8-bit Proprietary Microcontroller

cMOS

F²MC-8L MB89990 Series

MB89997

■ OUTLINE

The MB89990 series microcontrollers contain various resources such as timers, external interrupts, and remotecontrol functions, as well as an $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ CPU core for low-voltage and high-speed operations. These singlechip microcontrollers are suitable for small devices such as remote controllers incorporating compact packages.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: $0.95 \mu \mathrm{~s}$ at $4.2 \mathrm{MHz}(\mathrm{Vcc}=2.7 \mathrm{~V})$
- F2 MC-8L family CPU core
- Two timers

8/16-bit timer/counter
20-bit timebase counter
(Continued)

PACKAGE

28-pin Plastic SOP
(FPT-28P-M17)
(DIP-28P-MOP

MB89990 Series

(Continued)

- External interrupts

Edge detection (Edge selection enabled): 3 channels
Low-level interrupt (Wake-up function): 8 channels

- Internal remote-control transmission frequency generator
- Low-power consumption modes

Stop mode (Almost no current consumption occurs because oscillation stops.)
Sleep mode (The current consumption is about $1 / 3$ of that during normal operation because the CPU stops.)

- Packages

SOP-28 and SH-DIP-28

■ PRODUCT LINEUP

Part number	MB89997	MB89P195*1	MB89PV190*2
Classification	Mass-produced products (mask ROM products)	One-time PROM product	For development and evaluation
ROM size	$32 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal PROM, to be programmed with generalpurpose EPROM programmer)	$\begin{gathered} 32 \mathrm{~K} \times 8 \text { bits } \\ \text { (external ROM) } \end{gathered}$
RAM size	128×8 bits	256×8 bits	
CPU functions	The number of basic instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1,8 , and 16 bits Minimum execution time: $0.95 \mu \mathrm{~s}$ at 4.2 MHz Interrupt processing time: $8.57 \mu \mathrm{~s}$ at 4.2 MHz		
Ports	I/O port (N channel open drain): 6 I/O port (CMOS): 16 (13 serves as resources) Total: 22		
8/16-bit timer/ counter	2 channels for 8-bit timer counter or for 16-bit event counter (operation clock: $1.9 \mu \mathrm{~s}, 30.4$ $\mu \mathrm{s}$, and $487.6 \mu \mathrm{~s}$ at 4.2 MHz , and external clock)		
External interrupt 1	3 independent channels (edge selection, interrupt vector, and interrupt source flag) Rising edge/falling edge/both edge selectability Used for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)		
External interrupt 2 (Wake-up function)	8 channels (low-level interrupt only)		
Remote-control transmission frequency generation	The pulse width and cycle are software-programmable.		

(Continued)

MB89990 Series

(Continued)

Part number	MB89997	MB89P195*1	MB89PV190*2
Low-power consumption (standby mode)	Sleep mode and stop mode		
Process	CMOS		
Power supply voltage*3	2.2 V to 6.0 V	2.7 V to 6.0 V	
EPROM for use			MBM27C256A-20TVM

*1: The MB89P195 microtroller is the one-time product for the MB89190 series which can be also be used for the MB89990 series.
*2 : The MB89PV190 microtroller is the evaluation and development product for the MB89190 series which can be also be used for the MB89990 series.
*3: Varies with conditions such as operating frequencies (see "■ Electrical Characteristics.")

- PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89997	MB89P195	MB89PV190
DIP-28P-M03	\bigcirc	\times	\times
FPT-28P-M17	\bigcirc	\bigcirc	\times
MQP-48C-P01	\times	\times	$\bigcirc{ }^{*}$

O : Available x :Not available

* : A socket (manufacturer: Sun Hayato Co., Ltd.) for pin pitch conversion is available.

480F-28SOP-8L: (MQP-48C-P01) \rightarrow for conversion to FPT-28P-M02
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Note: For more information on each package, see "■ Package Dimensions."

MB89990 Series

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback model, verify its difference from the model that will actually be used.
Take particular care on the following points:

- On the MB89997, addresses 0140н to 0180н cannot be used for register banks.
- The stack area, etc., is set in the upper limit of the RAM.

2. Current Consumption

- In the case of MB89PV190, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, a model with an OTPROM (EPROM) will consume more current than a model with a mask ROM.
However, current consumption in the sleep/stop mode in the same. (For more information, see "国 Electrical Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by model.
Before using options check "■ Mask Options."
Take particular care on the following points:

- The power-on reset option is fixed as "enabled" for MB89P195.
- Options are fixed on the MB89PV190.

MB89990 Series

PIN ASSIGNMENT

(Top view)

(FPT-28P-M17)
(DIP-28P-M03)

MB89990 Series

- Pin assignment on the package top (MB89PV190/PV190A only)

Pin no.	Pin name						
49	VPP	57	N.C.	65	O4	73	$\overline{\mathrm{OE}}$
50	A12	58	A2	66	O 5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	O7	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	$\overline{\mathrm{CE}}$	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C.: Internally connected. Do not use.

Note: Parenthesized pin function is only for the MB89PV190A.

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function

*1: FPT-28P-M17
(Continued)
*2: DIP-28P-M03
*3: MQP-48C-P01

MB89990 Series

(Continued)

Pin no.		Pin name	Circuit type	Function
SOP SH-DIP ${ }^{* 2}$	MQFP $^{\star 3}$		E	General-purpose I/O port Also serves as remote-control output pin.
10	33	P37//RCO	F	N-ch open-drain I/O ports
18 to 21	6 to 9	P40 to P43	F	
23	11	P45	F	N-ch open-drain type I/O port
22	10	P44	F	N-ch open-drain type I/O port
28	18	Vcc	-	Power supply pin
9	42	Vss	-	Power supply (GND) pin

*1: FPT-28P-M17
*2: DIP-28P-M03
*3: MQP-48C-P01

MB89990 Series

- External EPROM pins (MB89PV190 only)

Pin no.	Pin name	1/0	Function
49	VPP	O	"H" level output pin
$\begin{aligned} & 79 \\ & 78 \\ & 50 \\ & 75 \\ & 71 \\ & 76 \\ & 77 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \end{aligned}$	O1 O2 O3 O4 O5 O6 O7 O8	1	Data input pins
70	$\overline{\mathrm{CE}}$	0	ROM chip enable pin Outputs "H" during standby.
73	$\overline{\mathrm{OE}}$	0	ROM output enable pin Outputs "L" at all times.
80	Voc	0	EPROM power pin
64	Vss	0	Power supply (GND) pin

MB89990 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- At an oscillation feedback registor of approximately $1 \mathrm{M} \Omega$ at 5.0 V - When crystal and ceramic oscillators are selected optionally
		- When CR oscillation is selected optionally
B	$\square \longrightarrow$	
C		- Output pull-up resistor (P-ch): About $50 \mathrm{k} \Omega$ at 5.0 V - Hysteresis input - Pull-up resistor optional
D		- CMOS output - CMOS input - Hysteresis input (resource input) - Pull-up resistor optional

(Continued)

MB89990 Series

(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional
F		- N-ch open-drain output - Analog input - Pull-up resistor optional (MB89990 series only)
G		- CMOS output - CMOS input - Hysteresis input (resource input) - Analog input - Pull-up resistor optional (MB89990 series only)

MB89990 Series

HANDLING DEVICES

1. Preventing Latch-up

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input or output pins other than medium-to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc to Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although V_{cc} power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{c c}$ ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V cc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (option selection) and release from stop mode.

MB89990 Series

PROGRAMMING TO PROM ON THE MB89P195

The MB89P195 can program data in the internal PROM using a dedicated conversion adaptor and specified general-purpose EPROM programmer.

1. Memory Space

2. Specified ROM Programmer Manufacturer, Model Name, and Programming in ROM

- Recommended ROM programmer

Manufacturer	Model
ADVANTEST	R4945

- Programming procedure
(1) Load program data into the ROM programmer at addresses 4000 н to 7 FFFн. (Addresses 0C000н to 0FFFFн in the operation mode assign to 4000 н to 7 FFFH in ROM programmer. See the illustration above.)
(2) Set the data at addresses 0000 to 3 FFFH of the programmer ROM in the ROM programmer, to FF н.
(3) To set up the successive-address write mode of the ROM programmer, press the DEVICE, PROG, SET, SELECT, E and SET keys in this order.

Note: Program must be started at the address 0000н.
For details, contact our Sales Division.

MB89990 Series

3. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcontroller program.

4. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature (one time PROM). For this reason, a programming yield of 100% cannot be assured at all times.
5. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part no.			MB89P195PF
Package			SOP-28
Compatible socket adapter Sun Hayato Co., Ltd.			ROM-28SOP-28DP-8L
Recommended programmer manufacturer and programmer name	Minato Electronics Inc.	$\begin{gathered} \hline \text { MODEL 1890A } \\ \text { (ver. 2.2) } \\ +\quad+ \\ \text { OU-910 (ver. 4.1) } \end{gathered}$	Recommended
	Data I/O Co., Ltd.	UNISITE (ver. 5.0 or later)	Recommended
		$\begin{gathered} 3900 \\ \text { (ver. } 2.8 \text { or later) } \end{gathered}$	
		$\begin{gathered} 2900 \\ \text { (ver. } 3.8 \text { or later) } \end{gathered}$	

Inquiry: Sun Hayato Co., Ltd. : TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Minato Electronics Inc. :TEL: USA (1)-916-348-6066
JAPAN (81)-45-591-5611
Data I/O Co., Ltd. : TEL: USA/ASIA (1)-206-881-6444
EUROPE (49)-8-985-8580

MB89990 Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

2. Programming Socket Adapter

To program to the EPROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106

3. Memory Space

4. Programming to the EPROM

(1) Set the EPROM programmer to MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7FFFн.
(3) Program to 0000 н to 7 FFFH with the EPROM programmer.

MB89990 Series

BLOCK DIAGRAM

MB89990 Series

CPU CORE

1. Memory Space

The microcontrollers of MB89990 series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provide immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of interrupt reset vectors, and vector call instructions toward the highest address within the program area. The memory space of the MB89990 series is structured below:

- Memory Space

MB89990 Series

2. Registers

The FMC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit-long register for indicating the instruction storage positions
Accumulator (A):
A 16-bit-long temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit-long register which performs arithmetic operations with the accumulator. When the instruction is an 18-bit data processing instruction, the lower byte is used.

Index register (IX):
Extra pointer (EP) :
A 16-bit-long register for index modification
A 16-bit-long pointer for indicating a memory address
Stack pointer (SP) :
A 16-bit-long register for indicating a stack area
Program status (PS) : A 16-bit-long register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

- Structure of the Program Status Register

MB89990 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to ' 1 ' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to ' 1 '. Interrupt is disabled when the flag is cleared to ' 0 '. Cleared to ' 0 ' at the rest.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low

N-flag: Set to ' 1 ' if the MSB becomes 1 as the result of an arithmetic operation. Cleared to ' 0 ' when the bit is cleared to ' 0 '.

Z-flag: Set to ' 1 ' when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set to ' 1 ' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ' 0 ' if the overflow does not occur.

C-flag: Set to ' 1 ' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise.
Set the shift-out value in the case of a shift instruction.

MB89990 Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit-long register for storing data
The general-purpose registers are 8 bits and located in register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89957 (RAM 128×8 bits). The bank currently in use is indicated by the register bank pointer. (RP)

Note: The number of register banks that can be used varies with the RAM size.

- Register Bank Configuraiton

MB89990 Series

I/O MAP

Address	Read/write	Register name	Register description
00 ${ }_{\text {H}}$	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02\% to 07\%			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Timebase timer control register
ОВн			Vacancy
0 CH	(R/W)	PDR3	Port 3 data register
ODH	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
0F\% to 13н			Vacancy
14 H	(R/W)	RCR1	Remote-control register 1
15 H	(R/W)	RCR2	Remote-control register 2
16н			Vacancy
17			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19 н	(R/W)	T1CR	Timer 1 control register
1 Ан	(R/W)	T2DR	Timer 2 data register
1Bн	(R/W)	T1DR	Timer 1 data register
1 CH to 22н			Vacancy
23н	(R/W)	EIC1	External interrupt control register 1
24 +	(R/W)	EIC2	External interrupt control register 2
25 to 31 н			Vacancy
32-	(R/W)	EIE2	External interrupt 2 enable register
33н	(R/W)	EIF2	External interrupt 2 flag register
34- to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level register 1
7D	(W)	ILR2	Interrupt level register 2
7Ен	(W)	ILR3	Interrupt level register 3
7F			Vacancy

Note: Do not use vacancies.

MB89990 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	Vss-0.3	Vss +7.0	V	
EPROM program voltage	Vpp	Vss-0.3	Vss +13.0	V	Applicable to TEST pin of MB89P195.
Input voltage	V	Vss-0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
Output voltage	Vo	Vss-0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level maximum output current	loc1	-	10	mA	Except P33 and P34
	locz	-	20	mA	P33, P34
"L" level average output current	lolav1	-	4	mA	Except P33 and P34 Average value (operating current \times operation rate)
	lolav2	-	8	mA	P33 and P34 Average value (operating current \times operation rate)
"L" level total average output current	Elolav	-	20	mA	Average value (operating current \times operation rate)
"L" level maximum total output current	Elo	-	-100	mA	
" H " level maximum output current	Ioh1	-	-10	mA	Except P33, P34, and P37
	Іон2	-	-20	mA	P33, P34, P37
"H" level average output current	Iohav 1	-	-2	mA	Except P33, P34, and P37 Average value (operating current \times operation rate)
	Iohav2	-	-4	mA	Except P33, P34, and P37 Average value (operating current \times operation rate)
" H " level total average output current	Elohav	-	-10	mA	Average value (operating current \times operation rate)
" H " level total maximum output current	ऽloh	-	-30	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89990 Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Voc	2.2*	6.0*	V	Normal operation assurance range* MB89997
		2.7*	6.0*	V	Normal operation assurance range* MB89P195
		1.5	6.0	V	Retains the RAM state in stop mode
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: The guaranteed normal operation range varies depending on the operation frequency and the guaranteed analog operation range. See Figure 1.

- Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 / \mathrm{Fc}$.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB89990 Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value				Remarks
							Unit	
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	P00 to P07, P30 to P37, TEST	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHS	$\overline{\mathrm{RST}}$, INT10 to INT12, EC, $\overline{\text { INT20 }}$ to $\overline{\text { INT27 }}$	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VII	P00 to P03, P33 to P36, TEST	-	Vss-0.3	-	0.3 Vcc	V	
	VıLs	RST, INT10 to INT12, EC, $\overline{\text { INT } 20}$ to $\overline{\text { INT27 }}$	-	Vss-0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	Vo	P40 to P44	-	Vss-0.3	-	Vss +0.3	V	
"H" level output voltage	Vori	P00 to P07, P30 to P32, P35, P36	$\mathrm{loH}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
	Vон2	P33, P34	l оН $=-4.0 \mathrm{~mA}$	4.0	-	-	V	
	Vонз	P37	$\mathrm{lor}=-4.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol1	P00 to P07, P30 to P32, P35 to P37	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	$\overline{\mathrm{RST}}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	Voı3	P33, P34	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
	Vol4	P40 to P45	$\mathrm{loL}=8 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	$1 \mathrm{LL1}$	P00 to P07, P30 to P37, TEST	$\begin{aligned} & 0.45 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Open-drain output leakage current (Off state)	ILD 1	P40 to P45	$\begin{aligned} & 0.45 \mathrm{~V}<\mathrm{V}_{1}< \\ & \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P30 to P37, P40 to P45, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	

(Continued)

MB89990 Series

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply voltage*	Icc	Vcc	$\mathrm{Fc}=4.2 \mathrm{MHz}$	-	5	10	mA	MB89997
				-	7	12	mA	MB89P195
	Iccs		$\mathrm{F}_{\mathrm{c}}=4.2 \mathrm{MHz}$	-	3	7	mA	Sleep mode
	IcCH		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$	Stop mode
Input capacitance	Cin	Except AVR, AVss , Vcc , and V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

* : For the MB89PV190, the current consumption of a connected EPROM and ICE is not included.

The mesurement condition of the power supply current are set as $\mathrm{Vcc}=5.0 \mathrm{~V}$ with an external clock.

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
RST "L" pulse width	tzızH	-	16 thcyl	-	ns	

Note: txcyl is the oscillation period $\left(1 / \mathrm{F}_{\mathrm{c}}\right)$ input to the X 0 pin.

MB89990 Series

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89990 Series

(3) Clock Timing

Parameter	Symbol	Pinname	Condition	(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)			
				Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	4.2	MHz	
Clock cycle time	txcyL	X0, X1	-	238	1000	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{PwH}_{\mathrm{wH}} \\ & \mathrm{PwL} \end{aligned}$	X0	-	20	-	ns	External clock
Input clock pulse risilng/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcF } \end{aligned}$	X0	-	-	10	ns	External clock

- Timings Conditions

- Clock Configurations

(4) Instruction Cycle
$\left(\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}_{c}$	$\mu \mathrm{~s}$	tist $=0.95 \mu \mathrm{~s}$ when operating at $\mathrm{Fc}_{\mathrm{c}}=4.2 \mathrm{MHz}$

MB89990 Series

(5) Peripheral Input Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width 1	tııн	EC, INT10 to INT12, INT20 to $\bar{N} T 27$	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thHLI		2 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycles."

- Peripheral Input Timing Diagram

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Peripheral input " H " noise limit width	thnc	EC, INT10 to INT12	7	15	23	ns	
Peripheral input "L" noise limit width	tinc	EC, INT10 to INT12, $\overline{\mathrm{N} T 20}$ to $\overline{\mathrm{NT} 27}$	7	15	23	ns	

- Peripheral Input Timing Diagram

MB89990 Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

MB89990 Series

(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

$\mathrm{V}_{\mathrm{IHs}}$: Threshold when input voltage in hysteresis characteristics is set to "H" level
Viss: Threshold when input voltage in hysteresis characteristics is set to "L" level

MB89990 Series

(5) Power Supply Current (External Clock)

(3) Pull-up Resistance

MB89990 Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation for instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89990 Series

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: The number of instructions
\#: The number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89990 Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$($ ext $) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(A)$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	+ + - -	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow(\mathrm{ext})$	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A}))$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-		85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-		86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-		87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-		D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((I X)+o f f) \leftarrow(A H), \\ & ((I X)+o f f+1) \leftarrow(A L) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	(ext) $\leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),($ (EP) +1$) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow d 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((I X)+\text { off }), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ + --	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}), \mathrm{l}(\mathrm{AL}) \leftarrow((\mathrm{A})+1)$	AL	AH	dH	+	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH		F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow$ (T$)$	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow$ d16	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {, }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	(A) $\leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: - During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89990 Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+\mathrm{C}$	-	-	-	+ +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{X})+$ off $)+\mathrm{C}$	-	-	-	+	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-\mathrm{C}$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{IX})+$ off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{EP}))-\mathrm{C}$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + +	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+	CO
DEC Ri	4	1	$($ Ri) $\leftarrow($ (Ri) -1	-	-	-	+ + + -	D8 toDF
DECW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	+ + R -	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) -d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A, @EP	3		(A) - ((EP))	_	_	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+$ off $)$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{ALL}) \wedge \mathrm{d} 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

MB89990 Series

(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A, Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow(A L) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall \mathrm{~N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $V \forall \mathrm{~N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b$)=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B 8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-		20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZV C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	---	91
CLRI			-	-	80			
SETI	1	1			-	-	-	---

MB89990 Series

INSTRUCTION MAP

L ${ }^{\text {d }}$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	BBC dir: 0,rel	INCW A	DECW A	JMP @A	MOVW A,PC
1	MULU A	DIVU	JMP addr16	CALL addr16	PUSHW IX	POPW $I X$	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	$\left\lvert\, \begin{aligned} & \text { BBC } \\ & \text { dir: 1,rel } \end{aligned}\right.$	INCW SP	$\begin{array}{r} \text { DECW } \\ \text { SP } \end{array}$	MOVW SP,A	MOVW A,SP
2	ROLC A	CMP	ADDC A	SUBC A	$\begin{array}{r} \mathrm{XCH} \\ \mathrm{~A}, \mathrm{~T} \end{array}$	XOR A	AND A	OR A	MOV @A,T	$\begin{aligned} & \text { MOV } \\ & \text { A,@A } \end{aligned}$	CLRB dir: 2	BBC dir: 2,rel	INCW IX	$\begin{array}{\|r\|} \hline \text { DECW } \\ \text { IX } \end{array}$	MOVW IX,A	$\begin{gathered} \text { MOVW } \\ \text { A, IX } \end{gathered}$
3	RORC A	CMPW A	ADDCW A	SUBCW A	$\begin{array}{r} \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{~T} \end{array}$	XORW A	ANDW A	ORW A	MOVW @A,T	$\begin{aligned} & \text { MOVW } \\ & \text { A,@A } \end{aligned}$	CLRB dir: 3	$\left\|\begin{array}{l} \text { BBC } \\ \operatorname{dir}: 3, \text { rel } \end{array}\right\|$	INCW EP	$\begin{array}{\|r\|} \hline \text { DECW } \\ \text { EP } \end{array}$	MOVW EP,A	MOVW A,EP
4	MOV A,\#d8	CMP A, \#d8	$\begin{array}{r} \mathrm{ADDC} \\ \mathrm{~A}, \# \mathrm{~d} 8 \end{array}$	SUBC A,\#d8		XOR A, \#d8	AND A,\#d8	OR A,\#d8	DAA	DAS	CLRB dir: 4	BBC dir: 4, rel	MOVW A,ext	MOVW ext,A	MOVW A,\#d16	XCHW A,PC
5	MOV A,dir	CMP A,dir	ADDC A,dir	SUBC A,dir	MOV dir,A	XOR A,dir	AND A,dir	OR A,dir	MOV dir,\#d8	CMP dir,\#d8	CLRB dir: 5	$\left\lvert\, \begin{array}{l\|} \text { BBC } \\ \text { dir: 5,rel } \end{array}\right.$	MOVW A,dir	MOVW dir,A	MOVW SP,\#d16	$\begin{array}{\|r\|} \hline \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{SP} \end{array}$
6	$\left\|\begin{array}{l} \mathrm{MOV} \\ \mathrm{~A}, @ 1 \mathrm{X}+\mathrm{d} \end{array}\right\|$	$\begin{aligned} & \text { CMP } \\ & \text { A,@IX+d } \end{aligned}$	ADDC A,@IX +d	$\left\lvert\, \begin{aligned} & \text { SUBC } \\ & \text { A,@IX+d } \end{aligned}\right.$	MOV @IX +d,A	$\begin{aligned} & \text { XOR } \\ & \text { A@,IX+d } \end{aligned}$	AND $\mathrm{A}, @ \mid \mathrm{X}+\mathrm{d}$	OR A,@IX+d	MOV @IX+d,\#d8	CMP @IX +d,\#d8	CLRB dir: 6	BBC dir: 6,rel	MOVW A,@IX+d	MOVW @IX+d,A	MOVW IX,\#d16	$\left\|\begin{array}{r} \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{IX} \end{array}\right\|$
7	MOV A,@EP	CMP A, @EP	ADDC A,@EP	SUBC A,@EP	MOV @EP,A	XOR A,@EP	AND A,@EP	OR A,@EP	MOV @EP,\#d8	CMP @EP,\#d8	CLRB dir: 7	$\left\|\begin{array}{\|l\|} \text { BBC } \\ \text { dir: } 7, \text { rel } \end{array}\right\|$	MOVW A,@EP	MOVW @EP,A	MOVW EP,\#d16	XCHW A,EP
8	MOV A,R0	CMP A,R0	$\begin{array}{\|} \text { ADDC } \\ \text { A, RO } \end{array}$	SUBC A,R0	MOV R0,A	XOR A,RO	AND A,R0	OR A,R0	MOV R0,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R0,\#d8 } \end{aligned}$	SETB dir: 0	BBS dir: 0,rel	INC R0	$\mathrm{DEC}_{\mathrm{RO}}$	CALLV \#0	BNC rel
9	MOV A,R1	CMP A,R1	$\begin{array}{\|r\|} \hline \text { ADDC } \\ \text { A,R1 } \end{array}$	SUBC A,R1	MOV R1,A	XOR $\mathrm{A}, \mathrm{R} 1$	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	SETB dir: 1	BBS dir: 1,rel	INC R1	$\mathrm{DEC}_{\mathrm{R} 1}$	CALLV \#1	BC rel
A	MOV A,R2	CMP A,R2	$\begin{array}{r} \text { ADDC } \\ \text { A, R2 } \end{array}$	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R2,\#d8 } \end{aligned}$	SETB dir: 2	BBS dir: 2,rel	INC R2	DEC	CALLV \#2	BPrel
B	MOV A,R3	CMP A,R3	$\begin{array}{\|r\|} \hline \text { ADDC } \\ \text { A,R3 } \end{array}$	SUBC A,R3	MOV R3,A	XOR A,R3	AND A,R3	OR A,R3	MOV R3,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R3,\#d8 } \end{aligned}$	SETB dir: 3	BBS dir: 3, rel	INC R3	$\mathrm{DEC}_{\mathrm{R} 3}$	CALLV \#3	$\mathrm{BN}^{\text {rel }}$
C	MOV A,R4	CMP A,R4	ADDC A,R4	SUBC A,R4	MOV R4,A	XOR A,R4	AND A,R4	OR A,R4	MOV R4,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R4,\#d8 } \end{aligned}$	SETB dir: 4	BBS dir: 4, rel	INC R4	$\mathrm{DEC}_{\mathrm{R4}}$	CALLV \#4	BNZ rel
D	MOV A,R5	CMP A,R5	$\begin{array}{\|} \text { ADDC } \\ \text { A,R5 } \end{array}$	SUBC A,R5	MOV R5,A	XOR A,R5	AND A,R5	OR A,R5	MOV R5,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R5,\#d8 } \end{aligned}$	SETB dir: 5	BBS dir: 5,rel	INC R5	$\mathrm{DEC}_{\mathrm{R} 5}$	CALLV \#5	BZ rel
E	MOV A,R6	CMP A,R6	ADDC A,R6	SUBC A,R6	MOV R6,A	$\begin{aligned} & \text { XOR } \\ & \text { A,R6 } \end{aligned}$	AND A,R6	$\begin{aligned} & \text { OR } \\ & \text { A,R6 } \end{aligned}$	MOV R6,\#d8	$\begin{aligned} & \text { CMP } \\ & \text { R6,\#d8 } \end{aligned}$	SETB dir: 6	BBS dir: 6,rel	$\left\lvert\, \begin{array}{ll} \mathrm{INC} & \\ & \mathrm{R} 6 \end{array}\right.$	$\mathrm{DEC}_{\mathrm{R6}}$	CALLV \#6	$\left\lvert\, \begin{array}{ll} \text { BGE } & \\ & \text { rel } \end{array}\right.$
F	MOV A,R7	CMP A,R7	ADDC A,R7	SUBC A,R7	MOV R7,A	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R7} \end{aligned}$	AND A,R7	$\begin{aligned} & \text { OR } \\ & \text { A,R7 } \end{aligned}$	MOV R7,\#d8	CMP R7,\#d8	SETB dir: 7	BBS dir: 7,rel	INC R7	DEC R7	CALLV \#7	$\left\lvert\, \begin{array}{ll} \text { BLT } & \\ & \text { rel } \end{array}\right.$

MB89990 Series

MASK OPTION LIST

No.	Part number		MB89997	MB89P195			MB89PV190
	Specifying procedure		Specify when ordering masking	-101^{*}	Specify when ordering masking	-201^{2}	Fixed
1	Port pull-up resistors	$\begin{aligned} & \text { P00 to P07 } \\ & \text { P30 to P37 } \\ & \text { P40 to P45 } \end{aligned}$	Selectable by pin	None	Selectable by pin	None	Not available
2	$\begin{aligned} & \text { Power-on reset selection } \\ & \text { Power-on reset provided } \\ & \text { No power-on reset } \end{aligned}$		Selectable	Enabled	Enabled	Enabled	Enabled
3	Selection of oscillation stabilization wait time (at 4.2 MHz) ${ }^{+1}$ $2^{18} / \mathrm{Fc}$ (Approx. 62.4 ms) $2^{16} / \mathrm{Fc}$ (Approx. 15.6 ms) $2^{12 / F c}$ (Approx. 0.98 ms) $2^{2} / \mathrm{Fc}$ (Approx. 0 ms)		Selectable	Fixedto $2{ }^{16} / \mathrm{Fc}$	Selectable	Fixed to $2{ }^{16} / \mathrm{Fc}$	Fixed to $2^{16} / \mathrm{Fc}$
4	$\begin{aligned} & \text { Reset pin output } \\ & {\left[\begin{array}{l} \text { Reset output provided } \\ \text { No reset output } \end{array}\right.} \end{aligned}$		Selectable	Enabled	Selectable	Enabled	Output enabled
5	$\begin{aligned} & \text { Oscillation type of clock } \\ & 1 \text { Crystal and ceramic } \\ & \text { oscillators } \\ & 2 \text { CR } \end{aligned}$		Selectable	"1" only	Selectable	"1" only	"1" only

*1: The oscillation stabilization delay time is generated by dividing the original clock oscillation. The time described in this item should be used as a guideline since the oscillation cycle is unstable immediately after oscillation starts. "Fc" indicates the original oscillation frequency.
*2: -101 is provided respectively for the MB89P195 OTP versions as the standard product.

MB89990 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB89997PF		
MB89P195PF-101	28-pin Plastic SOP (FPT-28P-M17)	
MB89997P-SH	28-pin Plastic SH-DIP (DIP-28C-M03)	
MB89PV190CF	48-pin Ceramic MQFP (MQP-48C-P01)	

MB89990 Series

PACKAGE DIMENSIONS

© 1994 FUJITSU LIMITED F28048S-1C-1
Dimensions in mm (inches)

MB89990 Series

MB89990 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

