the PROM can be programmed as follows:

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7FFFн (note that addresses 8006н to FFFFн while operating as a single chip assign to 0006н to 7FFFн in EPROM mode).
Load option data into addresses 0000 н to 0005 н of the EPROM programmer. (For information about each corresponding option, see "7. Setting OTPROM Options.")
(3) Program to 0000 н to 7 FFFH with the EPROM programmer.

MB89650AR Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-100P-M05	ROM-100SQF-28DP-8L
FPT-100P-M06	ROM-100QF-28DP-8L2

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Connect the ROM-100SQF-28DP-8L jumper pin to Vss when using.
Depending on the EPROM programmer, inserting a capacitor of about $0.1 \mu \mathrm{~F}$ between $\mathrm{V}_{\text {PP }}$ and $\mathrm{V}_{\text {ss }}$ or Vcc and $\mathrm{V}_{\text {ss }}$ can stabilize programming operations.

MB89650AR Series

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000	Vacancy Readable and writable	P81 Pull-up 1: No 0 : Yes		Single/dualclock system 1: Dual clock 2: Single clock				
0001H	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0 : Yes	P05 Pull-up 1: No 0 : Yes		P03 Pull-up 1: No 0 : Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0 : Yes 0 : Yes	P00 Pull-up 1: No 0 : Yes
0002н	P37 Pull-up 1: No 0 : Yes	P36 Pull-up 1: No 0 : Yes	P35 Pull-up 1: No 0 : Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0 : Yes	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0 : Yes	P30 Pull-up 1: No 0: Yes
0003н	P67 Pull-up 1: No 0 : Yes	P66 Pull-up 1: No 0 : Yes	P65 Pull-up 1: No 0 : Yes	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0 : Yes	P62 Pull-up 1: No 0 : Yes	P61 Pull-up 1: No 0 : Yes	P60 Pull-up 1: No 0 : Yes
0004н	P47 to P44 Pull-up 1: No 0: Yes	P43 to P40 Pull-up 1: No 0: Yes	P26 Pull-up 1: No 0 : Yes	P25 Pull-up 1: No 0 : Yes	P24 Pull-up 1: No 0 : Yes		P21 Pull-up 1: No 0 : Yes	P20 Pull-up 1: No 0 : Yes
0005	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P17 to P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0 : Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0 : Yes	P10 Pull-up 1: No 0 : Yes

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

MB89650AR Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG
LCC-32(Square)	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode, such as 32 -Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7 FFF н.
(3) Program to 0000 to 7 7FFF with the EPROM programmer.

BLOCK DIAGRAM

MB89650AR Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89650AR series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89650AR series is structured as illustrated below.

Memory Space

*: This is an internal PROM on the MB89P657A.
Since addresses 8000 H to 8005 H for the MB89P657A comprise an option area, do not use this area for the MB89PV650A.

MB89650AR Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP):
Stack pointer (SP):
A 16-bit pointer for indicating a memory address
A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89650AR Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89650AR Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89653AR (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can be used on other than the MB89653AR.

Register Bank Configuration

I/O MAP

Address	Read/write	Register name	Register description
00 ${ }^{\text {H}}$	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05 H	(R/W)	DDR2	Port 2 data direction register
06			Vacancy
07 ${ }^{\text {r }}$	(R/W)	SCC	System clock control register
08н	(R/W)	SMC	System mode control register
09н	(R/W)	WDTC	Watchdog time control register
ОАн	(R/W)	TBTC	Time-base timer control register
OBн	(R/W)	WCR	Watch prescaler control register
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
ODH	(R/W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
OF\%	(R/W)	DDR4	Port 4 data direction register
10^{+}	(R/W)	T4CR	Timer 4 control register
11н	(R/W)	T3CR	Timer 3 control register
12н	(R/W)	T4DR	Timer 4 data register
13H	(R/W)	T3DR	Timer 3 data register
14 H			Vacancy
15 H			Vacancy
16 н	(R/W)	PDR5	Port 5 data register
17 ${ }^{\text {}}$			Vacancy
18H			Vacancy
19 н			Vacancy
1 Ан	(W)	ICR6	Port 6 input control register
1 BH	(R)	PDR6	Port 6 data register
1 CH	(R/W)	PDR7	Port 7 data register
1D ${ }_{\text {H }}$	(R/W)	CHG2	Port 2 switching register
$1 \mathrm{E}_{\text {н }}$	(R/W)	CNTR1	PWM 0/1 control register
1 FH	(W)	COMP1	PWM 0/1 compare register

(Continued)

MB89650AR Series

(Continued)

Address	Read/write	Register name	Register description
2 OH	(R/W)	CNTR2	PWM 2/3 control register
21н	(W)	COMP2	PWM 2/3 compare register
22 H			Vacancy
23н			Vacancy
24 H	(R/W)	T2CR	Timer 2 control register
25 H	(R/W)	T1CR	Timer 1 control register
26 +	(R/W)	T2DR	Timer 2 data register
27 H	(R/W)	T1DR	Timer 1 data register
28н	(R/W)	SMR	Serial mode register
$29^{\text {н }}$	(R/W)	SDR	Serial data register
2 Ан $^{\text {¢ }}$			Vacancy
2 BH			Vacancy
2 CH			Vacancy
2DH	(R/W)	ADC1	A/D converter control register 1
$2 \mathrm{E}_{\text {н }}$	(R/W)	ADC2	A/D converter control register 2
2 FH	(R/W)	ADCD	A/D converter data register
$3 \mathrm{H}_{\mathrm{H}}$	(R/W)	EIE1	External interrupt 1 enable register
$31{ }_{\text {H }}$	(R/W)	EIF1	External interrupt 1 flag register
32н	(R/W)	EIE2	External interrupt 2 enable register
33н	(R/W)	EIF2	External interrupt 2 flag register
34- to 5FH			Vacancy
60н to 6FH	(R/W)	VRAM	Display data RAM
70 н	(R/W)	LCR1	LCD controller/driver control register 1
71H	(R/W)	LCR2	LCD controller/driver control register 2
72н	(R/W)	PDR8	Port 8 data register
73-	(W)	DDR8	Port 8 data direction register
74, to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Note: Do not use vacancies.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	Vss -0.3	Vss +7.0	V	
A/D converter reference input voltage	AVR	Vss -0.3	Vss +7.0	V	1
LCD power supply voltage	V0 to V3	Vss-0.3	Vss +7.0	V	V0 to V3 must not exceed Vcc.
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	Except P70 to P75*2
	V12	Vss-0.3	Vss +7.0	V	P70 to P75
Output voltage	Vo	Vss-0.3	$\mathrm{Vcc}+0.3$	V	Except P70 to P75*2
	V02	Vss-0.3	Vss +7.0	V	P70 to P75
"L" level maximum output current	loL	-	20	mA	
"L" level average output current	Iolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	「loL	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
" H " level maximum output current	Іон	-	-20	mA	
"H" level average output current	Iohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	ऽ ${ }_{\text {он }}$	-	-50	mA	
"H" level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	PD	-	300	mW	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Use $A V c c$ and $V c c$ set at the same voltage.
Take care so that $A V R$ does not exceed $A V c c+0.3 \mathrm{~V}$ and $A V c c$ does not exceed $V c c$, such as when power is turned on.
*2: V_{I} and V o must not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89650AR Series

2. Recommended Operating Conditions

Parameter					$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}$
	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	2.2*	6.0*	V	Normal operation assurance range* MB89653AR/655AR/656AR/657AR
		2.7*	6.0*	V	Normal operation assurance range* MB89PV650A/P657A
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
LCD power supply voltage	V0 to V3	Vss	Vcc	V	LCD power supply range (The optimum value is dependent on the LCD element in use.)
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Note: The shaded area is assured only for the MB89653A/655A/656A/657A.

Figure 1 Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 /$ Fch. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

MB89650AR Series

3. DC Characteristics

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	V_{1+1}	P20 to P26, P30 to P37, P40 to P47, P60 to P67, P80 to P83	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	V_{1+2}	P72 to P75	-	0.7 Vcc	-	Vss +6.0	V	Without pullup resistor
	Vıнs	P00 to P07, P10 to P17, $\overline{\mathrm{RST}}$, MODO, MOD1, P26 (at SC input)	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Vihs2	P70, P71	-	0.8 Vcc	-	Vss +6.0	V	Without pullup resistor
"L" level input voltage	VII	P20 to P26, P30 to P37, P40 to P47, P60 to P67, P72 to P75, P80 to P83	-	Vss -0.3	-	0.3 Vcc	V	
	Vis	P00 to P07, P10 to P17, P26 (at SC input), P70, P71, $\overline{\mathrm{RST}}$, MODO, MOD1	-	Vss -0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P24 to P26	-	Vss -0.3	-	$\begin{gathered} \mathrm{V}_{\mathrm{ss}}+ \\ 0.3 \end{gathered}$	V	N -ch opendrain
	VD2	P70 to P75	-	Vss -0.3	-	$\begin{gathered} \text { Vss + } \\ 6.0 \end{gathered}$	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P50 to P57, P80 to P83	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P83	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	lı	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P60 to P67, P70 to P75, P80 to P83, MODO, MOD1, $\overline{R S T}$	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pullup resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P60 to P67, P70 to P75, P80 to P81	$\mathrm{V}=0.0 \mathrm{~V}$	25	50	100	k Ω	With pull-up resistor

(Continued)

MB89650AR Series

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym-	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{11}$	lcc 1	Vcc	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{2}=0.4 \mu \mathrm{~s} \end{aligned}$	-	12	20	mA	
	Icc2		$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \end{aligned}$	-	1.0	2	mA	MB89653AR/ 655AR/656AR/ 657AR/PV650A
			tinst $^{*}{ }^{2}=6.4 \mu \mathrm{~s}$	-	1.5	2.5	mA	MB89P657A
	Iccs1		$\begin{array}{\|l\|l} \hline & \begin{array}{l} \text { CH }=10 \mathrm{MHz} \\ \text { O } \\ \text { O } \end{array} \\ \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \text { tinst }^{2}=0.4 \mu \mathrm{~s} \end{array}$	-	3	7	mA	
	Iccs2			-	0.5	1.5	mA	
	Iccl		$\begin{aligned} & \mathrm{F} \mathrm{cL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \\ & \text { Subclock mode } \end{aligned}$	-	50	100	$\mu \mathrm{A}$	MB89P657A/ 655AR/656AR/ 657AR/PV650A
				-	500	700	$\mu \mathrm{A}$	MB89P657A
	Iccls		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \text { Subclock sleep } \\ & \text { mode } \end{aligned}$	-	15	50	$\mu \mathrm{A}$	
	Icct		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz}, \\ & \mathrm{~V} \mathrm{cc}=3.0 \mathrm{~V} \end{aligned}$ - Watch mode - Main clock stop mode at dualclock system	-	3	15	$\mu \mathrm{A}$	
	Ісch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ - Subclock stop mode - Main clock stop mode at singleclock system	-	-	1	$\mu \mathrm{A}$	
	I_{A}	AVcc	$\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$, when A/D conversion is activated	-	1.5	3	mA	
	Іан		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \end{aligned}$ when A / D conversion is stopped	-	-	1	$\mu \mathrm{A}$	

(Continued)

MB89650AR Series

(Continued)

Parameter	$\underset{\substack{\text { Sym- } \\ \text { bol }}}{ }$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
LCD divided resistance	Rlcd	-	Between Vcc and Vo at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	300	500	750	$\mathrm{k} \Omega$	
COMO to 3 output impedance	Rvcom	COMO to 3	$\begin{aligned} & \mathrm{V} 1 \text { to } \mathrm{V} 3=5.0 \\ & \mathrm{~V} \end{aligned}$	-	-	2.5	$\mathrm{k} \Omega$	
$\begin{aligned} & \text { SEG0 to } 31 \\ & \text { output } \\ & \text { impedance } \end{aligned}$	Ruseg	SEG0 to 31		-	-	15	$\mathrm{k} \Omega$	
LCD controller/ driver leakage current	ILcoL	V0 to V3, COMO to 3, SEG0 to SEG31	-	-	-	± 1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than AV cc, $\mathrm{AV}_{\mathrm{ss}}, \mathrm{V} \mathrm{cc}$, and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The power supply current is measured at the external clock.
*2: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."
Note: For pins which serve as the LCD and ports (P30 to P37, P40 to P47, and P80 to P81), see the port parameter when these pins are used as ports and the LCD parameter when they are used as LCD pins.

MB89650AR Series

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{Ss}}=\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST "L" pulse width }}$	tzLZZH	-	48 thcyl	-	ns	

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	t_{R}	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89650AR Series

(3) Clock Timing

$\left(\mathrm{AVss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fch	X0, X1	-	1	-	10	MHz	
	Fcı	X0A, X1A		-	32.768	-	kHz	
Clock cycle time	theyl	X0, X1		100	-	1000	ns	
	tıCyL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{wLL}} \end{aligned}$	X0		20	-	-	ns	External clock
	PwL Pwll	XOA		-	15.2	-	$\mu \mathrm{s}$	External clock
Input clock rising/ falling time	tcR tcF	X0		-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

XOA and X1A Timing and Conditions

Subclock Conditions

MB89650AR Series

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{s}$	$\left(4 / F_{C H}\right)$ tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$
		2/Fcı	$\mu \mathrm{s}$	$\text { tinst }=61.036 \mu \mathrm{~s} \text { when operating at }$ $\mathrm{FcL}=32.768 \mathrm{kHz}$

Note: When operating at 10 MHz , the cycle varies with the set execution time.
(5) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsH	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tsHIX	SCK, SI		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External shift clock mode	1 tinst******	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsLsh			1 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

Internal Shift Clock Mode

External Shift Clock Mode

MB89650AR Series

(6) Peripheral Input Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width 1	tıLIH1	INT10 to INT13, EC1, EC2	1 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	tIHLL1		1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıIIH2	$\overline{\mathrm{INT20}}$ to $\overline{\mathrm{INT} 2 \mathrm{~B}}$	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	tIHIL2		2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89650AR Series

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	8	bit	
Total error			$\begin{aligned} & \mathrm{AVR}= \\ & \mathrm{AV} \mathrm{cc} \end{aligned}$	-	-	± 1.5	LSB	
Linearity error				-	-	± 1.0	LSB	
Differential linearity error				-	-	± 0.9	LSB	
Zero transition voltage	Vот			AVss-1.0 LSB	AVss + 0.5 LSB	AVss + 2.0 LSB	mV	
Full-scale transition voltage	Vfst			AVR - 3.0 LSB	AVR-1.5 LSB	AVR	mV	
Interchannel disparity	-			-	-	0.5	LSB	
A/D mode conversion time			-	-	44 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Sense mode conversion time				-	12 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Analog port input current	IAIN	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-			0.0	-	AVR	V	
Reference voltage	-	AVR		0.0	-	AV ${ }_{\text {cc }}$	V	
Reference voltage supply current	IR		$\mathrm{AVR}=5.0 \mathrm{~V}$, when A/D conversion is activated	-	100	-	$\mu \mathrm{A}$	
	Ire		AVR $=5.0 \mathrm{~V}$, when A/D conversion is stopped	-	-	1	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" " "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

(2) Precautions

- Input impedance of the analog input pins

The A/D converter used for the MB89650AR series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

Analog Input Equivalent Circuit

If the analog input impedance is higher than $10 \mathrm{k} \Omega$, it is recommended to connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$.

- Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

MB89650AR Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

Viнs: Threshold when input voltage in hysteresis characteristics is set to " H " level
VILs: Threshold when input voltage in hysteresis characteristics is set to " L " level

MB89650AR Series

(5) Power Supply Current (External Clock)

(Continued)

MB89650AR Series

(Continued)

(6) Pull-up Resistance

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89650AR Series

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri 8 bits, $\mathrm{i}=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
$\sim:$	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: \quad Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89650AR Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ +--	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	++--	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (})\end{array}\right)$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ +--	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) $\leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow(e x t+1)$	AL	AH	dH	+	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{l}+1)$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3		$($ (A) $) \leftarrow(\mathrm{T})$	-	-	-	----	82
MOVW @A,T	4		$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	(AX) $\leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2		$(\mathrm{A}) \leftarrow$ (PS)	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	---	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	(A) $\leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	_	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89650AR Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow(A)+(R i)+C$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	$++++$	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) +off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) +off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	$++++$	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	- - - -	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	- - - -	C2
INCW A	3	1	$(A) \leftarrow(A)+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	$+++-$	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	- - - -	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(A) \leftarrow(A)-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	- - - -	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	$++\mathrm{R}-$	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	$++++$	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d8}$	-	-	-	$++\mathrm{R}-$	64
AND A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ (dir)	-	-	-	+ + R -	65

(Continued)
(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+$ off $)$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{XX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	--- -	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall N=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b$)=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	--	41	
POPW IX	4	1			-	-	-	----
NOP	1	1		-	-	-	---	51
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1		-	--	90		

MB89650AR Series

- INSTRUCTION MAP

L ${ }^{\text {H }}$	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW	$\mathrm{POPW}_{\mathrm{A}}$	MOV A, ext	MOVW A,PS	CLRI	SETI	$\begin{gathered} \mathrm{CLRB} \\ \text { dir: } 0 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BBC } \\ \text { dir: } 0, \mathrm{rel} \end{array}$	$\mathrm{INCW}_{\mathrm{A}}$	$\begin{array}{\|c\|} \hline \mathrm{DECW} \\ \mathrm{~A} \end{array}$	$\begin{array}{\|l\|} \hline \text { JMP } \\ \quad @ A \end{array}$	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	$\underset{\text { IX }}{ }$	$\underset{\text { IX }}{\text { POPW }}$	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	$\left\|\begin{array}{\|l\|} \mathrm{BBC} \\ \text { dir: } 1, \mathrm{rel} \end{array}\right\|$	INCW SP	$\begin{array}{\|c\|} \hline \mathrm{DECW} \\ \mathrm{SP} \end{array}$	MOVW SP,A	MOVW A,SP
2	${ }^{\text {ROLC }}$ A	CMP	$\mathrm{ADDC}_{\mathrm{A}}$	$\mathrm{SUBC}_{\mathrm{A}}$	$\underset{A, T}{\mathrm{XCH}}$	$\mathrm{XOR}^{\text {a }}$	${ }^{\text {AND }} \mathrm{A}$	OR ${ }^{\text {a }}$	MOV @A,T	MOV A,@A	$\begin{gathered} \text { CLRB } \\ \text { dir: } 2 \end{gathered}$	BBC dir: 2,rel	$\mathrm{INCW}_{\mathrm{IX}}$	$\left\lvert\, \begin{array}{\|l\|l\|} \text { DECW } \\ \text { IX } \end{array}\right.$	$\underset{\text { IX,A }}{\mathrm{MOVW}}$	$\left\lvert\, \begin{array}{\|c\|} \mathrm{MOVW} \\ \mathrm{~A}, \mathrm{IX} \\ \hline \end{array}\right.$
3	$\begin{array}{\|c\|} \text { RORC } \\ \\ \hline \end{array}$	CMPW A	$\left\|\begin{array}{c} \text { ADDCW } \end{array}\right\|$	$\text { SUBCW }_{A}$	$\begin{array}{\|c\|c\|} \text { XCHW } \\ \text { A, } \end{array}$	XORW A	$\mathrm{ANDW}_{\mathrm{A}}$	ORW ${ }_{\text {A }}$	MOVW @A,T	MOVW A,@A	$\underset{\text { dir: } 3}{\text { CLRB }}$	$\begin{array}{\|l\|} \hline \text { BBC } \\ \text { dir: } 3, \text { rel } \end{array}$	${\underset{E P}{I N C W}}^{\text {In }}$	$\underset{\text { EP }}{\mathrm{DECW}}$	MOVW EP,A	MOVW A,EP
4	$\underset{\text { A, \#d8 }}{ }$	$\underset{\mathrm{A}, \mathrm{\# d} 8}{\mathrm{CMP}}$	ADDC A,\#d8	SUBC A,\#d8		XOR A,\#d8	AND A,\#d8	OR A,\#d8	DAA	DAS	$\begin{aligned} & \mathrm{LRB} \\ & \text { dir: } 4 \end{aligned}$	BBC dir: 4,rel	$\underset{\mathrm{A}, \mathrm{ext}}{\mathrm{MOVW}}$	MOVW ext,A	MOVW A,\#d16	$\left\|\begin{array}{r} \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{PC} \end{array}\right\|$
5	$\mathrm{MOV}_{\mathrm{A}, \text { dir }}$	$\underset{\text { A,dir }}{\text { CMP }}$	ADDC A,dir	SUBC A,dir	$\underset{\text { dir,A }}{\mathrm{MOV}}$	$\underset{\text { A,dir }}{\text { XOR }}$	${ }_{\text {AN, dir }}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{dir}}$	$\begin{aligned} & \mathrm{MOV} \\ & \text { dir,\#d8 } \end{aligned}$	$\begin{array}{\|c\|} \mathrm{CMP} \\ \text { dir,\#d8 } \end{array}$	$\begin{array}{\|c\|} \hline \text { CLRB } \\ \text { dir: } 5 \end{array}$	$\left\|\begin{array}{\|l\|} \hline \mathrm{BBC} \\ \text { dir:5,rel } \end{array}\right\|$	$\underset{\text { A,dir }}{\mathrm{MOVW}}$	$\underset{\text { dir, }}{10 \mathrm{~A}}$	MOVW SP,\#d16	$\left\lvert\, \begin{array}{\|c\|} \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{SP} \\ \hline \end{array}\right.$
6	$\begin{aligned} & \text { MOV } \\ & \text { A,@\|X }+d \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \mathrm{A}, @ \mid X+d \end{aligned}$	$\begin{aligned} & \text { ADDC } \\ & \mathrm{A}, @ \mid \mathrm{X}+\mathrm{d} \end{aligned}$	SUBC A,@IX +d	$\begin{array}{\|l\|} \operatorname{MOV} \\ +\mathrm{d}, \mathrm{~A} \end{array} @ \mathrm{X}$	$\underset{\text { A,@\|X +d }}{\text { XOR }}$	$\begin{aligned} & \text { AND } \\ & \text { A,@\|X +d } \end{aligned}$	$\begin{aligned} & \mathrm{OR} \\ & \mathrm{~A}, @ 1 \mathrm{X}+\mathrm{d} \end{aligned}$	MOV @IX+d,\#d8	$\begin{aligned} & \text { CMP } \\ & @ 1 \mathrm{X}+\mathrm{d}, \mathrm{dd} \end{aligned}$	$\begin{array}{\|} \text { CLRB } \\ \text { dir: } 6 \end{array}$	$\left\lvert\, \begin{aligned} & \text { BBC } \\ & \text { dir: } 6, \text { rel } \end{aligned}\right.$	movw A,@\|X+d	MOVW @IX+d,A	MOVW IX,\#d16	XCHW A,IX
7	$\begin{array}{\|l\|l} \mathrm{MOV} \\ \mathrm{~A}, @ \mathrm{EP} \end{array}$	$\begin{array}{\|l\|} \hline \text { CMP } \\ \text { A,@EP } \end{array}$	$\begin{array}{\|c\|} \text { ADDC } \\ \text { A,@EP } \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { A,@EP } \end{array}$	MOV @EP,A	XOR A,@EP	AND A,@EP	OR A,@EP	MOV @EP,\#dd	$\begin{aligned} & \text { CMP } \\ & \text { @EP,\#d8 } \end{aligned}$	$\begin{gathered} \mathrm{CLRB} \\ \text { dir: } 7 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BBC } \\ \text { dir: } 7, \text { rel } \end{array}$	$\begin{aligned} & \text { MOVW } \\ & \text { A, @EP } \end{aligned}$	MOVW @EP,A	MOVW EP,\#d16	XCHW A, EP
8	MOV A,RO	CMP A,RO	ADDC A,R0	SUBC A,RO	MOV $\mathrm{R}, \mathrm{~A}$	XOR A,RO	AND A,RO	$\mathrm{OR}_{\mathrm{A}, \mathrm{RO}}$	$\begin{array}{\|l\|} \hline \text { MOV } \\ \text { R0,\#d8 } \end{array}$	CMP R0,\#d8	$\begin{gathered} \text { SETB } \\ \text { dir: } 0 \end{gathered}$	$\begin{array}{\|l} \text { BBS } \\ \text { dir: } 0, \text { rel } \end{array}$	INN	$\mathrm{DEC}_{\mathrm{RO}}$	CALLV \#0	BNC rel
9	MOV A,R1	CMP A,R1	ADDC A,R1	SUBC A,R1	MOV R1,A	XOR A,R1	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	$\underset{\text { dir: } 1}{ }$	$\begin{array}{\|l\|} \hline \text { BBS } \\ \text { dir: } 1, \text { rel } \end{array}$	INC R1	$\mathrm{DEC}_{\mathrm{R} 1}$	CALLV \#1	BC rel
A	MOV A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,\#d8	CMP R2,\#d8	$\begin{array}{\|c\|} \hline \text { deTB } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { BBS } \\ \text { dir: } 2, \text { rel } \end{array}$	R2	$\mathrm{DEC}_{\mathrm{R} 2}$	CALLV \#2	BP
B	$\underset{\mathrm{A}, \mathrm{R} 3}{\mathrm{MOV}}$	CMP A,R3	ADDC A,R3	SUBC A,R3	$\underset{\text { R3,A }}{\mathrm{MOV}}$	$\underset{A, R 3}{X O R}$	$\underset{\mathrm{A}, \mathrm{R} 3}{\mathrm{AND}}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R} 3}$	MOV R3,\#d8	CMP R3.\#d8	$\begin{array}{\|c\|} \hline \text { SETB } \\ \text { dir: } \end{array}$	$\begin{array}{\|l\|} \hline \text { BBS } \\ \text { dir: 3,rel } \end{array}$	$\mathrm{INC}_{\mathrm{R} 3}$	$\mathrm{DEC}_{\mathrm{R} 3}$	CALLV \#3	BN rel
C	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{MOV}}$	CMP A,R4	ADDC A,R4	SUBC A,R4	$\underset{\mathrm{R} 4, \mathrm{~A}}{\mathrm{MOV}}$	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{XOR}}$	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{AND}}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R} 4}$	$\begin{array}{\|c\|} \hline \text { MOV } \\ \text { R4,\#d8 } \end{array}$	$\begin{array}{\|l\|} \hline \text { CMP } \\ \text { R4,\#d8 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SETB } \\ \text { dir: } \end{array}$	BBS dir: 4,re	INC R4	$\mathrm{DEC}_{\mathrm{R4}}$	CALLV \#4	BNZ rel
D	MOV A,R5	CMP A,R5	ADDC A,R5	SUBC A,R5	MOV R5,A	XOR A,R5	AND A,R5	OR A,R5	MOV R5,\#d8	CMP R5,\#d8	$\begin{array}{\|c\|} \hline \text { SETB } \\ \text { dir: } 5 \end{array}$	$\begin{array}{\|l\|} \hline \text { BBS } \\ \text { dir: } 5, \text { rel } \end{array}$	INC R5	$\mathrm{DEC}_{\mathrm{R}}$	CALLV \#5	BZ
E	MOV A,R6	CMP A,R6	ADDC A,R6	SUBC A,R6	MOV R6,A	XOR A,R6	AND A,R6	OR A,R6	MOV R6,\#d8	CMP R6,\#d8	$\begin{array}{\|c\|} \hline \text { SETB } \\ \text { dir: } 6 \end{array}$	$\begin{array}{\|l\|} \hline \text { BBS } \\ \text { dir: } 6, \text { rel } \end{array}$	R6	$\mathrm{DEC}_{\mathrm{R} 6}$	CALLV \#6	BGE rel
F	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{R} 7 \end{array}$	CMP A,R7	ADDC A,R7	SUBC A,R7	$\underset{\mathrm{RT}, \mathrm{~A}}{\mathrm{MOV}}$	$\underset{A, R 7}{X O R}$	$\underset{\text { A, R7 }}{\text { AND }}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R} 7}$	MOV R7,\#d8	$\left\lvert\, \begin{array}{c\|} \hline \mathrm{CMP} \\ \mathrm{R} 7, \# \mathrm{~d} 8 \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { SETB } \\ \text { dir: } 7 \end{array}$	$\begin{aligned} & \text { BBS } \\ & \text { dir: 7,rel } \end{aligned}$	$\text { INC }_{\text {R7 }}$	DEC R7	CALLV \#7	BLT ${ }^{\text {rel }}$

MASK OPTIONS

No.	Part number	MB89653AR MB89655AR MB89656AR MB89657AR	MB89P657A	MB89PV650A

*1: The value at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$
*2: On microcontrollers with a built-in booster, only $1 / 3$ bias can be used. The $1 / 2$ duty cannot be used.
Note: Reset is input asynchronized with the internal clock whether with or without power-on reset.

MB89650AR Series

ORDERING INFORMATION

Part number	Package	Remarks
MB89653APFV		
MB89655APFV		
MB89656APFV		
MB89657APFV		
MB89P657APFV-101	100-pin Plastic SQFP	
MB89P657APFV-102	(FPT-100P-M05)	
MB89P657APFV-103		
MB89857APFV-104		
MB89P657APFV-105		
MB89653APFV-106		
MB89655APF		
MB89656APF		
MB89657APF		
MB89P657APF-101	100-pin Plastic QFP	
MB89P657APF-102	(FPT-100P-M06)	
MB89P657APF-103		
MB89P657APF-104		
MB89P657APF-106		
MB899PV650ACF	100-pin Ceramic MQFP	

MB89650AR Series

PACKAGE DIMENSIONS

© 1994 FUUTSU LIITED F100007--2C-2

MB89650AR Series

100-pin plastic QFP
 (FPT-100P-M06)

© 1994 FUJTSU LIMTED F100008-3C-2

MB89650AR Series

100-pin Ceramic MQFP
 (MQP-100C-P02)

© 1994 FUUTTSU LIMTED M100002SC--2.2

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0004
© FUJITSU LIMITED Printed in Japan

