8-bit Proprietary Microcontroller

cmos

F²MC-8L MB89860/850 Series

MB89865/867/P867/W867
 MB89855/857/P857/W857/T855

■ DESCRIPTION

The MB89860/850 series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{*}$-8L family consisting of proprietary 8 -bit, single-chip, microcontrollers.

In addition to the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ CPU core which can operate at low voltage but at high speed, the microcontrollers contain a variety of peripheral functions such as a timer unit, PWM timers, a UART, a serial interface, a 10-bit A/D converter, and an external interrupt.

The MB89860/850 series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Various package options

QFP package (80 pins): MB89860
SDIP package (64 pins): MB89850

- High-speed processing at low voltage

Minimum execution time: $0.4 \mu \mathrm{~s} / 3.5 \mathrm{~V}, 0.8 \mu \mathrm{~s} / 2.7 \mathrm{~V}$

PACKAGE

80-pin Plastic QFP
(FPT-80P-M06)
(DIP-64P-M01)
(DPT-80C-A02)

MB89860/850 Series

(Continued)

- $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- 8-bit PWM timers: 2 channels

Also usable as a reload timer

- UART

Full-duplex double buffer
Synchronous and asynchronous data transfer

- 8-bit serial I/O

Switchable transfer direction allows communication with various equipment.

- 10-bit A/D converter

Conversion time: $13.2 \mu \mathrm{~s}$
Activation by an external input or a timer unit capable

- External interrupt: 4 channels

Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

- Bus interface functions Including hold and ready functions
- Timer unit

Outputs non-overlap three-phase waveforms to control an AC inverter motor.
Also usable as a PWM timer (4 channels)

PRODUCT LINEUP

Part number Parameter	$\begin{gathered} \text { MB89855 } \\ \text { MB89T855 } \end{gathered}$	MB89865	MB89857	MB89867	MB89P857 MB89W857	MB89P867 MB89W867
Classification	Mass production products (mask ROM products)				One-time PROM pruducts/ EPROM products, also used for evaluation	
ROM size	16 K (internal Note: In MB8 internal ROM external ROM	8 bits sk ROM) 855, no n be used but used.	$\begin{array}{r} 32 \mathrm{~K} \\ \text { (internal } \end{array}$	8 bits sk ROM)	32 K (internal PRO programming purpose EPR programmer) programmer)	8 bits with generalM
RAM size	$512 \times$	8 bits	$1 \mathrm{~K} \times 8$ bits			
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$					
Ports	Input ports: 5 (All also serve as peripherals) Output ports (N-ch open drain): 8 (All also serve as peripherals) I/O ports (N-ch open drain): 15 (MB89860 series only) Output ports (CMOS): 8 (All also serve as bus control pins) I/O ports (CMOS): 32 (All also serve as bus pins or peripherals) Total: 68 (53 pins for MB89850 series)					
Timer unit	10-bit up/down count timer $\times 1$ Compare registers with buffer $\times 4$ Compare timer unit clear register with buffer $\times 1$ Zero detection pin control 4 output channels Non-overlap three-phase waveform output Independent three-phase dead-time timer					
8-bit PWM timer 1, 8-bit PWM timer 2	8 -bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}$ to $25.6 \mu \mathrm{~s})$ 8-bit resolution PWM operation (conversion cycle: $102 \mu \mathrm{~s}$ to 6.528 ms)					
UART	8 bits Clock synchronous/asynchronous data transfer capable					
8-bit serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)					
10-bit A/D converter	10-bit resolution $\times 8$ channels A/D conversion time: $13.2 \mu \mathrm{~s}$ Continous activation by a compare channel 0 in timer unit or an external activation capable					
External interrupt	4 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge selectability. Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)					
Standby modes	Sleep mode, stop mode					
Process	CMOS					
Operating voltage*	2.7 V to 6.0 V				2.7 V to 5.5 V	

*: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

MB89860/850 Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89855 MB89T855 MB89857 MB89P857	MB89W857	MB89865 MB89867 MB89P867	MB89W867
DIP-64P-M01	\bigcirc	\times	\times	\times
DIP-64C-A06	\times	\bigcirc	\times	\times
FPT-80P-M06	\times	\times	\bigcirc	\times
FPT-80C-A02	\times	\times	\times	\bigcirc

O : Available $\quad \times$: Not available
Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTPROM (one-time PROM) products (also used for evaluation), verify its differences from the product that will actually be used.

Take particular care on the following point:

- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

When operated at low speed, the product with an OTPROM or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same.

3. Mask Options

In the MB89P857/W857/P867/W867/T855, no option can be set.
Before using options check section " \quad Mask Options."
Take particular care on the following point:

- A pull-up resistor can be set for P00 to P07, P10 to P17 and P20 to P27 only at single-chip mode.

PIN ASSIGNMENT

	(Top view)			
		\checkmark		
P31/SO1	1		64	Vcc
P30/SCK1	2		63	$\square \mathrm{P} 32 / \mathrm{SI} 1$
P47/TRGI	3		62	$\square \mathrm{P} 33 / \mathrm{SCK} 2$
P46/Z	4		61	- P34/SO2
P45/Y	5		60	P35/SI2
P44/X	6		59	\square P36/PTO1
P43/RTO3/W	7		58	$\square \mathrm{P} 37 / \mathrm{PTO} 2$
P42/RTO2/V	8		57	Vss
P41/RTO1/U	9		56	- P00/ADO
P40/RTO0	10		55	- P01/AD1
P50/ANO	11		54	- P02/AD2
P51/AN1	12		53	P03/AD3
P52/AN2	13		52	- P04/AD4
P53/AN3	14		51	- P05/AD5
P54/AN4	15		50	- P06/AD6
P55/AN5	16		49	- P07/AD7
P56/AN6	17		48	P P10/A08
P57/AN7	18		47	P11/A09
AVcc	19		46	$\square \mathrm{P} 12 / \mathrm{A} 10$
AVR	20		45	$\square \mathrm{P} 13 / \mathrm{A} 11$
AVss	21		44	P14/A12
P64/DTTI	22		43	P15/A13
P63/INT3/ADST	23		42	- P16/A14
P62/INT2	24		41	- P17/A15
P61/INT1	25		40	P20/BUFC
P60/INT0	26		39	P21/HAK
RST	27		38	$\square \mathrm{P} 22 / \mathrm{HRQ}$
MODO	28		37	P23/RDY
MOD1	29		36	P24/CLK
X0	30		35	P25/WR
X1	31		34	P26/RD
Vss	32		33	P27/ALE
		(DIP-64P-M01)		
		(DIP-64C-A06)		

MB89860/850 Series

MB89860/850 Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
SH-DIP*1	QFP ${ }^{+2}$			
30	13	X0	A	Crystal oscillator pins (10 MHz)
31	14	X1		
28	11	MODO	B	Operating mode selection pins Connect directly to Vcc or Vss.
29	12	MOD1		
27	16	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of " L ".
56 to 49	40 to 33	$\begin{aligned} & \text { P00 /AD0 to } \\ & \text { P07/AD7 } \end{aligned}$	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O.
48 to 41	32 to 25	$\begin{aligned} & \text { P10/A08 to } \\ & \text { P17/A15 } \end{aligned}$	D	General-purpose I/O ports When an external bus is used, these ports function as upper address output.
40	24	P20/BUFC	F	General-purpose output port When an external bus is used, this port can also be used as a buffer control output.
39	23	P21/ $\overline{\text { HAK }}$	F	General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge output.
38	22	P22/HRQ	D	General-purpose output port When an external bus is used, this port can also be used as a hold request input.
37	21	P23/RDY	D	General-purpose output port When an external bus is used, this port functions as a ready input.
36	20	P24/CLK	F	General-purpose output port When an external bus is used, this port functions as a clock output.
35	19	$\mathrm{P} 25 / \overline{\mathrm{WR}}$	F	General-purpose output port When an external bus is used, this port functions as a write signal output.
34	18	$\mathrm{P} 26 / \overline{\mathrm{RD}}$	F	General-purpose output port When an external bus is used, this port functions as a read signal output.
33	17	P27/ALE	F	General-purpose output port When an external bus is used, this port functions as an address latch signal output.
2	48	P30/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the UART. This port is a hysteresis input type.

*1: DIP-64P-M01, DIP-64C-A06
(Continued)
*2: FPT-80P-M06, FPT-80C-A02

MB89860/850 Series

(Continued)

Pin no.		Pin name	$\begin{aligned} & \text { Circuit } \\ & \text { type } \end{aligned}$	Function
SH-DIP*1	QFP ${ }^{+2}$			
1	47	P31/SO1	E	General-purpose I/O port Also serves as the data output for the UART. This port is a hysteresis input type.
63	46	P32/SI1	E	General-purpose I/O port Also serves as the data input for the UART. This port is a hysteresis input type.
62	45	P33/SCK2	E	General-purpose I/O port Also serves as the clock I/O for the 8 -bit serial I/O. This port is a hysteresis input type.
61	44	P34/SO2	E	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O. This port is a hysteresis input type.
60	43	P35/SI2	E	General-purpose I/O port Also serves as the data input for the 8 -bit serial I / O. This port is a hysteresis input type.
59	42	P36/PTO1	E	General-purpose I/O port Also serves as the pulse output for the 8-bit PWM timer 1. This port is a hysteresis input type.
58	41	P37/PTO2	E	General-purpose I/O port Also serves as the pulse output for the 8-bit PWM timer 2. This port is a hysteresis input type.
10	63	P40/RTO0	E	General-purpose I/O port Also serves as the pulse output for the timer unit. This port is a hystereisis input type.
$\begin{aligned} & 9, \\ & 8, \end{aligned}$	$\begin{aligned} & 62, \\ & 61, \\ & 60 \end{aligned}$	P41/RTO1/U, P42/RTO2/V, P43/RTO3/W	E	General-purpose I/O ports Also serve as the pulse output for the timer unit or a nonoverlap three-phase waveform output. These ports are a hysteresis input type.
$\begin{aligned} & 6, \\ & 5, \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 59, } \\ & 57, \\ & 56 \end{aligned}$	$\begin{aligned} & \text { P44/X, } \\ & \text { P45/Y, } \\ & \text { P46/Z } \end{aligned}$	E	General-purpose I/O ports Also serve as a non-overlap three-phase output. These ports are a hysteresis input type.
3	54	P47/TRGI	E	General-purpose I/O port Also serves as the trigger input for the timer unit. This port is a hysteresis input type.
11 to 18	69 to 76	P50/ANO to P57/AN7	H	N-ch open-drain output ports Also serve as the analog input for the A/D converter.
26 to 24	53 to 51	P60/INT0 to P62/INT2	I	General-purpose input ports Also serve as an external interrupt input. These ports are a hysteresis input type.
23	50	P63/INT3/ ADST	1	General-purpose input port Also serves as an external interrupt input and as the activation trigger input for the A/D converter. This port is a hysteresis input type.

*1: DIP-64P-M01, DIP-64C-A06
(Continued)
*2: FPT-80P-M06, FPT-80C-A02

MB89860/850 Series

(Continued)

Pin no.		Pin name	Circuit type	Function
SH-DIP	QFP*2		I	General-purpose input port Also serves as a dead-time timer disable input. This port is a hysteresis input type. DTTI input is with a noise canceller.
22	49	P64/DTTI	G	N-ch open-drain I/O ports These ports are a hysteresis input type.
-	10 to 4	P70 to P76	G	N-ch open-drain I/O ports These ports are a hysteresis input type.
-	3 to 1, 80, 68 to 65	P80 to P87	Voc	-
64	55	Vower supply pin		
32,57	15,58	Vss	-	Power supply (GND) pins
19	77	AVcc	-	A/D converter power supply pin
20	78	AVR	-	A/D converter reference voltage input pin
21	79	AVss	-	A/D converter power supply (GND) pin Use this pin at the same voltage as Vss.
-	64	N.C.	-	Internally connected pin Be sure to leave it open.

*1: DIP-64P-M01, DIP-64C-A06
*2: FPT-80P-M06, FPT-80C-A02

MB89860/850 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- At an oscillation feedback resitor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square \longrightarrow$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS output - CMOS input - Pull-up resistor optional (Mask ROM products) - At a pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$
E		- CMOS output - Hysteresis input - Pull-up resistor optional (Mask ROM products) - At a pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$

(Continued)

MB89860/850 Series

(Continued)

Type	Circuit	Remarks
F		- CMOS output - Pull-up resistor optional (Mask ROM products) - At a pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$
G		- N-ch open-drain output - Hysteresis input - Pull-up resistor optional (Mask ROM products) - At a pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$
H		- N-ch open-drain output - Analog input
1	(1)	- Hysteresis input - Pull-up resistor optional (Mask ROM products) - At a pull-up resistor of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$

MB89860/850 Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\text {cc }}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V cc and V ss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V c c=D A V C=V c c$ and $A V s s=A V R=V$ ss even if the A / D and D / A converters are not in use .
4. Treatment of N.C. Pin

Be sure to leave (internally connected) N.C. pin open.

5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89860/850 Series

PROGRAMMING TO THE EPROM ON THE MB89P867/W867/P857/W857

The MB89P867/W867/P857/W857 are an OTPROM version of the MB89860/850 series.

1. Features

- 32-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P867/W867/P857/W857 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7FFFн (note that addresses 8000 н to FFFF н while operating as a single chip assign to addresses 0000н to 7FFFн in EPROM mode.)
(3) Program to 0000 н to 7 FFFH with the EPROM programmer.

MB89860/850 Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W -seconds/ cm^{2} is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (\AA)) with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at $2537 \AA \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

7. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
DIP-64P-M01	ROM-64SD-28DP-8L*
FPT-80P-M01	ROM-80QF-28DP-8L2

[^0] Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

MB89860/850 Series

BLOCK DIAGRAM

MB89860/850 Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89860/850 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89860/850 series is structured as illustrated below.

Memory Space

*1: The ROM area is an external area depending on the mode.
*2: In the MB89T855, an external ROM can be used.

MB89860/850 Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
Program status (PS):
A 16-bit register for indicating a stack area
A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89860/850 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N -flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89860/850 Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89860/850 series. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

Register Bank Configuration

MB89860/850 Series

I/O MAP

Address	Read/write	Register name	Register description
OOH	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05	(W)	BCTR	External bus pin control register
06н			Vacancy
07			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Time-base timer control register
OBн			Vacancy
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
ODH	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
$0 \mathrm{FH}_{\mathrm{H}}$	(W)	DDR4	Port 4 data direction register
10н	(R/W)	PDR5	Port 5 data register
11н			Vacancy
12н	(R)	PDR6	Port 6 data register
13н			Vacancy
14 H	(R/W)	PDR7	Port 7 data register
15 н			Vacancy
16 н	(R/W)	PDR8	Port 8 data register
17 H to 18н			Vacancy
1 CH	(R/W)	CTR1	PWM control register 1
1D	(W)	CMR1	PWM compare register 1
1 1 $^{\text {¢ }}$	(R/W)	CTR2	PWM control register 2
1 FH	(W)	CMR2	PWM compare register 2
20н	(R/W)	SMC	UART serial mode control register
21,	(R/W)	SRC	UART serial rate control register
22H	(R/W)	SSD	UART serial status/data register
23н	(R/W)	SIDR/SODR	UART serial data register
24 H	(R/W)	SMR	Serial mode register
25 H	(R/W)	SDR	Serial data register

(Continued)

MB89860/850 Series

(Continued)

Address	Read/write	Register name	Register description
26н	(R/W)	EIC1	External interrupt control register 1
27 H	(R/W)	EIC2	External interrupt control register 2
28н	(R/W)	ADC1	A/D converter control register 1
29-	(R/W)	ADC2	A/D converter control register 2
2 Ан $^{\text {¢ }}$	(R)	ADDH	A/D converter data register (H)
2 BH	(R)	ADDL	A/D converter data register (L)
2 CH			Vacancy
2DH	(W)	ZOCTR	Zero detection output control register
$2 \mathrm{E}_{\text {н }}$	(W)	CLRBRH	Compare clear buffer register (H)
2F\%	(W)	CLRBRL	Compare clear buffer register (L)
30	(R/W)	TCSR	Timer control status register
$31{ }_{\text {H }}$	(R/W)	CICR	Compare interrupt control register
32н	(R/W)	TMCR	Timer mode control register
33-	(R/W)	COER	Compare/port selection register
34	(R/W)	CMCR	Compare buffer mode control register
35 H	(R/W)	DTCR	Dead-time timer control register
36	(W)	DTSR	Dead-time setting register
37	(R/W)	OCTBR	Output control buffer register
38	(W)	OCPBROH	Output compare buffer register 0 (H)
39н	(W)	OCPBROL	Output compare buffer register 0 (L)
3Ан	(W)	OCPBR1H	Output compare buffer register 1 (H)
3Bн	(W)	OCPBR1L	Output compare buffer register 1 (L)
3 CH	(W)	OCPBR2H	Output compare buffer register 2 (H)
3D	(W)	OCPBR2L	Output compare buffer register 2 (L)
ЗЕн	(W)	OCPBR3H	Output compare buffer register 3 (H)
3 FH	(W)	OCPBR3L	Output compare buffer register 3 (L)
40н to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Notes: • Do not use vacancies.

- When a read-modify-write instruction (such as bit set) is used to access a write-only register or a register containing a write-only bit, a bit designated by the instruction will have a predetermined value. However, a write-only bit included, if any, in bits not defined by the instruction will cause a malfunction. So no access to the register should be tried with any read-modefy-write instruction.

MB89860/850 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

*: Use AVcc and Vcc set at the same voltage.
Take care so that AV cc does not exceed Vcc , such as when power is turned on.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89860/850 Series

2. Recommended Operating Conditions

$$
\left(\mathrm{A} \mathrm{~V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	2.7*	6.0*	V	Normal operation assurance range* MB89867/865, MB89857/855
		2.7*	5.5*	V	Normal operation assurance range* MB89P867/W867, MB89P857/W855/T855
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AV ${ }_{\text {cc }}$	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Note: Connect the MOD0 and MOD1 pins to Vcc or Vss.

Clock operating frequency (MHz)

Note: The shaded area is assured only for the MB89865/867/855/857.

Figure 1 Operating Voltage vs. Clock Operating Frequency

MB89860/850 Series

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{AV} \mathrm{Sss}=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \text { P00 to P07, P10 to P17, } \\ & \text { P22, P23 } \end{aligned}$	-	0.7 Vcc	-	$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}}+ \\ 0.3 \end{gathered}$	V	
	V ${ }_{\text {нs }}$	RST, P30 to P37, P40 to P47, P60 to P64, P70 to P76, P80 to P87	-	0.8 Vcc	-	$\begin{gathered} V_{c c}+ \\ 0.3 \end{gathered}$	V	
"L" level input voltage	VII	P00 to P07, P10 to P17, P22, P23	-	$\begin{gathered} \mathrm{V}_{\mathrm{ss}}- \\ 0.3 \end{gathered}$	-	0.3 Vcc	V	
	VıLs	RST. P30 to P37 P40 to P47, P60 to P64, P70 to P76, P80 to P87	-	$\begin{gathered} V_{\text {ss }}- \\ 0.3 \end{gathered}$	-	0.2 Vcc	V	
"H" level output voltage	Vor	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47	$\begin{aligned} & \mathrm{loH}=-2.0 \\ & \mathrm{~mA} \end{aligned}$	2.4	-	-	V	
"L" level output voltage	VoL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P76, P80 to P87	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P40 to P47	$\mathrm{loL}=15 \mathrm{~mA}$	-	-	1.5	V	
Input leackage current	1 LII	P00 to P07, P10 to P17 P20 to P27, P30 to P37 P40 to P47, P60 to P64 P70 to P76, P80 to P87 MODO, MOD1	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	$\overline{\mathrm{RST}}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	With pullup resistor
Power supply current	Icc	Vcc	$\begin{aligned} & \mathrm{Fc}=10 \mathrm{MHz} \\ & \text { Normal } \\ & \text { operation } \\ & \text { mode } \\ & \text { (External } \\ & \text { clock) } \end{aligned}$	-	15	18	mA	
	Iccs		Fc $=10 \mathrm{MHz}$ Sleep mode (External clock)	-	6	8	mA	
	Іссн		Stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	10	$\mu \mathrm{A}$	
	IA	AV ${ }_{\text {cc }}$	$\mathrm{Fc}_{\mathrm{c}}=10 \mathrm{MHz},$ when A / D conversion is activated	-	6	-	mA	
Input capacitance	Cin	Other than AVcc , AVss, Vcc, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

MB89860/850 Series

4. AC Characteristics

(1) Reset Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST "L" pulse width }}$	tzzzH	-	16 txcyL*		-	ns

* : txcyL is the oscillation cycle $(1 / \mathrm{Fc})$ to input to the X 0 pin.

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89860/850 Series

(3) Clock Timing

$$
\left(\mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	10	MHz	
Clock cycle time	txcyl			100	1000	ns	
Input clock pulse width	$\begin{aligned} & P_{w h} \\ & P_{w L} \end{aligned}$	X0		20	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \mathrm{tcR} \\ & \mathrm{tcF} \end{aligned}$			-	10	ns	External clock

X0 and X1 Timing Conditions

Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}_{\mathrm{c}}$	$\mu \mathrm{s}$	tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{c}}=10 \mathrm{MHz}$

MB89860/850 Series

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR Series)

*: Fujitsu Acoustic Resonator
$\mathrm{C} 1=\mathrm{C} 2=20 \mathrm{pF} \pm 8 \mathrm{pF}$ (built-in FAR)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	Temperature characteristics of FAR frequency ($\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$)
FAR-C4CB-08000-M02	8.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$
FAR-C4CB-10000-M02	10.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$

Inquiry: FUJITSU LIMITED

MB89860/850 Series

Sample Application of Ceramic Resonator

Resonator manufacturer*	Resonator	Frequency	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{C 2}(\mathbf{p F})$	R(k $\Omega)$
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	-
	KBR-8.0MWS	8.0 MHz	33	33	-
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	-

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited

European Sales Headquarters: TEL 44-1252-770000

- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233
(6) Clock Output Timing

$$
\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	toyc	CLK	Load condition: 50 pF	200	-	ns	txcyL $\times 2$ at 10 MHz oscillation
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcL			30	100	ns	Approx. tcyc/2 at 10 MHz oscillation

MB89860/850 Series

(7) Bus Read Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~F}_{\mathrm{c}}=10 \mathrm{MHz}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value (10 MHz)		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavkL	$\overline{R D}, \mathrm{~A} 15$ to A08, AD7 to AD0	Load condition: 50 pF	$1 / 4$ tins*** $^{*}-64$ ns	-	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$1 / 2$ tins** 20 ns	-	ns	
Valid address \rightarrow data read time	tavov	AD7 to AD0, A15 to A08		-	1/2 tinst*	ns	No wait
$\overline{\mathrm{RD}} \downarrow \rightarrow$ data read time	triov	$\overline{\mathrm{RD},} \mathrm{AD} 7$ to AD0		-	$1 / 2$ tins** 80 ns	ns	No wait
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	AD7 to AD0, $\overline{\mathrm{RD}}$		0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trhLH	$\overline{\mathrm{RD}}$, ALE		$1 / 4$ tins** -40 ns	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address invalid time	trhax	$\overline{\mathrm{RD},} \mathrm{A} 15$ to A08		$1 / 4$ tins* $^{*}-40 \mathrm{~ns}$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trıch	CLK		$1 / 4$ tins* $^{*}-60 \mathrm{~ns}$	-	ns	
$\overline{C L K} \downarrow \rightarrow \overline{\mathrm{RD}} \uparrow$ time	tcler	RD, CLK		0	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ BUFC \downarrow time	trlbl	$\overline{\mathrm{RD}}, \mathrm{BUFC}$		-5	-	ns	
BUFC $\uparrow \rightarrow$ valid address time	terav	A15 to A08, AD7 to AD0, BUFC		5	-	ns	

*: For information on tinst, see "(4) Instruction Cycle."

MB89860/850 Series

(8) Bus Write Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Fc}=10 \mathrm{MHz}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value (10 MHz)		Unit	Remarks
				Min.	Max.		
Valid address \rightarrow ALE \downarrow time	tavLL	AD7 to AD0, ALE, A15 to A08	Load condition: 50 pF	$1 / 4$ tinst $^{1}-64$ ns	-	ns	
$\begin{aligned} & \text { ALE } \downarrow \text { time } \rightarrow \text { address } \\ & \text { invalid time } \end{aligned}$	tluax			5	-	ns	
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	WR, ALE			-	ns	
$\overline{\text { WR pulse width }}$	twiwh	$\overline{\mathrm{WR}}$		$1 / 2$ tins $^{+1}-20 \mathrm{~ns}$	-	ns	
Write data \rightarrow WR \uparrow time	tovw	AD7 to AD0, $\overline{\mathrm{WR}}$			-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address invalid time	twhax	$\overline{\text { WR, A15 to A08 }}$		$1 / 4{\text { tins }{ }^{1}-40 \mathrm{~ns}}^{1}$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhox	AD7 to AD0, $\overline{\mathrm{WR}}$		$1 / 4$ tinsi $^{1}-40 \mathrm{~ns}$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twHLH	WR, ALE		$1 / 4$ tinst $^{\text {a }}$ - 40 ns	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twLCH	$\overline{W R}$, CLK			-	ns	
CLK $\downarrow \rightarrow \overline{\mathrm{WR}} \uparrow$ time	tclwh			0	-	ns	
ALE pulse width	tLHLL	ALE		txcyl $-35 \mathrm{~ns}^{\text {22 }}$	-	ns	
ALE $\downarrow \rightarrow$ CLK \uparrow time	tılch	ALE, CLK		txCyL - $35 \mathrm{~ns}^{\text {2 }}$	-	ns	

*1: For information on tinst, see "(4) Instruction Cycle."
*2: These characteristics are also applicable to the bus read timing.

MB89860/850 Series

(9) Ready Input Timing
$\left(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~F}_{\mathrm{c}}=10 \mathrm{MHz}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY valid \rightarrow CLK \uparrow time	trvch	RDY, CLK	Load condition: 50 pF	60	-	ns	*
CLK $\uparrow \rightarrow$ RDY invalid time	tchyx			0	-	ns	*

*:These characteristics are also applicable to the read cycle.

Note: The bus cycle is also extended in the read cycle in the same manner.

MB89860/850 Series

(10) UART and Serial I/O Timing
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK1,SCK2	Internal shift clock mode Load condition: 50 pF	2 tinst*	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tstov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2, SO2 } \end{aligned}$		-200	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid SI2 \rightarrow SCK2 \uparrow	tivsH	SI1, SCK1 SI2, SCK2		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tshix	$\begin{aligned} & \text { SCK1, SI1 } \\ & \text { SCK2, SI2 } \end{aligned}$		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK1, SCK2	External shift clock mode Load condition: 50 pF	1 tinst*	-	$\mu \mathrm{S}$	
Serial clock "L" pulse width	tsısH			1 tins**	-	$\mu \mathrm{S}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tsoov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2. SO2 } \end{aligned}$		0	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid SI2 \rightarrow SCK2 \uparrow	tivsH	SI1, SCK1 SI2, SCK2		1/2 tins*	-	$\mu \mathrm{s}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tsHIX	$\begin{aligned} & \text { SCK1, SI1 } \\ & \text { SCK2, SI2 } \end{aligned}$		1/2 tins*	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

MB89860/850 Series

Internal Shift Clock Mode

External Shift Clock Mode

MB89860/850 Series

(11) Peripheral Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tı\|н1	TRGI, DTTI, ADST, INT0 to INT3	Load condition: 50 pF	2 tinst*	-	$\mu \mathrm{S}$	
Peripheral input "L" pulse width 1	timL1			2 tins**	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	ANO to AN7	$\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$	-	-	10	bit	
Linearity error				-	-	± 2.0	LSB	
Differential linearity error				-	-	± 1.5	LSB	
Total error				-	-	± 3.0	LSB	
Zero transition voltage	Vот			$\begin{gathered} \mathrm{AV}_{\mathrm{ss}}- \\ 1.5 \end{gathered}$	$\begin{gathered} \mathrm{A} \mathrm{Vss}+ \\ 0.5 \end{gathered}$	$\begin{gathered} \mathrm{AV}_{\mathrm{ss}}+ \\ 2.5 \end{gathered}$	LSB	
Full-scale transition voltage	Vfst			$\begin{gathered} \text { AVR - } \\ 3.5 \end{gathered}$	$\begin{gathered} \text { AVR - } \\ 1.5 \end{gathered}$	$\begin{gathered} \text { AVR + } \\ 0.5 \end{gathered}$	LSB	
Interchannel disparity	-	-		-	-	4	LSB	
A/D mode conversion time			-	-	33 tinst*	-	$\mu \mathrm{s}$	
Analog port input current	IAIN	ANO to AN7	-	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-		-	0	-	AVR	V	
Reference voltage		AVR	-	0	-	AV ${ }_{\text {cc }}$	V	
Reference voltage supply current	IR		$\begin{aligned} & \mathrm{AVR}=5.0 \\ & \mathrm{~V} \end{aligned}$	-	200	-	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

MB89860/850 Series

(1) A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111111 " \leftrightarrow ""11 1111 1110") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error

The total error indicates the difference between the actual value and theoretical value. This error is caused by the zero transition error, full-scale transition error, linearity error, quantization, and noise.

(Continued)

Linearity error of digital output " N " $=\frac{V_{N T}-\left(1 \mathrm{LSB} \times N+\mathrm{V}_{\mathrm{T} T}\right)}{1 \mathrm{LSB}}$ Differential linearity error of digital output " N " $=\frac{\mathrm{V}_{(\mathrm{N}+1) \mathrm{T}}-\mathrm{V}_{\mathrm{NT}}}{1 \mathrm{LSB}}-1$

MB89860/850 Series

(2) Precautions

- Input impedance of the analog input pins

The A/D converter used for the MB89860/850 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for fifteen instruction cycles after activation A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).

Note that if the impedance connot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

Analog Input Equivalent Circuit

- Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

MB89860/850 Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P76, and P80 to P87)

(3) "H" Level Output Voltage (P00 to P07, P10 to P17, P20 to P27, P30 to P37, and P40 to P47)

(2) "L" Level Output Voltage (P40 to P47)

(4) Pull-up Resistance

MB89860/850 Series

(5) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(7) Operating Supply Current vs. Frequency

(6) "H" Level Input VoItage/"L" level Input Voltage (Hysteresis Input)

Vıнs: Threshold when input voltage in hysteresis characteristics is set to " H " level
Vils: Threshold when input voltage in hysteresis characteristics is set to " L " level
(8) Operating Supply Current vs. Vcc

Icc vs. Vcc
Icc (mA)

MB89860/850 Series

(9) Sleep Power Supply Current vs. Frequency

(10) Sleep Power Supply Current vs. Vcc

MB89860/850 Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
$\#:$	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: \quad Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89860/850 Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	((IX) +off) \leftarrow (A)	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) \leftarrow (A$)$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ +--	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A}))$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-		85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-		86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-		87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),(\mathrm{dir}+1) \leftarrow(\mathrm{AL})$	-	-	-		D5
MOVW @IX +off,A	5	2	$\begin{aligned} & \left(\begin{array}{l} (\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{array}\right. \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow d 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{fff}+1) \end{aligned}$	AL	AH	dH	+ + - -	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A}))+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}), \mathrm{l},(\mathrm{LL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-		E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH		F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-		E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) \leftarrow (T)	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(T H),((A)+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	--- -	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {P }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: - During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89860/850 Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	N Z V C	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) +off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	$++++$	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-\mathrm{C}$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) +off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 toDF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(A) \leftarrow(A)-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	$++\mathrm{R}-$	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	$++++$	12
CMPW A	3	1	(T) - (A)	-	-	-	$++++$	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A}$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \square$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	$++++$	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(A) \leftarrow(A L) \wedge d 8$	-	-	-	$++\mathrm{R}-$	64
AND A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ (dir)	-	-	-	$++\mathrm{R}-$	65

MB89860/850 Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	--- -	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZ V C	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	--- -	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	----	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	--	81
SETC	1	1		-	-	-	---	91
CLRI	1		----	80				
SETI	1	1			-	-	-	----
90								

MB89860/850 Series

INSTRUCTION MAP

L H	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	$\begin{aligned} & \text { BBC } \\ & \text { dir: } 0, \text { rel } \end{aligned}$	INCW A	$\begin{array}{r} \text { DECW } \\ \text { A } \end{array}$	JMP @A	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	PUSHW IX	POPW IX	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	$\begin{aligned} & \text { BBC } \\ & \text { dir: 1,rel } \end{aligned}$	INCW SP	$\begin{array}{r} \text { DECW } \\ \mathrm{SP} \end{array}$	$\begin{array}{r} \text { MOVW } \\ \text { SP,A } \end{array}$	MOVW A,SP
2	ROLC A	CMP A	ADDC	SUBC A	$\begin{array}{r} \mathrm{XCH} \\ \mathrm{~A}, \mathrm{~T} \end{array}$	XOR A	AND A	OR A	MOV @A,T	$\begin{aligned} & \text { MOV } \\ & \text { A,@A } \end{aligned}$	CLRB dir: 2	$\begin{aligned} & \text { BBC } \\ & \text { dir: 2,rel } \end{aligned}$	INCW IX	$\begin{gathered} \text { DECW } \\ \mathrm{IX} \end{gathered}$	$\underset{\text { IX,A }}{\mathrm{MOVW}}$	$\begin{aligned} & \text { MOVW } \\ & \text { A,IX } \end{aligned}$
3	RORC A	CMPW A	$\begin{array}{r} \text { ADDCW } \\ \mathrm{A} \end{array}$	$\begin{array}{r} \text { SUBCW } \\ \mathrm{A} \end{array}$	$\begin{array}{r} \text { XCHW } \\ \text { A, T } \end{array}$	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	$\begin{aligned} & \text { BBC } \\ & \text { dir: 3,rel } \end{aligned}$	INCW EP	$\begin{array}{r} \text { DECW } \\ \text { EP } \end{array}$	MOVW EP,A	MOVW A,EP
4	MOV A,\#d8	CMP A,\#d8	$\begin{aligned} & \text { ADDC } \\ & \text { A,\#d8 } \end{aligned}$	SUBC A,\#d8		$\begin{aligned} & \text { XOR } \\ & \text { A,\#d8 } \end{aligned}$	AND A,\#d8	OR A,\#d8	DAA	DAS	CLRB dir: 4	$\begin{aligned} & \text { BBC } \\ & \text { dir: } 4, \mathrm{rel} \end{aligned}$	MOVW A,ext	$\begin{array}{r} \text { MOVW } \\ \text { ext,A } \end{array}$	$\begin{aligned} & \text { MOVW } \\ & \text { A,\#d16 } \end{aligned}$	$\begin{array}{r} \text { XCHW } \\ \text { A,PC } \end{array}$
5	MOV A,dir	CMP A,dir	ADDC A,dir	SUBC A,dir	$\mathrm{MOV}_{\mathrm{dir}, \mathrm{~A}}$	$\begin{aligned} & \text { XOR } \\ & \text { A,dir } \end{aligned}$	AND A,dir	OR A,dir	MOV dir,\#d8	CMP dir,\#d8	CLRB dir: 5	$\begin{aligned} & \text { BBC } \\ & \text { dir: } 5, \text { rel } \end{aligned}$	MOVW A,dir	$\begin{array}{r} \mathrm{MOVW} \\ \mathrm{dir}, \mathrm{~A} \end{array}$	MOVW SP,\#d16	XCHW A,SP
6	MOV A,@IX+	$\begin{array}{\|l\|} \hline \text { CMP } \\ \text { A,@IX +d } \end{array}$	$\begin{aligned} & \text { ADDC } \\ & \text { A,@IX +d } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SUBC } \\ \text { A,@IX +d } \end{array}$	MOV @IX $+d, A$	$\begin{array}{\|l\|} \text { XOR } \\ \text { A,@IX + } \end{array}$	AND A,@IX+d	OR A,@IX +d	MOV @\|X+d,\#d8	CMP @IX+d,\#d8	CLRB dir: 6	$\begin{aligned} & \text { BBC } \\ & \text { dir: 6,rel } \end{aligned}$	OVW A,@IX +d	MOVW @IX +d,A	MOVW IX,\#d16	XCHW A,IX
7		CMP A,@EP	ADDC A,@EP	SUBC A,@EP	MOV @EP,A	$\begin{aligned} & \text { XOR } \\ & \text { A,@EP } \end{aligned}$	AND A,@EP	OR A,@EP	MOV @EP,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { @EP,\#d8 } \end{aligned}$	CLRB dir: 7	$\begin{aligned} & \text { BBC } \\ & \text { dir: 7,rel } \end{aligned}$	MOVW A,@EP	MOVW @EP,A	MOVW EP,\#d16	XCHW A,EP
8	MOV A,R0	CMP A,R0	$\begin{aligned} & \text { ADDC } \\ & \text { A,R0 } \end{aligned}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R0 } \end{aligned}$	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{RO}, \mathrm{~A} \end{array}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{RO} \end{aligned}$	AND A,R0	OR A,RO	MOV R0,\#d8	CMP R0,\#d8	SETB dir: 0	BBS dir: 0,rel	INC R0	DEC	$\begin{array}{r} \text { CALLV } \\ \# 0 \end{array}$	BNC rel
9	MOV A,R1	CMP A,R1	$\begin{aligned} & \text { ADDC } \\ & \text { A,R1 } \end{aligned}$	SUBC A,R1	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R} 1, \mathrm{~A} \end{aligned}$	$\begin{array}{\|c} \text { XOR } \\ \text { A,R1 } \end{array}$	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	SETB dir: 1	BBS dir: 1,rel	$\left\|\begin{array}{ll} \text { INC } & \\ & \text { R1 } \end{array}\right\|$	$\text { DEC }_{\text {R1 }}$	CALLV \#1	BCr
A	MOV A,R2	CMP A,R2	$\begin{aligned} & \text { ADDC } \\ & \text { A,R2 } \end{aligned}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R2 } \end{aligned}$	MOV R2,A	$\begin{aligned} & \text { XOR } \\ & \text { A,R2 } \end{aligned}$	AND A,R2	OR A,R2	MOV R2,\#d8	CMP R2,\#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	$\mathrm{DEC}_{\mathrm{R} 2}$	CALLV \#2	BP rel
B	MOV A,R3	CMP A,R3	$\begin{aligned} & \mathrm{ADDC} \\ & \mathrm{~A}, \mathrm{R} 3 \end{aligned}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R3 } \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R} 3, \mathrm{~A} \end{aligned}$	$\begin{array}{\|c} \text { XOR } \\ \text { A, R3 } \end{array}$	AND A,R3	OR A,R3	MOV R3,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R3,\#d8 } \end{aligned}$	SETB dir: 3	BBS dir: 3,rel	INC	$\begin{gathered} \text { DEC } \\ \text { R3 } \end{gathered}$	CALLV \#3	BN
C	MOV A,R4	CMP A,R4	$\begin{aligned} & \text { ADDC } \\ & \text { A,R4 } \end{aligned}$	SUBC A,R4	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R} 4, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R4} \end{aligned}$	AND A,R4	OR A,R4	MOV R4,\#d8	CMP R4,\#d8	SETB dir: 4	$\begin{aligned} & \text { BBS } \\ & \text { dir: 4,rel } \end{aligned}$	INC R4	${ }^{\text {DEC }}$	CALLV \#4	$\left\lvert\, \begin{array}{\|ll} \mathrm{BN} & \\ & \text { rel } \end{array}\right.$
D	MOV A,R5	CMP A,R5	$\begin{aligned} & \mathrm{ADDC} \\ & \mathrm{~A}, \mathrm{R} 5 \end{aligned}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R5 } \end{aligned}$	MOV R5,A	$\begin{array}{\|} \text { XOR } \\ \text { A,R5 } \end{array}$	AND A,R5	OR A,R5	MOV R5,\#d8	CMP R5,\#d8	SETB dir: 5	BBS dir: 5,rel	INC R5	$\mathrm{DEC}_{\mathrm{R} 5}$	CALLV \#5	BZ rel
E	MOV A,R6	CMP A,R6	$\begin{gathered} \text { ADDC } \\ \text { A,R6 } \end{gathered}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R6 } \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R6}, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R6} \end{aligned}$	AND A,R6	OR A,R6	MOV R6,\#d8	CMP R6,\#d8	SETB dir: 6	$\begin{aligned} & \text { BBS } \\ & \text { dir: 6,rel } \end{aligned}$	INC R6	$\mathrm{DEC}_{\mathrm{R} 6}$	CALLV \#6	BGE rel
F	MOV A,R7	CMP A,R7	$\begin{aligned} & \text { ADDC } \\ & \text { A,R7 } \end{aligned}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,R7 } \end{aligned}$	$\begin{array}{\|c} \text { MOV } \\ \text { R7,A } \end{array}$	$\begin{aligned} & \text { XOR } \\ & \quad \mathrm{A}, \mathrm{R} 7 \end{aligned}$	AND A,R7	OR A,R7	MOV R7,\#d8	CMP R7,\#d8	SETB dir: 7	$\begin{aligned} & \text { BBS } \\ & \text { dir: 7,rel } \end{aligned}$	INC R7	$\mathrm{DEC}_{\mathrm{R7}}$	CALLV \#7	$\left\|\begin{array}{ll} \text { BLT } & \\ & \text { rel } \end{array}\right\|$

MB89860/850 Series

MASK OPTIONS (MB89855/857/865/867)

Option type	Option selection	Remarks
Power-on reset	0 : Without power-on reset 1: With power-on reset	-
Initial value of oscillation stabilization delay time	0: $2^{18} / \mathrm{Fc}$ (s) (Crystal oscillator) 1: $2^{14 / F c}$ (s) (Ceramic oscillator)	Selects the initial value of the OSCS bit in the STBC register during power-on reset.
Reset pin output	0 : Without reset output 1: With reset output	-
Pull-up resistor at port pin P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64 P70 to P76, P80 to P87	1: Without pull-up resistor 0 : With pull-up resistor	- Can be set per pin. - P70 to P76, and P80 to P87 are used in the MB89860 series only. - P00 to P07, P10 to P17, and P20 to P27 with a pull-up resistor can be set only for single-chip mode.

STANDARD OPTION LIST

Parameter Part number	MB89P857/W857/ P867/W867/T855
Power-on reset	Available
Initial value of oscillation stabilization delay time	$2^{18 / F c ~(s) ~}$
Output at reset pin	Available
Pull-up resistor at port pin	Not available

ORDERING INFORMATION

Part number	Package	Remarks
MB89865PF MB89867PF MB89P867PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89855P-SH MB89T855P-SH MB89857P-SH MB89P857P-SH	$\begin{aligned} & \text { 64-pin Plastic SH-DIP } \\ & \text { (DIP-64P-M01) } \end{aligned}$	
MB89W867CF	80-pin Ceramic QFP (FPT-80C-A02)	ES level only
MB89W857C-SH	64-pin Ceramic SH-DIP (DIP-64C-A06)	ES level only

MB89860/850 Series

PACKAGE DIMENSIONS

1994 FUUTSU LIMTED F80010S-3C-2
Dimensions in mm (inches)

64-pin Plastic SH-DIP
(DIP-64P-M01)

MB89860/850 Series

© 1994 FUJITSU LIMTED F80014SC-1-2
Dimensions in mm (inches)

64-pin Ceramic SH-DIP
 (DIP-64C-A06)

MB89860/850 Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

```
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
No. 51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609
```

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

[^0]: *: Connect the adapter jumper pin to $\mathrm{V}_{\text {ss }}$ when using.

