8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89950 Series

MB89951/953/P955/PV950

■ OUTLINE

The MB89950 series of single-chip compact microcontroller using the F²MC*-8L family core which can operate at high-speeds and low voltages. They contain peripherals such as timers, UART, serial interfaces, external interrupts and a 168-pixel LCD controller/driver. It is best suited for use in LCD panels.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum instruction execution time: 0.8 µs at 5 MHz
- F²MC-8L family CPU core

Instruction system most suited to controllers

Multiplication and division instructions 16-bit arithmetic operation Instruction test and branch instruction Bit manipulation instruction, etc.

(Continued)

■ PACKAGE

(Continued)

• LCD controller/driver

Maximum 42 segment outputs x 4 common outputs Build-in LCD driver split resistor

• Three-channel timer unit

8-bit PWM timer: (usable as both reload timer and PWM timer) 8-bit pulse width counter timer: (usable as both reload timer) 20-bit timebased counter

· Two serial interfaces

8-bit synchronous serial interface UART (5, 7, and 8-bit transfers possible)

External-interrupt input: 2 channels
 2 channels can be used to clear the low-power consumption modes
 An edge detection function is provided for each channel

Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current consumption)
 Sleep mode (CPU stops to reduce current consumption to about 30%)

• Package: QFP-64 (0.65mm pitch)

■ PRODUCT LINEUP

Part number					
Item	MB89951	MB89953	MB89P955	MB89PV950	
Classification	Mass-produ (Mask ROI	ced products M product)	One-time PROM products	Piggyback/ evaluation and development ptoduct	
ROM size	4 K × 8 bits (internal mask ROM) 8 K × 8 bits (internal mask ROM)		16 K × 8 bits (internal PROM, to be programmed with general-purpose EPROM programmer)	32 K × 8 bits (external ROM)	
RAM size	128 × 8 bits	256 × 8 bits	512 × 8 bits	1024 × 8 bits	
CPU functions	The number of ba Instruction bit leng Instruction length Data bit length: Minimum imstruct Interrupt processi	gth: 8 : 1 tion execution time: 0.	36 bits to 3 bytes , 8, 16 bits 8 μs at 5 MHz (Vcc =5.0 2 μs at 5 MHz (Vcc =5.0		
Ports	I/O port (N-ch ope I/O port (N-ch ope I/O port (CMOS): Total:	en-drain): 4 7	2 (also used as segment (two of them are also us (6 used as peripheral) 3 (max.)		
8-bit PWM timer	8-bit reload timer operation (toggle output possible) 8-bit resolution PWM operation Operation clock (pulse-width count timer output: 0.8 μs, 12.8 μs, 51.2 μs/5 MHz)				
8-bit pulse-width counter timer	•	rement (continuous mea and one-cycle	mer operation asurement, High- and Lo measurement) , 3.2 ms, 25.6 μs/5 MHz)		
8-bit serial I/O			oit (LSB) first or most sign β μs, 6.4 ms, 25.6 μs/5 M		
UART	5-, 7-, 8-bit transfe	ers possible, internal bau	ud-rate generator (Max. 7	78125 bps/5 MHz)	
LCD controller/ driver	Common output: 4 Segment output: 42 (max.) Operation mode: 1/2 bias and 1/2 duty, 1/3 bias and 1/3 duty, 1/3 bias and 1/4 duty LCD controller display RAM capacity: 42 × 4 bits LCD driver split resistor: built-in (external resistor selectable)				
External interrupt	2 (edge selectable: one serving as pulse-width count timer input)				
Standby mode		Sleep mode	e, stop mode		
Power supply voltage*2	2.2 V to	o 6.0 V			
EPROM		_		MBM27C256A-20TV (LCC package)	

^{*1:} Mask Option.
*2: Varies with conditions such as the operating frequency. (See "■ Electrical Characteristics".)

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89951	MB89953	MB89P955	MB89PV950
FPT-64P-M09	0	0	0	×
MQP-64C-P01	×	×	×	0

○ : Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."

■ PIN ASSIGNMENT

Pin assignment on package top (MB89PV950 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
65	N.C.	73	A2	81	N.C.	89	ŌĒ
66	V _{PP}	74	A1	82	04	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	01	85	07	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	CE	95	A14
72	A3	80	Vss	88	A10	96	Vcc

N.C.:Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.			Circuit	
QFP*1	MQFP*2	Pin name	type	Function
22	23	X0	Α	Clock oscillator pins
23	24	X1		
21	22	MODA	В	Operation-mode select pin This pin is connected directly to Vss with pull down resistor.
19	20	RST	С	Reset I/O pin This pin consists of an N-ch open-drain output with a pull-up resistor and hysteresis input. A Low level is put out from this pin. A "LOW" voltage on this port generates a RESET condition
48 to 41	49 to 42	P00/SEG20 to P07/SEG27	D	N-channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option every 8 bits.
40 to 33	41 to 34	P10/SEG28 to P17/SEG35	D	N-channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option.
32 to 27	33 to 28	P20/SEG36 to P25/SEG41	D	N-channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option.
14 to 11	15 to 12	P30 to P31	F	N-channel open-drain type general-purpose I/O ports
12 to 11	13 to 12	P32/V1 to P33/V2	D	N-channel open-drain type general-purpose I/O ports Also serve as LCDC controller power supply.
15	16	P40	E	General-purpose I/O port A pull-up resistor option is provided.
16	17	P41/PWM	Е	General-purpose I/O port Serves as PWM timer toggle output (PWM). A pull-up resistor option is provided.
17	18	P42/PWC/INT1	E	General-purpose I/O port Also serves as pulse-width count timer input (PWC) and external interrupt input (INT1) The PWC and INT1 inputs are of a hysteresis type. A pull-up resistor option is provided.
18	19	P43/SI	E	General-purpose I/O port Also serves as serial I/O and UART data input (SI) The SI input is of a hysteresis type. A pull-up resistor option is provided.
20	21	P44/SO	Е	General-purpose I/O port Also serves as serial I/O and UART data output (SO). A pull-up resistor option is provided.

*1: FPT-64P-M09

*2: MQP-64C-P01

(Continued)

(Continued)

Pin no. Pin name Ci		Circuit	Function	
QFP*1	MQFP*2	Fili liallie	type	Function
25	26	P45/SCK	Е	General-purpose I/O port Also serves as serial I/O and UART clock input/output (SCK). The SCK input is of a hysteresis type. A pull-up resistor option is provided.
26	27	P46/INT0	E	General-purpose input port Also serves as external-interrupt input (INT0). The input is of a hysteresis type. A pull-up resistor option is provided.
5 to 1, 64 to 57, 55 to 49	6 to 1, 64 to 58, 56 to 50	SEG0 to SEG4, SEG5 to SEG12, SEG13 to SEG19		
9 to 6	7 to 10	COM0 to COM3	G	For LCDC controller common output
10	11	V3	_	For LCD driver power supply
56	57	Vcc	_	Power supply Pin
24	25	Vss	_	Power supply (GND) Pin

*1: FPT-64P-M09 *2: MQP-64C-P01

• External EPROM pins (MB89PV950 only)

Pin no.	Pin name	I/O	Function
66	V _{PP}	0	"H" level output pin
67 68 69 70 71 72 73 74 75	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
77 78 79	O1 O2 O3	I	Data input pins
80	Vss	0	Power supply (GND) pins
82 83 84 85 86	O4 O5 O6 O7 O8	I	Data input pins
87	CE	0	ROM chip enable pin Outputs "H" during standby.
88	A10	0	Address output pin
89	OE	0	ROM output enable pin Outputs "L" at all times.
91 92 93 94 95	A11 A9 A8 A13 A14	0	Address output pins
96	Vcc	0	EPROM power supply pin
65 76 81 90	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

(Continued)

(Continued)

Туре	Circuit	Remarks
F	N-ch	N-ch open-drain output CMOS input
G		• LCDC output

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although operation is assured within the rated, rapid of V_{CC} power supply voltage, a rapid fluctuation of the voltage cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{CC} rippli fluctuations (P-P value) will be less than 10% of the standard V_{CC} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P955

The MB89P955 is an OTPROM version of the MB89950 series.

1. Features

- 16-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPPROM

Functions equivalent to the MBM27C256A can be used in the MB89P955 EPROM mode. Accordingly, the user can write data with a general-purpose EPROM writer by using a dedicated adapter. Note that the electrical signature mode is not supported.

- Programming procedure
- (1) Set the EPROM writer for the MBM27C256A.
- (2) Load program data from 4000H to 7FFFH of the EPROM writer (Note that 0C000H to 0FFFFH in the operation mode are equivalent to 4000H to 7FFFH in the EPROM mode).

 Load option data from 3FF0H to 3FF6H of the EPROM writer (See Bit Map on the next page for the correspondence to each option).
- (3) Write the data with the EPROM writer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Part number	MB89P955PFM
Package	QFP-64
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-64QF2-28DP-8L3

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FF0н	Vacancy	Vacancy	Vacancy	Oscillation stabilization time	Reset pin ouput	Power-on reset	Vacancy	Vacancy
	Readable and writable	Readable and writable	Readable and writable	1: 2 ¹⁸ /fc 0: 2 ¹⁴ /fc	1: Yes 0: No	1: Yes 0: No	Readable and writable	Readable and writable
	Vacancy	P46	P45	P44	P43	P42	P41	P40
3FF1н	Readable and writable	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No	Pull-up 1: Yes 0: No
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
3FF2н	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
3FF3н	Readable and Writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
3FF4⊦	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
3FF5⊦	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
3FF6⊦	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable	Readable and writable

Note: Each bit is set to '1' as the initialized value, therefore the pull-up option is not selected.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below:

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

3. Memory Space

Memory space in each mode such as 32-Kbyte PROM, is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer for the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007H to 7FFFH.
- (3) Program with the EPROM programmer.

■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

F²MC-8L CPU has 64 Kbytes of memory. All I/O, data program areas are located in this space. The I/O area is near the lowest address and the data area is immediately above it. The data area can be divided into register, stack, and direct-address areas according to the applications. The program area is located near the highest address, and the tables of interrupt and reset vectors and vector-call instructions are at the highest address in this area. The following figure shows the structure of the memory space for the MB89950 series of microcontrollers.

2. Registers

The F²MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose memory registers. The following registers are provided:

Program counter (PC): A 16-bit register for indicating the instruction storage positions.

Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which is used for arithmetic operations with the accumulator

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification

Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit pointer for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for Conversion of Actual Addresses of the General-purpose Register Area RP Lower OP codes "0" "0" "0" "0" "0" "0" "0" "1" R4 R3 R2 R1 R0 b2 b1 b0 \$\delta \text{ \$\delta \text{

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the MSB becomes '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in '0'. Cleared to '0' otherwise.

V-flag: Set to '1' if the complement on '2' overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise.

Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit resister for storing data

The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 4 banks can be used on the MB89951 and a total of 8 banks can be used on the MB89953 and a total of 16 banks can be used on the MB89PV950. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description			
00н	(R/W)	PDR0	Port 0 data register			
01н		Vac	cancy			
02н	(R/W)	PDR1	Port 1 data register			
03н		Vac	cancy			
04н	(R/W)	PDR2	Port 2 data register			
05н to 07н		Vac	cancy			
08н	(R/W)	STBC	Standby control register			
09н	(R/W)	WDTC	Watchdog timer control register			
0Ан	(R/W)	TBCR	Timebase timer control register			
0Вн		Vac	cancy			
0Сн	(R/W)	PDR3	Port 3 data register			
0Dн		Vac	cancy			
0Ен	(R/W)	PDR4	Port 4 data register			
0Fн	(W)	DDR4	Port 4 data direction register			
10н		Vacancy				
11н		vac	cancy			
12н	(R/W)	CNTR	PWM control register			
13н	(W)	COMR	PWM compare register			
14н	(R/W)	PCR1	PWC pulse width control register 1			
15н	(R/W)	PCR2	PWC pulse width control register 2			
16н	(R/W)	RLBR	PWC reload buffer register			
17н	(R/W)	NCCR	PWC noise reduction control register			
18н to 1Вн		Vac	cancy			
1Сн	(R/W)	SMR	Serial mode register			
1Dн	(R/W)	SDR	Serial data register			
1Ен		Manage .				
1F _H		Vacancy				
20н	(R/W)	SMC1	UART serial mode control register 1			
21н	(R/W)	SRC	UART serial rate control register			
22н	(R/W)	SSD	UART serial status/data register			
23н	(R/W)	SIDR/SODR	UART serial data register			
24н	(R/W)	SMC2	UART serial mode control register 2			

(Continued)

(Continued)

Address	Read/write	Register name	Register description
25н to 2Fн		Vaca	ncy
30н	(R/W)	EIC1	External interrupt 1 control register 1
31н to 63н		Vaca	ncy
64н to 78н	(R/W)	VRAM	Display data RAM
79н	(R/W)	LCDR	LCD control register
7Ан	(R/W)	SEGR	Segment output select register
7Вн		Vaca	ncy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7 Fн	_	ITR	Interrupt test register

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = 0.0 V)

Danamatan	Cumbal	Va	lue	l lm!4	Domonico
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 7.0	V	
LCD power supply voltage	V3	Vss-0.3	Vss + 7.0	V	
	VI1	Vss - 0.3	Vcc + 0.3	V	All the pins must not exceed VSS + 7.0 V, excluding P00 to P07, P10 to P17, P20 to P25,P32 to P33 in MB89P955/PV950
Input voltage	V ₁₂	Vss-0.3	Vss + 7.0	V	Applicable to P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
	Vı3	Vss-0.3	V3	V	*P00 to P07, P10 to P17, P20 to P25, P32 to P33
	V _{O1}	Vss-0.3	Vcc + 0.3	V	All the pins must not exceed Vss + 7.0 V, excluding P00 to P07, P10 to P17, P20 to P25, P32 to P33 in MB89P955/PV950
Output voltage	V _{O2}	Vss-0.3	Vss + 7.0	V	Applicable to P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
	V _{O3}	Vss-0.3	V3	V	P00 to P07, P10 to P17, P20 to P25, P32 to P33*
"L" level output current	loL	_	10	mA	Applicable to all pins except power supply pin.
"L" level average output current	lolav		4	mA	Applicable to all pins excluding power supply pin. Specified as the average value in 1 hour.
"L" level total output current	ΣloL	_	40	mA	
"H" level output current	Іон		- 5	mA	Applicable to all pins excluding power supply pin.
"H" level average output current	Іонаv	_	-2	mA	Applicable to all pins excluding power supply pin. Specified as the average value in 1 hour.
"H" level total output maximum current	∑Іон	_	-10	mA	
Power consumption	PD	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*:} It is only suitable to MB89P955/PV950.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks	
Parameter	Syllibol	Min. Max.		Oilit	Nemarks	
		2.2*	6.0	V	Usual operation guarantee range	
Power supply voltage	Vcc	1.5	6.0	V	RAM-data-holding guarantee range at stop mode	
LCD power supply voltage	V3	Vss	6.0	V	V3 pins for MB89953 The voltage range supplied to LCD and its optimum value depend on the LCD	
Operating temperature	TA	-40	+85	°C		

*: This value varies with the operating frequency and analog assurance range. See Figure 1.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(Vcc = V3 = +5.0 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

.			0 11.11	(**************************************	Value	v, v ₃₃ = 0.0		= -40°C to +85°C)
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input voltage			_	0.7 Vcc *1	_	0.3 Vcc *1	V	
Voltage		P32,P33	_	0.7 Vcc *1	_	V3	V	
	VIHS	RST, INTO, SCK, SI, PWC/INT1	_	0.8 Vcc	_	Vcc + 0.3	V	
"L" level input voltage	VıL	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P46	_	Vss - 0.3	_	0.3 Vcc *1	V	
	VILS	RST, MODA, INTO, SCK, SI, PWC/INT1	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin Applied voltage	VD	P30 to P31, P20 to P25, P10 to P17, P00 to P07	_	Vss - 0.3	_	Vss + 6.0	V	P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
		P32, P33	_	Vss - 0.3	_	V3	V	P32 to P33 (port select)
"H" level Output voltage	Vон	P40 to P46	Iон = -2.0 mA	4.0	_	_	V	
"L" level Output voltage	V _{OL1}	P00 to P07, P10 to P17, P20 to P25, P30 to P33	IoL = 4.0 mA	_	_	0.4	V	
	V _{OL2}	RST, P40 to P46	IoL = 4.0 mA	_	_	0.4	V	
Input leakage		MODA, P30, P31, P40 to P46	-0.45 V < VI <	_	_	±5	μΑ	When pull-up option is not selected
output leak current)			Vcc	_	_	±5	μА	When pull-up option is not selected
Pull-up resistance	Rpull	RST, P40 to P46	Vı = 0.0 V	25	50	100	kΩ	When pull-up option is selected
Common Output impedance	Rусом	COM0 to COM3	V1 to V3 = +5.0 V	_	_	2.5	kΩ	

(Continued)

(Continued)

 $(Vcc = V3 = +5.0 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Fili lialile	Condition	Min.	Тур.	Max.	Oiiit	Remarks
Segment Output impedance	Rvseg	SEG0 to SEG41	V1 to V3 = +5.0 V	_	_	15	kΩ	
LCD divided resistance	RLCD	_	V1 to V3	30	60	120	kΩ	
LCD leak current	ILCDL	V1 to V3, COM0 to COM3, SEG0 to SEG41	_	_	_	±10	μΑ	
Pull-down resistance	_	MODA	_	TBD	TBD	TBD	kΩ	
	Icc	Vcc	Fc = 5 MHz t _{inst*3} = 0.8μs	_	3.5	5.0	mA	Main RUN mode
Power Supply voltage	Iccs	Vcc	FC = 5 MHz t _{inst*3} = 0.8μs	_	1.1	1.7	mA	Main SLEEP mode
	Іссн	Vcc	T _A = +25°C	_	0.1	1	μΑ	STOP mode
Input capacitance	Cin	Except Vcc and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} Port input voltage is smaller than V3 for MB89P955/PV950.

Note: For pins for selection of segments (SEG8 to SEG31) and ports (P10 to P17, P40 to P47, P50 to P57), see the limits values of ports when port output is selected and those for segments when segment output is selected.

^{*2:} TBD = To be determined

^{*3:} For information on t_{inst}, see "(4) Instruction Cycle" in "4.AC Characteristics."

4. AC Characteristics

(1) Reset Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Parameter	Symbol		Min.	Max.	Oilit	Remarks
RST "L" pulse width	t zlzh	_	48 txcyL*		ns	

^{*:} txcyL is the oscillation cycle (1/Fc) to input to the XO pin.

(2) Specifications for Power-on Reset

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Symbol Condition Value		Unit	Remarks		
Farameter	Syllibol	Condition	Min. Ma		Oilit	Remarks	
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff	_	1	_	ms	Min. interval time to the next power-on reset	

Note: If power-on reset provided is selected, an abrupt change in the power supply voltage could cause a power-on reset. When changing the power supply voltage during operation, voltage fluctuations should be two or less times for smooth start-up.

(3) Clock Timing

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Syllibol	Fili Ilalile	Min.	Тур. Мах		Oilit	Remarks
Clock frequency	Fc	X0, X1	1	_	5	MHz	
Clock cycle time	thcyL	X0, X1	400	_	2000	ns	
Input clock duty ratio*	duty	X0	30	_	70	%	crystal & ceramic
Input clock rising/falling time	tcr tcr	X0	_	_	10	ns	Applied when external clock used

*: duty = Pwh/thcyl

(4) Instruction Cycle

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (Minimum instruction executing time)	tinst	4/Fc to 64/Fc	μs	t _{inst} = 0.8 μs when operating at Fc = 5 MHz

(5) Serial I/O & UART timing

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
rarameter	Symbol Fill hame		Condition	Min.	Max.	Oint	Neillai KS
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs	
SCK1 \downarrow \rightarrow SO time	tslov	SCK, SO	Internal clock	200	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK	operation	0.5 tinst*	_	μs	
$SCK \uparrow \to valid \; SI \; hold \; time$	tshix	SCK, SI		0.5 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK		1 tinst*		μs	
Serial clock "L" pulse width	tslsh	SCK	External	1 tinst	_	μs	
SCK1 \downarrow \rightarrow SO time	tslov	SCK, SO	clock	0	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK	operation	0.5 tinst*		μs	
$SCK \uparrow \rightarrow valid SI hold time$	t shix	SCK, SI		0.5 t inst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

• Internal Shift Clock Mode tscyc SCK 2.4 V 0.8 V 0.8 V ___tslov 2.4 V 0.8 V SO tshix _tıvsн 0.8 Vcc 0.8 Vcc SI 0.2 Vcc • External Shift Clock Mode -0.7 Vcc 0.7 Vcc SCK 0.2 Vcc 0.2 Vcc __ tslov 2.4 V SO 0.8 V tivsh **t**shix 0.8 Vcc 0.8 Vcc

0.2 Vcc

0.2 Vcc

SI

(6) Peripheral Input Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to} +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Val	ue	Unit	Remarks
Faranietei	Syllibol	Fili lialile	Min.	Max.	Oilit	Remarks
Peripheral input "H" level pulse width 1	t _{ILIH1}	PWC, INT1, INT0	2 tinst*	_	μs	
Peripheral input "L" level pulse width 1	t _{IHIL1}	PWC, INT1, INT0	2 tinst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
Α	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

The number of instructions The number of bytes Operation: Operation of an instruction

A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

• "-" indicates no change. TĹ, TH, AH:

- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

An instruction of which the corresponding flag will change. If + is written in this column, N, Z, V, C:

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to $4F \leftarrow$ This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	-	-		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	$((EP)) \leftarrow (A)$	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
		_	$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), (EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	$(A) \leftarrow d16$	AL	АН	dΗ		E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
1000000	~	_	$(AL) \leftarrow ((IX) + off + 1)$, ·-	7 (1 1	u.,		
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dΗ	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (A), (AL) \leftarrow (A) + 1$	AL	AH	dH	++	93
MOVW A,@EP	4	i	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH		C7
MOVW A, EP	2	1	$(AI) \leftarrow (EI)$, $(AL) \leftarrow (EI)$	_	_	dH		F3
MOVW EP,#d16	3	3	$(EP) \leftarrow d16$	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$		_			E2
MOVW A,IX	2	1	$(A) \leftarrow (A)$ $(A) \leftarrow (IX)$		_	dH		F2
MOVW SP,A	2	1	$(SP) \leftarrow (A)$		_	- uii		E1
MOVW A,SP	2	1		_	_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (SP)$ $((A)) \leftarrow (T)$	_	_	un –		82
	4			_	_	_		
MOVW @A,T	_	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	_ 		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): $b \leftarrow 0$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL		 .		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dΗ		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dΗ		F5
MOVW A,PC	2	1	(A) ← (PC)	_	_	dΗ		F0

Note During byte transfer to A, $T \leftarrow A$ is restricted to low bytes.

Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	ı	_	-	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	_	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	 .	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_ 		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0 D8 to DF
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	
DECW EP DECW IX	3	1	$(EP) \leftarrow (EP) - 1$	_	_	_		D3 D2
DECW A	3	1	$ (IX) \leftarrow (IX) - 1 $ $ (A) \leftarrow (A) - 1 $	_		dH		D2 D0
MULU A	19		$(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) \times (TL)$	_	_	dН	++	01
DIVU A	21		$(A) \leftarrow (AL) \times (TL)$ $(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (1) / (AL), \text{NIOD} \rightarrow (1)$ $(A) \leftarrow (A) \land (T)$	<u>u</u> –	_	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \wedge (T)$ $(A) \leftarrow (A) \vee (T)$			dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	53
CMP A	2	1	(TL) – (AL)	_	_	_	++++	12
CMPW A	3	i	(T) – (A)	_	_	_	++++	13
RORC A	2	i i	ightharpoonup C ightharpoonup A ightharpoonup	_	_	_	++-+	03
			_ C ← A ←					
ROLC A	2	1		-	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) – ((IX) +off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$	_	_	_	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	+ + R –	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ (\ (EP) \)$	_	_	_	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (\ (IX) + off)$	_	_	_	+ + R –	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	_	-	_	+ + R –	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \wedge (TL)$	_	-	_	+ + R –	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	_	_	_	+ + R –	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	_	++R-	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	++R-	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	++R-	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	++R-	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R-	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	++R-	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	-	-		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	-	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC ← PC + rel	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

11431	KUC	HON	MAP	,												
F	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
Е	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
၁	INCW A	INCW	INCW IX	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX+d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
A	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC I	SUBC A, @IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
-	SWAP	DIVU	CMP A	CMPW A	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MOP	MULU A	ROLC A	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX+d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
L H	0	1	2	3	4	5	9	7	8	6	∢	В	ပ	Q	Ш	ш

■ MASK OPTIONS

No.	Model	Model MB89951 MB89P955				
NO.	Specification method	Specification method Select when ordering mask Set b				
1	Pull-up resistors P40 to P46	Can be selected for each pin	Can be selected for each pin	No pull-up resistor		
2	Port/segment output P00 to P07, P10 to P17, P20 to P25	Can be selected for every 8 to 1 pins-2	Port/segment output-₃	Port/segment output⋅₃		
3	Power-on reset available Power-on reset unavailable	Selectable	Selectable	Power-on reset available		
4	Selection of main clock oscillation stabilization time (at 5 MHz)*1 Approx. 218/Fc (Approx. 52.4 ms) Approx. 214/Fc (Approx. 3.28 ms)	Selectable	Selectable	2 ¹⁸ /Fc		
5	Reset pin output Reset output available Reset output unavailable	Selectable	Selectable	Reset output available		

^{*1:} The main clock oscillation stabilization time is generated by dividing the main clock oscillation. Since the oscillation cycle is unstable immedeately after oscillation starts, the time in this table is only a guide.

■ ORDERING INFORMATION

Part Number	Package	Remarks
MB89951PFM MB89953PFM MB89P955PFM	64-pin Plastic QFP (FPT-64P-M09)	
MB89PV950CF	64-pin Ceramic MQFP (MQP-64C-M01)	

^{*2:} Port/segment output switching should be specified in the same manner as the port allocation set by the segment output select register in the LCD controller/driver.

^{*3:} When those pins are used as ports, applied voltage should never be jogjer than V3.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka,

Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

3545 North First Street,

San Jose, CA 95134-1804, USA

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD

#05-08, 151 Lorong Chuan,

New Tech Park, Singapore 556741

Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

F9609

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice

Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.