8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89810A Series

MB89816A/P817A

■ DESCRIPTION

The MB89810A series is a line of single-chip microcontrollers based on the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ CPU core which can operate at low voltage but at high speed. The microcontrollers contain peripheral function such as timer, serial interface, a UART, and an external interrupt. The MB89810A series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices.
*: F²MC stands for FUJITSU Flexible Microcontroller.

FEATURES

High speed processing at low voltage
Minimum execution time: $0.8 \mu \mathrm{~s} / 3.0 \mathrm{~V}, 1.33 \mu \mathrm{~s} / 2.2 \mathrm{~V}$

- F²MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- Four types of timers

8 -bit PWM timer: 2 channels (also serve as reload timers)
16-bit timer/counter
21-bit time-base timer

- Two serial interface

8 -bit synchronous serial (Switchable transfer direction allows communication with various equipment.)
UART (5-, 7-, or 8-bit transfer capable)
(Continued)

PACKAGE

MB89810A Series

(Continued)

- External interrupt: 8 channels

Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal)
■ PRODUCT LINEUP

Part number Parameter	MB89816A MB89P817A
Classification	Mass-production product One-time PROM product (mask ROM products) (for evaluation and development)
ROM size	$24 \mathrm{~K} \times 8$ bits (internal mask ROM) $32 \mathrm{~K} \times 8$ bits (internal PROM, programming with gen- eral-purpose EPROM programmer)
RAM size	2048×8 bits
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.8 \mu \mathrm{~s} / 5 \mathrm{MHz}$ Interrupt processing time: $7.2 \mu \mathrm{~s} / 5 \mathrm{MHz}$
Ports	Input ports: 8 (All also serve as peripherals.) Output ports: 8 I/O ports (N-ch open-drain): 5 (for LED driving) I/O ports (CMOS): 32 (14 ports also serve as peripherals.) Total: 53
8-bit PWM timer	Two internal channels 8 -bit reload timer operation (toggled output capable, operating clock cycle: 3 different cycles) 8 -bit resolution PWM operation (conversion cycle: 3 different cycles)
8-bit timer/counter	16-bit timer operation 16-bit event counter operation
UART	5-, 7-, or 8-bit transfer capable Built-in baud rate generator Clock synchronous/asynchronous data transfer capable
8-bit Serial I/O	8-bits LSB-first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks)
External interrupt	8 independent channels (edge selection, interrupt vector, source flag) 4 channels: Level detection (level selectable) 4 channels: Edge detection (edge selectable) Used also for wake-up from the stop/sleep mode. (Edge detection is also permitted in stop mode.)

(Continued)

MB89810A Series

(Continued)

Part number Parameter	MB89816A	MB89P817A
Watch interrupt	Interrupt cycles: 4 different cycles (subclock)	
Watchdog timer reset	Reset occurrence cycle: $839 \mathrm{~ms} / 5 \mathrm{MHz}$	
Standby mode	Sleep mode, stop mode	
Process	CMOS	
Package	FPT-64P-M06	
Operating voltage	2.2 V to $6.0 \mathrm{~V}^{*}$	2.7 V to $6.0 \mathrm{~V}^{*}$

*: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

PIN ASSIGNMENT

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
23	X0	A	Main clock oscillator pins
24	X1		
18	X0A	1	Subclock crystal oscillator pins
19	X1A		
21	MOD0	B	Operating mode selection pins Connect directly these pins directly to V ss.
22	MOD1		
20	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of " L ".
49 to 42	P00 to P07	D	General-purpose I/O ports A pull-up resistor option is provided. These ports have the port output inverting function.
41 to 34	P10 to P17	D	General-purpose I/O ports A pull-up resistor option is provided. These ports have the port output inverting function.
33 to 30	P20 to P23	F	General-purpose output ports These ports have the port output inverting function.
29 to 26	P24 to P27	F	General-purpose output ports
1	P30 /PWE	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection enable input (PWE). PWE input is hysteresis input.
2	P31/ $\overline{\text { SCK }}$	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O for the 8-bit serial I/O (SCK). SCK input is hysteresis input.
3	P32/SO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output for the 8 -bit serial I/O (SO).
4	P33/SI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input for the 8 -bit serial I/O (SI). SI input is hysteresis input.
5	P34/PWO	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection output (PWO).
6	P35/PWI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a pulse width detection input (PWI). PWI input is hysteresis input.
7	P36/PTO1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the toggle output for the 8-bit PWM timer 1 (PTO1).

(Continued)

MB89810A Series

(Continued)

Pin no.	Pin name	Circuit type	Function
8	P37/PTO2	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the toggle output for the 8-bit PWM timer 2 (PTO2).
56	P40	D	General-purpose I/O port A pull-up resistor option is provided.
58	P41/EC	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a 16 -bit timer/counter input (EC). EC input is hysteresis input.
59	P42/TXD1	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output 1 for the UART (TXD1).
60	P43/RXD1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input 1 for the UART (RXD1). RXD1 input is hysteresis input.
61	P44/SCL1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O 1 for the UART (SCL1). SCL1 input is hysteresis input.
62	P45/TXD2	D	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data output 2 for the UART (TXD2).
63	P46/RXD2	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the data input 2 for the UART (RXD2). RXD2 input is hysteresis input.
64	P47/SCL2	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as the clock I/O 2 for the UART (SCL2). SCL2 input is hysteresis input.
51 to 55	P50 to P54	G	N -channel open-drain I/O ports A pull-up resistor option is provided only for the MB89816A.
9 to 11	P60/INT0 to P62/INT2	H	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an external interrupt input (INT0 to INT2). These ports are a hysteresis input type.
13 to 17	P63/INT3 to P67/INT7	H	General-purpose I/O ports A pull-up resistor option is provided. Also serve as an external interrupt input (INT3 to INT7). These ports are a hysteresis input type.
12, 57	Vcc	-	Power supply pin
25,50	Vss	-	Power supply (GND) pin

MB89810A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Main clock - At an oscillation feedback resistor of approximately $2 \mathrm{M} \Omega$ (1 to 5 MHz) - CR oscillator circuit selectability
B		
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS output - CMOS input - Pull-up resistor optional
E		- CMOS output - CMOS input - Hysteresis input (resource input) - Pull-up resistor optional

(Continued)

MB89810A Series

(Continued)

Type	Circuit	Remarks
F		- CMOS output
G		- N-ch open-drain output - CMOS input - Pull-up resistor optional (only for the MB89816A)
H		- Hysteresis input - Pull-up resistor optional
1		- Subclock (30 to 40 kHz) - At an oscillation feedback resistor of approximately $4.5 \mathrm{M} \Omega$

MB89810A Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\text {cc }}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V cc and V ss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

4. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89810A Series

PROGRAMMING TO THE EPROM ON THE MB89P817A

In EPROM mode, the MB89P817A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Writing Procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007н to 7FFFH (note that addresses 8007н to FFFFH while operating as operating mode assign to 0007н to 7FFFн in EPROM mode).
Load option data into addresses 0000 н to 0006 н of the EPROM programmer. (For information about each corresponding option, see "• Setting OTPROM Option Bit Map.")
(3) Program with the EPROM programmer.

- Memory Space

Memory space is diagrammed below.

MB89810A Series

- Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM (one-time PROM) microcomputer program.

- Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

- EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-64P-M06	ROM-64QF-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Connect the jumper pin to $\mathrm{V}_{\text {ss }}$ when using.
Depending on the EPROM programmer, inserting a capacitor of approx. $0.1 \mu \mathrm{~F}$ between V_{PP} and $\mathrm{V}_{\text {ss }}$ or
Vcc and Vss can stabilize programming operations.

- OTPROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Single-clock	Reset pin	Power-o	Oscillation stabilization time	
0000 H	Readable and writable	Readable and writable	Readable and writable	setting 1: Dual-clock 0 : Single-clock	output 1: Enabled 0: Disabled	reset 1: Enabled 0 : Disabled	$\begin{array}{ll} 00 & 2^{4} / \mathrm{FCH}_{\mathrm{CH}} \\ 10 & 2^{17} / \mathrm{F}_{\mathrm{CH}} \end{array}$	$\begin{array}{ll} 01 & 2^{14} / \mathrm{F}_{\mathrm{CH}} \\ 11 & 2^{18} / \mathrm{F}_{\mathrm{CH}} \end{array}$
0001H	P07 Pull-up 1: No 0 : Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0 : Yes		P02 Pull-up 1: No 0 : Yes		
0002H	P17 Pull-up 1: No 0 : Yes	P16 Pull-up 1: No 0 : Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0 : Yes		P12 Pull-up 1: No 0 : Yes	P11 Pull-up 1: No 0 : Yes	P10 Pull-up 1: No 0 : Yes
0003H	P37 Pull-up 1: No 0: Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0 : Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0 : Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0004H	P47 Pull-up 1: No 0: Yes	P46 Pull-up 1: No 0: Yes	P45 Pull-up 1: No 0 : Yes	P44 Pull-up 1: No 0 : Yes	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0 : Yes	P41 Pull-up 1: No 0: Yes	
0005H	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0 : Yes	P63 Pull-up 1: No 0 : Yes	P62 Pull-up 1: No 0 : Yes		
0006H	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writables	Oscillator type 1: Crystal 0: CR	P67 Pull-up 1: No 0 : Yes		P65 Pull-up 1: No 0 : Yes

Note: Each bit defaults to 1.

MB89810A Series

BLOCK DIAGRAM

MB89810A Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89810A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89810A series is structured as illustrated below.

MB89810A Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP):
Stack pointer (SP):
A 16-bit pointer for indicating a memory address
A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89810A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89810A Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89816A. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

32 banks

Memory area

I/O MAP

Address	Read/write	Register name	Register description
00 ${ }^{\text {H}}$	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05 н			Vacancy
06			Vacancy
07\%	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBCR	Time-base timer control register
OBн	(R/W)	WPCR	Watch prescaler control register
0 CH	(R/W)	PDR3	Port 3 data register
ODн	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
$\mathrm{OFH}_{\mathrm{H}}$	(W)	DDR4	Port 4 data direction register
10^{+}	(R/W)	PDR5	Port 5 data register
11H	(R)	PDR6	Port 6 data register
12H			Vacancy
13 H			Vacancy
14 H			Vacancy
15 H			Vacancy
16 H			Vacancy
17H	(R/W)	PIVE	Port inverting operation enable register
18H	(R/W)	TMCR	16-bit timer count register
19 н	(R/W)	TCHR	16-bit timer count register (H)
1 Ан	(R/W)	TCLR	16-bit timer count register (L)
1Bн			Vacancy
1 CH	(R/W)	SMR	Serial I/O mode register
1D ${ }_{\text {H }}$	(R/W)	SDR	Serial I/O data register
1Ен			Vacancy
1 FH			Vacancy

(Continued)

MB89810A Series

(Continued)

Address	Read/write	Register name	Register description
2 OH	(R/W)	SMC1	UART serial I/O mode control register 1
21H	(R/W)	SRC	UART serial I/O rate control register
22н	(R/W)	SSD	UART serial I/O status/data control register
23H	(R/W)	SIDR/SODR	UART serial I/O data control register
24	(R/W)	SMC2	UART serial I/O mode control register 2
25 н			Vacancy
26			Vacancy
27			Vacancy
28н	(R/W)	CNTR1	PWM timer control register 1
29н	(R/W)	CNTR2	PWM timer control register 2
2 Ан	(R/W)	CNTR3	PWM timer control register 3
2Вн	(W)	COMR2	PWM timer compare register 2
2 CH	(W)	COMR1	PWM timer compare register 1
2Dh			Vacancy
2Ен			Vacancy
$2 \mathrm{~F}_{\mathrm{H}}$	(R/W)	PWCR	Pulse width detection control register
30н	(R/W)	EIC1	External interrupt 1 control register 1
$31{ }_{\text {H }}$	(R/W)	EIC2	External interrupt 1 control register 2
32н	(R/W)	El2E	External interrupt 2 enable register
33н	(R/W)	El2F	External interrupt 2 flag register
34			Vacancy
35 to 7Ан			Vacancy
7Вн			Vacancy
$7 \mathrm{C}_{\mathrm{H}}$	(W)	ILR1	Interrupt level register 1
7D	(W)	ILR2	Interrupt level register 2
7Ен	(W)	ILR3	Interrupt level register 3
$7 \mathrm{~F}_{\mathrm{H}}$	Not available	ITR	Interrupt test register

Note: Do not use vacancies.

MB89810A Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	
Input voltage	V_{11}	Vss-0.3	V cc +0.3	V	Except P50 to P54
	V_{12}	Vss-0.3	Vss +7.0	V	P50 to P54
Output voltage	Vo1	Vss - 0.3	Vcc +0.3	V	Except P50 to P54
	Vo2	Vss -0.3	Vss +7.0	V	P50 to P54
" L " level maximum output current	lot	-	20	mA	Peak value
"L" level average output current	lolav1	-	4	mA	Average value except pins other than P50 to P54
	lolav2	-	10	mA	Average value for P50 to P54
"L" level total maximum output current	「loL	-	100	mA	Peak value
"L" level total average output current	Elobav	-	40	mA	Average value
" H " level maximum output current	Іон	-	-20	mA	Peak value
" H " level average output current	Iohav	-	-4	mA	Average value
"H" level total maximum output current	ऽloн	-	-50	mA	Peak value
" H " level total average output current	Σ lohav	-	-20	mA	Average value
Power consumption	Po	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89810A Series

2. Recommended Operating Conditions

Parameter		Symbol	Value		Unit
			Max.	Remarks	

*: These values vary with the operating frequency. See Figure 1.

Figure 1 Operating Voltage vs. Main Clock Operating Frequency (for MB89816A)

MB89810A Series

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54 P60 to P67	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P50 to P54	$\begin{aligned} & \mathrm{loL}=6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=3 \mathrm{~V} \end{aligned}$	-	-	0.5	V	
	Voı3	$\overline{\mathrm{RST}}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	IL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, P60 to P67, MODO, MOD1	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P54, P60 to P67, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	With pull-up resistor
Power supply current ${ }^{*}$	Icc1	Vcc	$\mathrm{F}_{\mathrm{CH}}=5 \mathrm{MHz}$	-	4	6	mA	MB89816A
			$\text { tinst }=0.8 \mu \mathrm{~s}$	-	4.8	7.5	mA	MB89P817A
	Icc2		$\mathrm{F}_{\mathrm{CH}}=5 \mathrm{MHz}$	-	0.4	0.6	mA	MB89816A
			$\text { tinst }=6.4 \mu \mathrm{~s}$	-	1.0	1.5	mA	MB89P817A
	Iccs 1		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }=0.8 \mu \mathrm{~s} \end{aligned}$	-	1.2	1.8	mA	Sleep mode
	Iccs2		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \text { tinst }=12.8 \mu \mathrm{~s} \end{aligned}$	-	0.3	0.5	mA	
	Iccl		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$	-	50	100	$\mu \mathrm{A}$	Subclock mode
				-	500	700	$\mu \mathrm{A}$	MB89P817A

(Continued)

MB89810A Series

(Continued)
$\left(\mathrm{Vcc}=+5.0 \mathrm{~V}, \mathrm{~V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{*}$	Iccls	Vcc	$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$	-	15	50	$\mu \mathrm{A}$	Subclock sleep mode
	Icct		$\begin{aligned} & \mathrm{FcL}_{\mathrm{cL}}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$	-	-	15	$\mu \mathrm{A}$	Watch mode Main clock stop mode at dualclock system
	ІсСн		$\begin{aligned} & \mathrm{FcL}_{\mathrm{cL}}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	Subclock stop mode Main clock stop mode at single-clock system
Input capacitance	Cin	Other than V_{cc} and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

* : The measurement conditions of power supply current are as follows: the external clock and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzızH	-	16 tch	-	ns	

Note: tch is the cycle time of the main clock.

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

[^0]
MB89810A Series

(3) Clock Timing
$\left(\mathrm{AV} s \mathrm{Vs}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fch	X0, X1	-	1	-	5	MHz	
	FcL	X0A, X1A		-	32.768	-	kHz	
Clock cycle time	tor	X0, X1		200	-	1000	ns	
	tcL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \mathrm{PwH}_{\mathrm{w}} \\ & \mathrm{PwL} \end{aligned}$	X0		20	-	-	ns	External clock
	Pwh Pwll	X0A		-	15.2	-	$\mu \mathrm{S}$	
Input clock rising/falling time	$\begin{aligned} & \text { tck } \\ & \text { tcc } \end{aligned}$	X0		-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

When a crystal
or
ceramic resonator is used
when an external clock is used

When a CR oscillator is used

XOA and X1A Timings and Conditions

Subclock Conditions

(4) Serial I/O Timings

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc1	SCK	Internal shift clock mode	2 tinst	-	ns	
$\overline{\text { SCK }} \downarrow \rightarrow$ SO time	tstov1	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh1	SI, SCK		1/2 tinst	-	ns	
$\overline{\text { SCK } \uparrow \rightarrow \text { valid SI hold time }}$	tshix1	SCK, SI		1/2 tinst	-	ns	
Serial clock "H" pulse width	tshsL	$\overline{\text { SCK }}$	External shift clock mode	1 tinst	-	ns	
Serial clock "L" pulse width	tstsh			1 tinst	-	ns	
SCK $\downarrow \rightarrow$ SO time	tslov2	SCK, SO		0	200	ns	
Valid SI $\rightarrow \overline{\text { SCK }} \uparrow$	tivsh2	SI, $\overline{\text { SCK }}$		1/2 tinst	-	ns	
	tshlix	SCK, SI		1/2 tinst	-	ns	

[^1]
MB89810A Series

(5) UART Timings

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCL1, SCL2	Internal shift clock mode	2 tinst	-	ns	
SCL $\downarrow \rightarrow$ TXDx time	tslov1	SCLx, TXDx		-200	200	ns	
Valid RXDx \rightarrow SCLx \uparrow	tivsh1	RXDx, SCLx		1/2 tinst	-	ns	
SCLx $\uparrow \rightarrow$ valid RXDx hold time	tshlı1	SCL1, RXD2		1/2 tinst	-	ns	
Serial clock "H" pulse width	tsHSL	SCL1, SCL2	External shift clock mode	1 tinst	-	ns	
Serial clock "L" pulse width	tsısH			1 tinst	-	ns	
SCLx $\downarrow \rightarrow$ TXDx time	tslov2	SCLx, TXDx		0	200	ns	
Valid RXDx \rightarrow SCLx \uparrow	tivsh2	RXDx, SCLx		1/2 tinst	-	ns	
SCLx $\uparrow \rightarrow$ valid RXDx hold time	tsh1x2	SCL1, RXD2		1/2 tinst	-	ns	

Notes: • tinst represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

- The edge polarity for the SLCx input is assumed when LSEL bit $=0$ for SMC2. The polarity is inverted when LSEL $=1$.

Internal Shift Clock Mode

External Shift Clock Mode

MB89810A Series

(6) Peripheral Input Timings

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width	tıİн	EC, INT0 to INT7	-	2 tinst	-	ns	
Peripheral input "L" pulse width	tiHIL	EC, INT0 to INT7	-	2 tinst	-	ns	
"H" input pulse width of pulse width detection enable signal	tPwer	PWE	-	$\begin{gathered} 512 \mathrm{tcL}+200 \\ \text { or } 480 \text { tcl }+200 \end{gathered}$	-	ns	
"L" input pulse width of pulse width detection enable signal	tpwel		-	$\begin{gathered} 512 \text { tcl }+200 \\ \text { or } 480 \text { tcl }+200 \end{gathered}$	-	ns	

Notes: • tinst represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

- tcl represents the subclock cycle time.
- The PWE pulse width value varies with the first divider selection bit of the watch prescaler. The pulse width is " 512 tcl +200 " when divide by 16 is selected; or " 480 tcl +200 " when divide by 15 is selected.

MB89810A Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i $=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) $)$
$((\times))$	The address indicated by the contents of \times is the target of accessing. $($ Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: \quad Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89810A Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ VC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @lX +off,A	4	2	((IX) + off) \leftarrow (A)	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(\mathrm{IX})+\text { off })\end{array}\right.$	AL	-	-	+ + - -	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow$ (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A}))$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) $\leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-		D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{XX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow d 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ +--	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow($ (IX) +off $)$, $(A L) \leftarrow((I X)+o f f+1)$	AL	AH	dH	+ +	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ +--	C4
MOVW A,@A	4		$(\mathrm{AH}) \leftarrow((\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2		$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	((A)) $\leftarrow\left(\begin{array}{l}\text { T }\end{array}\right.$	-	-	-	----	82
MOVW @A,T	4		$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-		83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow$ (A$)$	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(S P) \leftarrow d 16$	-	-	-		E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	(A) $\leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89810A Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	N Z V C	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) +off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) +off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	$+++-$	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	- - -	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	- - - -	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	- - - -	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	--- -	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	$++\mathrm{R}-$	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\longrightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	64
AND A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	$++\mathrm{R}-$	65

(Continued)

MB89810A Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow(A L) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $C=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	- +	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	-	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		---	41			
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	---	00	
CLRC	1	1		-	-	-	---	81
SETC	1	1		-	-	-	---	91
CLRI			-	-	-	-	80	
SETI	1	1		-	-	-	----	80

MB89810A Series

INSTRUCTION MAP

L	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NOP	SW	RET	RETI			MOV A,ext		CLRI	SETI	$\text { ir: } 0$	3BC	${ }^{\text {INCW }}$ A	W_{A}	@A	$\begin{aligned} & \mathrm{w} \\ & , \mathrm{PC} \end{aligned}$
1	A	DIVU A	JMP addr16	CALL addr16	$\begin{array}{\|c} \text { PUSHW } \\ \text { IX } \end{array}$	$\left\lvert\, \begin{array}{l\|} \mathrm{POPW}_{\mathrm{IX}} \end{array}\right.$	MOV ext,A		CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW SP	$\begin{array}{\|c\|} \hline \text { DECW } \\ \mathrm{SP} \end{array}$	$\begin{gathered} \hline \mathrm{IOVW} \\ \mathrm{SP}, \mathrm{~A} \end{gathered}$	\bar{w}
2	$\left\lvert\, \begin{array}{ll} \text { ROLC } \\ & \text { A } \end{array}\right.$	CMP ${ }^{\text {a }}$	$\mathrm{ADDC}_{\mathrm{A}}$	$\mathrm{SUBC}_{\mathrm{A}}$	$\mathrm{CH}_{\mathrm{A}, \mathrm{~T}}$	XOR ${ }^{\text {a }}$	${ }^{\text {AND }}$ A	${ }^{\text {OR }} \mathrm{A}$	MOV @A,T	MOV A,@A	$\begin{gathered} \text { CLRB } \\ \text { dir: } 2 \end{gathered}$	BBC dir: 2,rel	$\left\lvert\, \begin{array}{l\|} \text { INCW } \\ \text { IX } \\ \hline \end{array}\right.$	$\left\lvert\, \begin{gathered} \text { DECW } \\ \text { IX } \\ \hline \end{gathered}\right.$	$\begin{gathered} \mathrm{JVW} \\ \mathrm{IX}, \mathrm{~A} \end{gathered}$	$\begin{gathered} w \\ A, I X \end{gathered}$
3	RORC A		$\begin{array}{r} \text { ADDCW } \\ A \end{array}$	$\begin{array}{r} \text { SUBCW } \\ \text { A } \end{array}$	$\begin{gathered} \mathrm{HWW} \\ \text { A.T } \end{gathered}$	XORW A	ANDW A	${ }^{\text {ORW }}$ A		MOVW A,@A	$\text { dir: } 3$	3BC	${ }_{\text {EP }}$	$\begin{array}{\|c\|} \hline \text { DECW } \\ \text { EP } \end{array}$	$\begin{gathered} \mathrm{OVW}, \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & \text { VW } \\ & \text { A,EP } \end{aligned}$
4	$\begin{aligned} & \text { MOV }, \# \mathrm{~d} 8 \end{aligned}$	CMP A,\#d8	ADDC A,\#d8	$\begin{gathered} \text { SUBC } \\ \text { A,\#d8 } \end{gathered}$		XOR A,\#d8	AND A,\#d8	OR A,\#d8	DAA	DAS	$\text { ir: } 4$	$\begin{aligned} & \mathrm{BC} \\ & \text { ir: } 4, \text { rel } \end{aligned}$	MOVW A,ext	MOVW ext,A	$\begin{aligned} & \text { 10VW } \\ & \mathrm{A}, \# \mathrm{~A} 16 \end{aligned}$	$\begin{aligned} & \mathrm{HW} \\ & A, P C \end{aligned}$
5	A,dir	CMP A,dir	ADDC A,dir	$\underset{\text { A,dir }}{\text { SUBC }}$	dir,A	$\begin{aligned} & \text { OR } \\ & \text { A,dir } \end{aligned}$	AND A,dir	A,dir	MOV dir,\#d8	$\begin{gathered} \text { CMP } \\ \text { dir,\#d8 } \end{gathered}$	$\begin{aligned} & \text { LRB } \\ & \text { dir: } 5 \end{aligned}$	BBC dir: 5 ,rel	MOVW A,dir	$\underset{\text { dir,A }}{\mathrm{MOVW}}$	MOVW SP,\#d16	$\begin{gathered} \text { CHW } \\ \text { A,SP } \end{gathered}$
6	A,@\|X	A,@\|X +d	A,@\|X +d	A,@IX +d	+d,A	XOR A,@IX+d	AND A,@IX+d	A,@IX +d	$V_{1+, d+08}$	$\begin{aligned} & \text { CMP } \\ & \text { @\|x+d, } \ddagger \mathrm{d} 8 \end{aligned}$	$\begin{aligned} & \text { LRB } \\ & \text { dir: } 6 \end{aligned}$	BBC dir: 6,rel	MOVW A,@IX +d	MOVW @1X+d,A	$\begin{aligned} & \text { lovw } \\ & \mathrm{X}, \# d 16 \end{aligned}$	$\begin{gathered} \text { CHW } \\ \text { A, } \mathrm{IX} \end{gathered}$
7		$\begin{array}{\|l\|l\|} \hline \text { CMP } \\ \text { A,@EP } \end{array}$	$\begin{array}{\|c\|} \hline \text { ADDC } \\ \text { A,@EP } \end{array}$	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \text { A,@EP } \end{array}$	@EP,A	XOR A,@EP	AND A,@EP	OR A,@EP			$\begin{aligned} & \text { LRB } \\ & \text { dir: } 7 \end{aligned}$	el	$\left\lvert\, \begin{array}{\|c\|} \hline \text { MOVW } \\ \text { A,@EP } \end{array}\right.$	$\begin{aligned} & \text { MOVW } \\ & \text { @EP,A } \end{aligned}$	$\begin{aligned} & \text { MOVW } \\ & \text { EP,\#d16 } \end{aligned}$	$\begin{gathered} \text { CHW } \\ \text { A,EP } \end{gathered}$
8	A, RO	CMP A,R0	ADDC A,R0	$\begin{array}{\|c\|} \hline \text { SUBC }, R O \\ \hline \end{array}$	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{RO}, \mathrm{~A} \end{array}$	$\underset{A, R 0}{X O R}$	$\begin{array}{\|c\|} \mathrm{AND} \\ \mathrm{~A}, \mathrm{RO} \end{array}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{RO}}$	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{RO}, \# d 8 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 0, \# \mathrm{~d} 8 \end{array}$	$\begin{aligned} & \text { ETB } \\ & \text { dir: } 0 \end{aligned}$	BBS dir: 0,re	INC	$\begin{array}{\|c\|} \hline \mathrm{DEC} \\ \mathrm{RO} \\ \hline \end{array}$	$\begin{gathered} \text { ALLV } \\ \# 0 \end{gathered}$	
9	A,R1	CMP A,R1	ADDC A,R1	SUBC A,R1	MOV $\mathrm{R} 1, \mathrm{~A}$	XOR A,R1	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	$\begin{aligned} & \text { ETB } \\ & \text { dir: } 1 \end{aligned}$	BBS dir: 1,rel	$\mathrm{INC}_{\mathrm{R} 1}$	$\mathrm{DEC}_{\mathrm{R} 1}$	$\begin{gathered} \text { ALLV } \\ \# 1 \end{gathered}$	BC
A	A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	A,R2	MOV R2,\#d8	CMP R2,\#d8	$\begin{aligned} & \text { SETB } \\ & \text { dir: } 2 \end{aligned}$	BBS dir: 2,rel	INC R2	DEC	$\begin{gathered} \text { ALLV } \\ \# 2 \end{gathered}$	rel
B	$\mathrm{A}, \mathrm{R} 3$	CMP A,R3	ADDC A,R3	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \hline \end{array}$	$\underset{\text { R3,A }}{\mathrm{MOV}}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R} 3 \end{aligned}$	AND A,R3	OR A,R3	MOV R3,\#d8	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 3, \# \mathrm{~d} 8 \end{array}$	$\begin{gathered} \text { SETB } \\ \text { dir: } 3 \end{gathered}$	BBS dir: 3,rel	R3	DEC	$\begin{gathered} \text { ALLV } \\ \# 3 \end{gathered}$	BN
C	$\mathrm{A}, \mathrm{R} 4$	CMP A,R4	ADDC A,R4	$\begin{aligned} & \text { SUBC } \\ & \text { A,R4 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { MOV } \\ \text { R4, } \end{array}$	$\underset{\mathrm{A}, \mathrm{R4}}{\mathrm{XOR}}$	$\underset{\text { AN, } \mathrm{R} 4}{ }$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R} 4}$	MOV R4,\#d8	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 4, \# \mathrm{~d} 8 \\ \hline \end{array}$	$\begin{gathered} \text { SETB } \\ \text { dir: } 4 \end{gathered}$	BBS dir: 4,rel	$\text { INC }_{\mathrm{R} 4}$	$\mathrm{DEC}_{\mathrm{R4}}$	$\stackrel{A L L V}{\# 4}$	$\mathrm{BNZ}_{\mathrm{rel}}$
D	A,R5	CMP A,R5	ADDC A,R5	SUBC A,R5	MOV R5,A	XOR A,R5	AND A,R5	A,R5	$\begin{aligned} & \text { MOV } \\ & \mathrm{R} 5, \# \mathrm{~d} 8 \end{aligned}$		$\begin{gathered} \text { SETB } \\ \text { dir: } 5 \end{gathered}$	BBS dir: 5 ,rel	R5	$\mathrm{DEC}_{\mathrm{R}}$	$\begin{array}{r} \text { ALLV } \\ \# 5 \end{array}$	BZ rel
E	A,R6	CMP A,R6	ADDC A,R6	$\begin{array}{\|c\|} \hline \text { SUBC }, R 6 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{R}, \mathrm{~A} \end{array} \right\rvert\,$	XOR A,R6	AND A,R6	OR A,R6	$\begin{gathered} \mathrm{MOV} \\ \mathrm{R} 6, \# \mathrm{~d} 8 \end{gathered}$	CMP R6,\#d8	$\begin{aligned} & \text { SETB } \\ & \text { dir: } 6 \end{aligned}$	BBS dir: 6,re	R6	$\begin{array}{\|c} \mathrm{DEC} \\ \mathrm{R} 6 \end{array}$	$\begin{array}{r} \text { ALLV } \\ \\ \hline 6 \end{array}$	rel
F	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{R} 7 \end{array}$	CMP A,R7	$\begin{aligned} & \text { ADDC } \\ & \text { A,R7 } \end{aligned}$	SUBC A,R7	$\underset{\mathrm{RT}, \mathrm{~A}}{\mathrm{MOV}}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R} 7 \end{aligned}$	$\begin{array}{\|c\|} \mathrm{AND}, \mathrm{R} 7 \\ \hline \end{array}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R7}}$	MOV R7,\#d8	CMP R7,\#d8	$\begin{aligned} & \text { SETB } \\ & \quad \text { dir: } 7 \end{aligned}$	BBS dir: 7,rel	INC R7	$\mathrm{DEC}_{\mathrm{R7}}$	$\begin{gathered} \text { ALLV } \\ \# 7 \end{gathered}$	BLT rel

MB89810A Series

MASK OPTIONS

No.	Part number	MB89816A	MB89P817A
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer
1	Pull-up resistors $\left[\begin{array}{l}\text { P00 to P07, P10 to P17, } \\ \text { P30 to P37, P40 to P47, } \\ \text { P50 to P54, P60 to P67 }\end{array}\right.$	Specify by pin	Can be set per pin. (P50 to P54 are available only for without a pull-up resistor.)
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible
3	Main clock oscillation (5 MHz) stabilization time selection approx. 218/Fch (approx. 52.4 ms) approx. 217/Fch (approx. 26.2 ms) approx. 214/Fcн (approx. 3.2 ms) approx. 24/Fch (approx. 0 ms)	Selectable	Setting possible
4	Reset pin ouotput selection With reset output Without reset output	Selectable	Setting possible
5	Selection either single- or dualclock system Single clock Dual clock	Selectable	Setting possible
6	```Main clock oscillator type selection Crystal or ceramic oscillator CR```	Selectable	Setting possible

Fсн: Main clock frequency

* : The main clock oscillation setting time is generated by dividing the main clock frequency. Note that the oscillation cycle is not stable immediately after oscillation is started. The settling time value in this data sheet should be used as a reference.

ORDERING INFORMATION

Part number	Package	Remarks
MB89816APF	64-pin Plastic QFP	
MB89P817APF	(FPT-64P-M06)	

MB89810A Series

PACKAGE DIMENSIONS

© 1994 FUJITSU LIMITED F64013S-3C-2
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, \#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9606

[^0]: Note that a sudden increase in supply voltage may result in a power-on reset.
 When increasing the supply voltage during operation, voltage variation should be within twice the intended increment so that the voltage rises as smoothly as possible.

[^1]: *: tinst represents the minimum instruction execution time. It varies with the selected system clock and operating mode.

