8-bit Proprietary Microcontroller

cmos

F²MC-8L MB89950 Series

MB89951/953/P955/PV950

- OUTLINE

The MB89950 series of single-chip compact microcontroller using the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ family core which can operate at high-speeds and low voltages. They contain peripherals such as timers, UART, serial interfaces, external interrupts and a 168-pixel LCD controller/driver. It is best suited for use in LCD panels.
*: F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

- Minimum instruction execution time: $0.8 \mu \mathrm{~s}$ at 5 MHz
- F²MC-8L family CPU core
Instruction system most suited to controllers $\left\{\begin{array}{l}\text { Multiplication and division instructions } \\ \text { 16-bit arithmetic operation } \\ \text { Instruction test and branch instruction } \\ \text { Bit manipulation instruction, etc. }\end{array}\right.$
(Continued)
PACKAGE

MB89950 Series

(Continued)

- LCD controller/driver

Maximum 42 segment outputs $\times 4$ common outputs
Build-in LCD driver split resistor

- Three-channel timer unit

8-bit PWM timer: (usable as both reload timer and PWM timer)
8 -bit pulse width counter timer: (usable as both reload timer)
20-bit timebased counter

- Two serial interfaces

8 -bit synchronous serial interface UART (5, 7, and 8-bit transfers possible)

- External-interrupt input: 2 channels

2 channels can be used to clear the low-power consumption modes An edge detection function is provided for each channel

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption)
Sleep mode (CPU stops to reduce current consumption to about 30\%)

- Package: QFP-64 (0.65mm pitch)

MB89950 Series

PRODUCT LINEUP

Part number Item	MB89951	MB89953	MB89P955	MB89PV950
Classification	Mass-produced products (Mask ROM product)		One-time PROM products	Piggyback/ evaluation and development ptoduct
ROM size	$\begin{gathered} 4 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal mask ROM) } \end{gathered}$	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal PROM, to be programmed with general-purpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	128×8 bits	256×8 bits	512×8 bits	1024×8 bits
CPU functions	The number of basic instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum imstruction execution time: 0.8μ s at $5 \mathrm{MHz}\left(\mathrm{V}_{c c}=5.0 \mathrm{~V}\right)$ Interrupt processing time: $7.2 \mu \mathrm{~s}$ at $5 \mathrm{MHz}(\mathrm{Vcc}=5.0 \mathrm{~V})$			
Ports	I/O port (N-ch open-drain): 22 (also used as segment pin) ${ }^{* 1}$ I/O port (N-ch open-drain): 4 (two of them are also used as LCD bias pins) I/O port (CMOS): 7 (6 used as peripheral) Total: 33 (max.)			
8-bit PWM timer	8-bit reload timer operation (toggle output possible)8-bit resolution PWM operationOperation clock (pulse-width count timer output: $0.8 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}, 51.2 \mu \mathrm{~s} / 5 \mathrm{MHz}$)			
8-bit pulse-width counter timer	8-bit reload timer operation 8 -bit pulse width measurement (continuous measurement, High- and Low-width measurement, and one-cycle measurement) Operation clock ($0.8 \mu \mathrm{~s}, 3.2 \mathrm{~ms}, 25.6 \mu \mathrm{~s} / 5 \mathrm{MHz}$)			
8-bit serial I/O	8-bit length, selectable from least significant bit (LSB) first or most significant bit (MSB) first, transfer clock (external, $1.6 \mu \mathrm{~s}, 6.4 \mathrm{~ms}, 25.6 \mu \mathrm{~s} / 5 \mathrm{MHz}$)			
UART	5-, 7-, 8-bit transfers possible, internal baud-rate generator (Max. $78125 \mathrm{bps} / 5 \mathrm{MHz}$)			
LCD controller/ driver	Common output: 4 Segment output: 42 (max.) Operation mode: $1 / 2$ bias and $1 / 2$ duty, $1 / 3$ bias and $1 / 3$ duty, $1 / 3$ bias and $1 / 4$ duty LCD controller display RAM capacity: 42×4 bits LCD driver split resistor: built-in (external resistor selectable)			
External interrupt	2 (edge selectable: one serving as pulse-width count timer input)			
Standby mode	Sleep mode, stop mode			
Power supply voltage*2	2.2 V to 6.0 V		2.7 V to 6.0 V	
EPROM	-			MBM27C256A-20TV (LCC package)

[^0]
MB89950 Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89951	MB89953	MB89P955	MB89PV950
FPT-64P-M09	\bigcirc	\bigcirc	\bigcirc	\times
MQP-64C-P01	\times	\times	\times	\bigcirc

O : Available \times : Not available
Note: For more information about each package, see section "■ Package Dimensions."

MB89950 Series

PIN ASSIGNMENT

MB89950 Series

(Top view)

- Pin assignment on package top (MB89PV950 only)

Pin no.	Pin name						
65	N.C.	73	A2	81	N.C.	89	$\overline{\text { OE }}$
66	VPp	74	A1	82	O4	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	O1	85	O7	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	$\overline{\text { CE }}$	95	A14
72	A3	80	Vss	88	A10	96	Vcc

N.C.:Internally connected. Do not use.

MB89950 Series

PIN DESCRIPTION

Pin no.		Pin name	$\underset{\text { type }}{\text { Circuit }}$	Function
QFP* ${ }^{1}$	MQFP ${ }^{2}$			
22	23	X0	A	Clock oscillator pins
23	24	X1		
21	22	MODA	B	Operation-mode select pin This pin is connected directly to $\mathrm{V}_{\text {ss }}$ with pull down resistor.
19	20	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin consists of an N-ch open-drain output with a pull-up resistor and hysteresis input. A Low level is put out from this pin. A "LOW" voltage on this port generates a RESET condition
48 to 41	49 to 42	$\begin{aligned} & \text { P00/SEG20 } \\ & \text { to } \\ & \text { P07/SEG27 } \end{aligned}$	D	N -channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option every 8 bits.
40 to 33	41 to 34	$\begin{aligned} & \text { P10/SEG28 } \\ & \text { to } \\ & \text { P17/SEG35 } \end{aligned}$	D	N -channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option.
32 to 27	33 to 28	$\begin{aligned} & \text { P20/SEG36 } \\ & \text { to } \\ & \text { P25/SEG41 } \end{aligned}$	D	N -channel open-drain type general-purpose I/O ports Also serve as LCDC controller segment outputs. Switching between port output and segment output is performed by the mask option.
14 to 11	15 to 12	P30 to P31	F	N-channel open-drain type general-purpose I/O ports
12 to 11	13 to 12	$\begin{aligned} & \text { P32/V1 to } \\ & \text { P33/V2 } \end{aligned}$	D	N -channel open-drain type general-purpose I/O ports Also serve as LCDC controller power supply.
15	16	P40	E	General-purpose I/O port A pull-up resistor option is provided.
16	17	P41/PWM	E	General-purpose I/O port Serves as PWM timer toggle output (PWM). A pull-up resistor option is provided.
17	18	P42/PWC/INT1	E	General-purpose I/O port Also serves as pulse-width count timer input (PWC) and external interrupt input (INT1) The PWC and INT1 inputs are of a hysteresis type. A pull-up resistor option is provided.
18	19	P43/SI	E	General-purpose I/O port Also serves as serial I/O and UART data input (SI) The SI input is of a hysteresis type. A pull-up resistor option is provided.
20	21	P44/SO	E	General-purpose I/O port Also serves as serial I/O and UART data output (SO). A pull-up resistor option is provided.

[^1](Continued)

MB89950 Series

(Continued)

Pin no.		Pin name	Circuit type	Function
QFP* ${ }^{\text {+1 }}$	MQFP ${ }^{\text {² }}$			
25	26	P45/SCK	E	General-purpose I/O port Also serves as serial I/O and UART clock input/output (SCK). The SCK input is of a hysteresis type. A pull-up resistor option is provided.
26	27	P46/INT0	E	General-purpose input port Also serves as external-interrupt input (INTO). The input is of a hysteresis type. A pull-up resistor option is provided.
$\begin{gathered} 5 \text { to } 1, \\ 64 \text { to } 57, \\ 55 \text { to } 49 \end{gathered}$	6 to 1 64 to 58 , 56 to 50	SEG0 to SEG4, SEG5 to SEG12, SEG13 to SEG19	G	For LCDC controller segment ouput
9 to 6	7 to 10	COM0 to COM3	G	For LCDC controller common output
10	11	V3	-	For LCD driver power supply
56	57	Vcc	-	Power supply Pin
24	25	Vss	-	Power supply (GND) Pin

*1: FPT-64P-M09
*2: MQP-64C-P01

MB89950 Series

- External EPROM pins (MB89PV950 only)

Pin no.	Pin name	I/O	Function
66	Vpp	0	" H " level output pin
$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & \text { O1 } \\ & \text { O2 } \\ & \text { O3 } \end{aligned}$	I	Data input pins
80	Vss	0	Power supply (GND) pins
$\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \\ & 86 \end{aligned}$	O4 05 06 07 08	1	Data input pins
87	CE	0	ROM chip enable pin Outputs "H" during standby.
88	A10	0	Address output pin
89	OE	0	ROM output enable pin Outputs " L " at all times.
$\begin{aligned} & 91 \\ & 92 \\ & 93 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \\ & \text { A13 } \\ & \text { A14 } \end{aligned}$	0	Address output pins
96	Vcc	O	EPROM power supply pin
$\begin{aligned} & 65 \\ & 76 \\ & 81 \\ & 90 \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89950 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal oscillator - Feedback resistor: Approx. $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$ (1 to 5 MHz)
B		- CMOS input - Pull-down resistor (N-ch)
C		- Output pull-up resistor (P-ch): Approx. $50 \mathrm{k} \Omega$ (5.0 V) - Hysteresis input
D		- N -ch open-drain output - CMOS input - The segment output is optional.
E		- CMOS output - CMOS input - Hysteresis input (peripheral input) - The pull-up resistor is optional.

(Continued)

MB89950 Series

(Continued)

Type	Circuit	Remarks
F	D	- N-ch open-drain output - CMOS input
G		- LCDC output

MB89950 Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power ($A V_{c c}$ and $A V R$) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although operation is assured within the rated, rapid of Vcc power supply voltage, a rapid fluctuation of the voltage cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V cc rippli fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V_{cc} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

MB89950 Series

PROGRAMMING TO THE EPROM ON THE MB89P955

The MB89P955 is an OTPROM version of the MB89950 series.

1. Features

- 16-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPPROM

Functions equivalent to the MBM27C256A can be used in the MB89P955 EPROM mode. Accordingly, the user can write data with a general-purpose EPROM writer by using a dedicated adapter. Note that the electrical signature mode is not supported.

- Programming procedure
(1) Set the EPROM writer for the MBM27C256A.
(2) Load program data from 4000н to 7FFF of the EPROM writer (Note that 0C000 \boldsymbol{H} to OFFFFH in the operation mode are equivalent to 4000 н to 7 FFFF in the EPROM mode).
Load option data from 3FF0н to 3FF6н of the EPROM writer (See Bit Map on the next page for the correspondence to each option).
(3) Write the data with the EPROM writer.

MB89950 Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Part number	MB89P955PFM
Package	QFP-64
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-64QF2-28DP-8L3

Inquiry: Sun Hayato Co., Ltd.: TEL : (81)-3-3986-0403
FAX: (81)-3-5396-9106

MB89950 Series

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFOH	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Oscillation stabilization time $1: 2^{18} / \mathrm{fc}$ $0: 2^{14} / \mathrm{fc}$	Reset pin ouput 1: Yes 0: No	Power-on reset 1: Yes 0 : No	Vacancy Readable and writable	Vacancy Readable and writable
3FF1н	Readable and writable	$\begin{aligned} & \text { Pull-up } \\ & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { 1: Yes } \\ & \text { 1: No } \end{aligned}$	1: Yes 0: No	$\begin{aligned} & \text { P43 } \\ & \text { Pull-up } \\ & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { P42 } \\ & \text { Pull-up } \\ & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { P41 } \\ & \text { Pull-up } \\ & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { P40 } \\ & \text { Pull-up } \\ & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$
3FF2н	Vacancy Readable and writable							
3 F	Vacancy Readable and Writable							
3F	Vacancy Readable and writable							
3 F	Vacancy Readable and writable							
3FF6н	Vacancy Readable and writable							

Note: Each bit is set to ' 1 ' as the initialized value, therefore the pull-up option is not selected.

MB89950 Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below:

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
3. Memory Space

Memory space in each mode such as 32 -Kbyte PROM, is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer for the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007н to 7 FFF н.
(3) Program with the EPROM programmer.

MB89950 Series

BLOCK DIAGRAM

MB89950 Series

CPU CORE

1. Memory Space

$\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ CPU has 64 Kbytes of memory. All I/O, data program areas are located in this space. The I/O area is near the lowest address and the data area is immediately above it. The data area can be divided into register, stack, and direct-address areas according to the applications. The program area is located near the highest address, and the tables of interrupt and reset vectors and vector-call instructions are at the highest address in this area. The following figure shows the structure of the memory space for the MB89950 series of microcontrollers.

- Memory Space

MB89950 Series

2. Registers

The F²MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose memory registers. The following registers are provided:
Program counter (PC): A 16-bit register for indicating the instruction storage positions.
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which is used for arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit pointer for indicating a stack area
A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

- Structure of the Program Status Register

MB89950 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to ' 1 ' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to ' 1 '. Interrupt is disabled when the flag is cleared to ' 0 '. Cleared to ' 0 ' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low

N-flag: Set to ' 1 ' if the MSB becomes ' 1 ' as the result of an arithmetic operation. Cleared to ' 0 ' when the bit is cleared to ' 0 '.

Z-flag: Set to ' 1 ' when an arithmetic operation results in '0'. Cleared to '0' otherwise.
V-flag: Set to ' 1 ' if the complement on '2' overflows as a result of an arithmetic operation. Cleared to ' 0 ' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise.
Set to the shift-out value in the case of a shift instruction.

MB89950 Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit resister for storing data
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 4 banks can be used on the MB89951 and a total of 8 banks can be used on the MB89953 and a total of 16 banks can be used on the MB89P955 and a total of 32 banks can be used on the MB89PV950. The bank currently in use is indicated by the register bank pointer (RP).

- Register Bank Configuration

4 banks (MB89951)
8 banks (MB89953)
16 banks (MB89P955)
32 banks (MB89PV950)
Memory area

MB89950 Series

I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	Vacancy		
02н	(R/W)	PDR1	Port 1 data register
03н	Vacancy		
04н	(R/W)	PDR2	Port 2 data register
05 ${ }_{\text {to }} 07 \mathrm{H}$	Vacancy		
08H	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBCR	Timebase timer control register
OBH	Vacancy		
ОСн	(R/W)	PDR3	Port 3 data register
ODH	Vacancy		
ОЕн	(R/W)	PDR4	Port 4 data register
$0 \mathrm{FH}_{\mathrm{H}}$	(W)	DDR4	Port 4 data direction register
10 H 11 H	Vacancy		
12н	(R/W)	CNTR	PWM control register
13н	(W)	COMR	PWM compare register
14 н	(R/W)	PCR1	PWC pulse width control register 1
15 н	(R/W)	PCR2	PWC pulse width control register 2
16 н	(R/W)	RLBR	PWC reload buffer register
17 H	(R/W)	NCCR	PWC noise reduction control register
18H to 1Вн	Vacancy		
1 CH	(R/W)	SMR	Serial mode register
1D ${ }_{\text {¢ }}$	(R/W)	SDR	Serial data register
1Ен	Vacancy		
2 OH	(R/W)	SMC1	UART serial mode control register 1
21,	(R/W)	SRC	UART serial rate control register
22н	(R/W)	SSD	UART serial status/data register
23н	(R/W)	SIDR/SODR	UART serial data register
24 H	(R/W)	SMC2	UART serial mode control register 2

(Continued)

MB89950 Series

(Continued)

Address	Read/write	Register name	Register description
25 to 2FH	Vacancy		
30н	(R/W)	EIC1	External interrupt 1 control register 1
31н to 63н	Vacancy		
64 to 78 ${ }^{\text {H }}$	(R/W)	VRAM	Display data RAM
79н	(R/W)	LCDR	LCD control register
7Ан	(R/W)	SEGR	Segment output select register
7 BH	Vacancy		
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7 FH	-	ITR	Interrupt test register

Note: Do not use vacancies.

MB89950 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	
LCD power supply voltage	V3	Vss - 0.3	Vss +7.0	V	
Input voltage	V_{11}	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	All the pins must not exceed VSS +7.0 V , excluding P00 to P07, P10 to P17, P20 to P25,P32 to P33 in MB89P955/PV950
	V12	Vss - 0.3	Vss +7.0	V	Applicable to P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
	V_{13}	Vss - 0.3	V3	V	*P00 to P07, P10 to P17, P20 to P25, P32 to P33
Output voltage	Vo1	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	All the pins must not exceed Vss +7.0 V , excluding P00 to P07, P10 to P17, P20 to P25, P32 to P33 in MB89P955/PV950
	Vo2	Vss-0.3	Vss + 7.0	V	Applicable to P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
	Vоз	Vss - 0.3	V3	V	$\begin{aligned} & \text { P00 to P07, P10 to P17, P20 to P25, } \\ & \text { P32 to P33* } \end{aligned}$
"L" level output current	loL	-	10	mA	Applicable to all pins except power supply pin.
"L" level average output current	lolav	-	4	mA	Applicable to all pins excluding power supply pin. Specified as the average value in 1 hour.
"L" level total output current	Elo	-	40	mA	
"H" level output current	Іон	-	-5	mA	Applicable to all pins excluding power supply pin.
" H " level average output current	Iohav	-	-2	mA	Applicable to all pins excluding power supply pin. Specified as the average value in 1 hour.
" H " level total output maximum current	ऽloн	-	-10	mA	
Power consumption	PD	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

* : It is only suitable to MB89P955/PV950.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89950 Series

2. Recommended Operating Conditions

$(\mathrm{Vss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2*	6.0	V	Usual operation guarantee range
		1.5	6.0	V	RAM-data-holding guarantee range at stop mode
LCD power supply voltage	V3	Vss	6.0	V	V3 pins for MB89953 The voltage range supplied to LCD and its optimum value depend on the LCD
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: This value varies with the operating frequency and analog assurance range. See Figure 1.

- Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MHz)

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB89950 Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P25, } \\ & \text { P30 to P31, } \\ & \text { P40 to P46 } \end{aligned}$	-	$0.7 \mathrm{Vcc}{ }^{\text {¹ }}$	-	$0.3 \mathrm{Vcc}{ }^{* 1}$	V	
		P32,P33	-	$0.7 \mathrm{Vcc}{ }^{\text {¹ }}$	-	V3	V	
	$\mathrm{V}_{\text {Hs }}$	RST, INT0, SCK, SI, PWC/INT1	-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P46	-	Vss - 0.3	-	$0.3 \mathrm{Vcc}{ }^{* 1}$	V	
	Vııs	$\overline{\text { RST, MODA, }}$ INTO, SCK, SI, PWC/INT1	-	Vss-0.3	-	0.2 Vcc	V	
Open-drain output pin Applied voltage	V	P30 to P31, P20 to P25, P10 to P17, P00 to P07	-	Vss - 0.3	-	Vss +6.0	V	P00 to P07, P10 to P17, P20 to P25 (port select) in MB89951/953
		P32, P33	-	Vss - 0.3	-	V3	V	P32 to P33 (port select)
"H" level Output voltage	Vон	P40 to P46	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level Output voltage	Vol1	P00 to P07, P10 to P17, P20 to P25, P30 to P33	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	$\overline{\mathrm{RST}}, \mathrm{P} 40$ to P46	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leak current)	1 LLI	MODA, P30, P31, P40 to P46	$\begin{aligned} & -0.45 \mathrm{~V}<\mathrm{VI}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	When pull-up option is not selected
		P00 to P07, P10 to P17, P20 to P25, P32, P33		-	-	± 5	$\mu \mathrm{A}$	When pull-up option is not selected
Pull-up resistance	Rpull	$\begin{aligned} & \overline{\mathrm{RST}}, \\ & \mathrm{P} 40 \text { to P46 } \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$k \Omega$	When pull-up option is selected
Common Output impedance	Rvcom	COM0 to COM3	$\begin{aligned} & \text { V1 to V3 = } \\ & +5.0 \mathrm{~V} \end{aligned}$	-	-	2.5	k Ω	

(Continued)

MB89950 Series

(Continued)
$\left(\mathrm{Vcc}=\mathrm{V} 3=+5.0 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Segment Output impedance	Rvseg	SEG0 to SEG41	$\begin{aligned} & \text { V1 to V3 = } \\ & +5.0 \mathrm{~V} \end{aligned}$	-	-	15	$\mathrm{k} \Omega$	
LCD divided resistance	Rlcd	-	V1 to V3	30	60	120	$\mathrm{k} \Omega$	
LCD leak current	ILcol	V1 to V3, COM0 to COM3, SEG0 to SEG41	-	-	-	± 10	$\mu \mathrm{A}$	
Pull-down resistance	-	MODA	-	TBD	TBD	TBD	$\mathrm{k} \Omega$	
Power Supply voltage	Icc	Vcc	$\begin{aligned} & \mathrm{FC}_{\mathrm{c}}=5 \mathrm{MHz} \\ & \text { tinst }^{3}=0.8 \mu \mathrm{~s} \end{aligned}$	-	3.5	5.0	mA	Main RUN mode
	Iccs	Vcc	$\begin{aligned} & \mathrm{FC}=5 \mathrm{MHz} \\ & \text { tinst }^{3}=0.8 \mu \mathrm{~s} \end{aligned}$	-	1.1	1.7	mA	Main SLEEP mode
	IcCH	V co	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.1	1	$\mu \mathrm{A}$	STOP mode
Input capacitance	Cin	Except Vcc and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: Port input voltage is smaller than V3 for MB89P955/PV950.
*2: TBD = To be determined
*3: For information on tinst, see "(4) Instruction Cycle" in "4.AC Characteristics."
Note: For pins for selection of segments (SEG8 to SEG31) and ports (P10 to P17, P40 to P47, P50 to P57), see the limits values of ports when port output is selected and those for segments when segment output is selected.

MB89950 Series

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
RST "L" pulse width	tzızH	-	48 txcyı*	-	ns	

*: txcyl is the oscillation cycle $(1 / \mathrm{Fc})$ to input to the XO pin.

(2) Specifications for Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Min. interval time to the next power-on reset

Note: If power-on reset provided is selected, an abrupt change in the power supply voltage could cause a poweron reset. When changing the power supply voltage during operation, voltage fluctuations should be two or less times for smooth start-up.

MB89950 Series

(3) Clock Timing

Parameter	Symbol	Pin name	$\left(\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)				
			Value			Unit	Remarks
			Min.	Typ.	Max.		
Clock frequency	Fc	$\mathrm{X0} 0 \mathrm{X} 1$	1	-	5	MHz	
Clock cycle time	thcyl	$\mathrm{X0} 0 \mathrm{X} 1$	400	-	2000	ns	
Input clock duty ratio*	duty	X0	30	-	70	\%	crystal \& ceramic
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	X0	-	-	10	ns	Applied when external clock used

* : duty $=$ Pwh/thcyL

- Timing Conditions

- Clock Configurations

(4) Instruction Cycle

Parameter	Symbol	Value	Unit	Remarks $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$
Instruction cycle (Minimum instruction executing time)	tinst	$4 / \mathrm{Fc}$ to $64 / \mathrm{Fc}$	$\mu \mathrm{s}$	tinst $=0.8 \mu \mathrm{~s}$ when operating at $\mathrm{Fc}=5 \mathrm{MHz}$

MB89950 Series

(5) Serial I/O \& UART timing

$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal clock operation	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO time	tslov	SCK, SO		200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsi	SCK	External clock operation	1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsLsh	SCK		1 tinst	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89950 Series

- Internal Shift Clock Mode

- External Shift Clock Mode

MB89950 Series

(6) Peripheral Input Timing

$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" level pulse width 1	tıLIH1	PWC, INT1, INT0	2 tinst *	-	$\mu \mathrm{s}$	
Peripheral input "L" level pulse width 1	tiHIL1	PWC, INT1, INT0	2 tinst *	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89950 Series

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: \quad The number of instructions
\#: \quad The number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89950 Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) + off $) \leftarrow(A)$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP) $) \leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+ +--	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	++--	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	++--	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow(\mathrm{ext})$	AL	-	-	+	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(A) \\ \\ \text { (}\end{array}\right.$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP})$)	AL	-	-	+ +--	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	++--	08 to 0F
MOV dir,\#d8	4	3	(dir) \leftarrow d8	-	-	-	--- -	85
MOV @IX +off,\#d8	5	3	$($ (IX) +off $) \leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	(dir) $\leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & \left(\begin{array}{l} (\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{array}\right. \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$($ ext $) \leftarrow(\mathrm{AH}),($ ext +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ +	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	++--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow(e x t+1)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(A) \leftarrow(E P)$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	_	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	--- -	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	((A)) \leftarrow (T)	-	-	-	----	82
MOVW @A,T	4		$((A)) \leftarrow(T H),((A)+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-		E6
MOVW A,PS	2	1	(A) $\leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	_	-_-_	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	(A) $\leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	(A) \leftrightarrow (IX)	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	(A) \leftarrow (PC)	-	-	dH	----	F0

Note During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.
Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{dir})+\mathrm{C}$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(A) \leftarrow(A)+((X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	(A) $\leftarrow(A)-($ (IX) + off $)-C$	-	-	-	+ +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ +	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ +--	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ +	D8 to DF
DECW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	+ + R -	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\mathrm{C} \leftarrow \mathrm{A} \leftrightarrows$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d 8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	,	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(A) \leftarrow(A L) \forall d 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	+ + R -	55
XOR A, @EP	3	1	$(A) \leftarrow(A L) \forall((E P))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2	1	$(A) \leftarrow(A L) \wedge(T L)$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ d8	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

MB89950 Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow(A L) \vee(R i)$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	$($ (IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-		C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall \mathrm{~N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b$)=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then PC $\leftarrow P C+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	-	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	80			
SETI	1	1		-	-	-	---	90

MB89950 Series

INSTRUCTION MAP

u		$\begin{aligned} & 3 \\ & \sum_{0}^{0} \\ & \sum_{2}^{0} \\ & \hline \end{aligned}$				$\begin{aligned} & \hline \frac{0}{20} \\ & 3_{1}^{2} \\ & x_{x} \end{aligned}$			${\underset{\sim}{0}}_{\substack{\bar{o}}}$				${\underset{\sim}{\mathrm{N}}}^{\stackrel{\bar{o}}{\mathrm{~N}}}$			$\stackrel{\text { ভ }}{\stackrel{\text { ■ }}{\omega}}$
ш	$\sum_{\zeta}^{\stackrel{\circledR}{@}}$										$\underset{\sim}{\#}$	$\begin{aligned} & \geq_{0}^{n} \\ & \frac{2}{d} \end{aligned}$		$\begin{aligned} & \geq_{0}^{0!} \\ & \frac{2}{6} \end{aligned}$	$\frac{0}{2}$	${\underset{c}{2}}_{\frac{2}{d}}$
－		$\begin{aligned} & {\underset{u}{u}}^{00} \\ & u_{0} \end{aligned}$	${\underset{\sim}{u}}^{\underline{x}}$	${\underset{u ̛}{u}}_{3_{u}^{u}}$					$\begin{array}{\|l} \hline \text { 오 } \\ \ddot{u}_{0} \end{array}$	$\begin{array}{\|l} \bar{x} \\ \ddot{u}_{0} \end{array}$		$\begin{array}{\|l} \text { ® } \\ 0 \\ \underset{\sim}{0} \end{array}$	$\begin{aligned} & \text { 対 } \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\begin{array}{\|l} \hline \text { 辺 } \\ 0 \\ 0 \end{array}$		$\underbrace{\substack{\text { ¢ }}}_{\text {¢ }}$
0	$\begin{aligned} & \text { « } \\ & \underset{3}{3} \\ & \underline{3} \end{aligned}$	${\underset{\underline{3}}{\underline{3}}}_{0}^{0}$	$\underset{\substack{\mathrm{Z}}}{\underline{2}}$	${\underset{\underline{u}}{\underline{3}}}_{\frac{0}{4}}$							$\mathrm{M}_{\underline{\text { ¢ }}}$	$\underset{\underline{\underline{x}}}{\substack{\mathscr{M}}}$	$\mathrm{S}_{\underline{\text { ® }}}^{\substack{\text { ¢ }}}$		$\overbrace{\text { ¢ }}^{\substack{\text { ¢ }}}$	$\underset{\underline{x}}{\hat{x}}$
∞						$\begin{array}{\|l\|} \hline \frac{\overline{0}}{\underline{0}} \\ 0 \\ 0 \\ 0 \end{array}$										
«																
\cdots	要	$\begin{aligned} & \text { U } \\ & \hline 心 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 口 \end{aligned}$			0						$\begin{aligned} & \text { 品 } \\ & \sum_{0}^{n} \stackrel{y}{x} \end{aligned}$					
∞	$\overline{\widetilde{u}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$		蒦	8						合总		$\begin{aligned} & \text { 哏 } \\ & \text { 槀 } \\ & \text { D } \end{aligned}$			
N		$\begin{aligned} & z_{0}^{6} \\ & \sum_{0}^{6} \\ & \hline \end{aligned}$	$\stackrel{\square}{\square}$		(品			皆					¢ ${ }_{\text {¢ }}$		¢ ${ }_{\text {¢ }}$	$\underset{\substack{\mathrm{c}}}{\stackrel{\hat{c}}{\gtrless}}$
\bullet	$\stackrel{\rightharpoonup}{\mathrm{D}}^{\stackrel{\rightharpoonup}{\mathrm{x}}}$			$\sum_{\sum_{<}^{3}}^{<}$	品品	$\sum_{e^{2}}^{\frac{20}{4}}$		号这	$\underbrace{\text { 足 }}$		号 ${ }^{\text {¢ }}$	\sum_{i}^{2}	号			$\underbrace{\text { 号 }}$
\sim	$\begin{aligned} & 3^{〔} \\ & 3_{0}^{0} \\ & \hline \end{aligned}$	$3_{3_{0}^{3}}^{x}$	$$						－	¢	¢	－	－		毎这	¢
＋	$\begin{array}{\|l\|} \hline 3_{1}^{4} \\ \frac{9}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{\|l} \hline 3_{1}^{x} \\ x^{x} \\ \frac{1}{2} \\ \hline \end{array}$									$\overbrace{\Sigma}^{\text {ठ }}$			$\stackrel{\text { ® }}{ }_{\text {¢ }}$	$\stackrel{\text { ® }}{ }_{\text {® }}{ }^{\text {®® }}$	
๓	$\underset{\sim}{\underset{\sim}{\mid x}}$		$$	$\begin{array}{\|l\|} \hline{\underset{u}{u}}^{〔} \\ ⿳ 亠 丷 厂 彡 \\ \omega \end{array}$												年
\sim	$\underset{\text { ¢ }}{\text { ¢ }}$	\|	$\begin{aligned} & 0 \\ & 0 \\ & \text { 足 } \end{aligned}$	$\begin{array}{\|l} \hline \frac{3}{0} \\ 0 \\ \dot{Q} \end{array}$							$\begin{aligned} & 0 \stackrel{\text { x }}{4} \\ & \dot{Q} \end{aligned}$		会く		号く	
－	$\underset{\substack{0\\}}{\substack{0}}$		\sum_{0}^{0}	$\sum_{\sum_{0}^{3}}^{n_{1}^{4}}$	$\sum_{\sum_{0}^{n}}^{\frac{0}{4}}$	\sum_{0}^{0}		\sum_{i}^{n}	\sum_{0}^{0}	\sum_{0}^{n}	\sum_{0}^{0}	\sum_{0}^{0}	\sum_{0}^{n}	$\sum_{\sum_{0}^{0}}^{\stackrel{60}{c}}$	$\sum_{0}^{\frac{0}{4}}$	\sum_{0}^{n}
－	O		$$	$$		$\stackrel{\rightharpoonup}{\mathrm{o}}_{\substack{\text { 言 }}}$			$\frac{\stackrel{\circ}{8}}{\stackrel{\text { ® }}{<}}$							，
\pm	－	－	\sim	∞	－	\sim	－	N	∞	－	＜	๓	\bigcirc	－	ш	\pm

MB89950 Series

MASK OPTIONS

No.	Model	$\begin{aligned} & \hline \text { MB89951 } \\ & \text { MB89953 } \end{aligned}$	MB89P955	MB89PV950
	Specification method	Select when ordering mask	Set by EPROM	Fixed
1	$\begin{aligned} & \text { Pull-up resistors } \\ & \text { P40 to P46 } \end{aligned}$	Can be selected for each pin	Can be selected for each pin	No pull-up resistor
2	$\begin{aligned} & \text { Port/segment output } \\ & \text { P00 to P07, P10 to P17, } \\ & \text { P20 to P25 } \end{aligned}$	Can be selected for every 8 to 1 pins**	Port/segment output ${ }^{3}$	Port/segment output*3
3	Power-on reset Power-on reset available Power-on reset unavailable	Selectable	Selectable	Power-on reset available
4	Selection of main clock oscillation stabilization time (at 5 MHz$)^{+1}$ Approx. $2^{18} / \mathrm{Fc}$ (Approx. 52.4 ms) Approx. $2^{14 / F c}$ (Approx. 3.28 ms)	Selectable	Selectable	$2^{18} / \mathrm{Fc}$
5	Reset pin output Reset output available Reset output unavailable	Selectable	Selectable	Reset output available

*1: The main clock oscillation stabilization time is generated by dividing the main clock oscillation. Since the oscillation cycle is unstable immedeately after oscillation starts, the time in this table is only a guide.
*2: Port/segment output switching should be specified in the same manner as the port allocation set by the segment output select register in the LCD controller/driver.
*3: When those pins are used as ports, applied voltage should never be jogjer than V3.
■ ORDERING INFORMATION

Part Number	Package	Remarks
MB89951PFM MB89953PFM MB89P955PFM	64-pin Plastic QFP (FPT-64P-M09)	
MB89PV950CF	64-pin Ceramic MQFP (MQP-64C-M01)	

MB89950 Series

PACKAGE DIMENSIONS

64-pin Plastic QFP

(FPT-64P-M09)

© 1994 FUUITSU LIMTED F600188-1C-2
Dimensions in mm (inches)

64-pin Ceramic MQFP

(MQP-64C-P01)

© 1994 FUJITSU LIMITED M64004SC-1-3
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, USA
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

F9609
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: *1: Mask Option.
 *2: Varies with conditions such as the operating frequency. (See "■ Electrical Characteristics".)

[^1]: *1: FPT-64P-M09
 *2: MQP-64C-P01

