8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89190/190A Series

MB89191/193/195/P195/PV190 MB89191A/191AH/193A/193AH/195A/P195A/PV190A

■ OUTLINE

The MB89190/190A series microcontrollers contain various resources such as timers, serial interfaces, A/D converters, external interrupts, and remote-control functions, as well as an $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ CPU core for low-voltage and high-speed operations. These single-chip microcontrollers are suitable for small devices such as remote controllers with compact packages.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: $0.95 \mu \mathrm{~s}$ at $4.2 \mathrm{MHz}(\mathrm{Vcc}=2.7 \mathrm{~V})$
- F2 MC-8L family CPU core
- Two timers

8/16-bit timer/counter
20-bit timebase counter

- Serial interface

8 -bit synchronous serial (Selectable transfer direction allows communication with various equipment.)
(Continued)

PACKAGE

28-pin Plastic SOP 28-pin Plastic DIP
(FPT-28P-M17)
(DIP-28P-M05)
(DIP-28P-M03-48 Ceramic MQFP

MB89190/190A Series

(Continued)

- External interrupts

Edge detection (Selectable edge): 3 channels
Low-level interrupt (Wake-up function): 8 channels

- A/D converter (MB89190A series only)

8 -bit successive approximation type: 8 channels

- Built-in remote-control transmitting frequency generator
- Low-power consumption modes

Stop mode (Almost no current consumption occurs because oscillation stops.)
Sleep mode (The current consumption is reduced about $1 / 3$ of that during normal operation because the CPU stops.)

- Packages

SOP-28, SH-DIP-28, and DIP-28
■ PRODUCT LINEUP

Part number Item	$\begin{gathered} \text { MB89191 } \\ \text { MB89191A } \\ \text { MB89191AH } \end{gathered}$	$\begin{gathered} \text { MB89193 } \\ \text { MB89193A } \\ \text { MB89193AA } \end{gathered}$	$\begin{aligned} & \text { MB89195 } \\ & \text { MB89195A } \end{aligned}$	$\begin{aligned} & \text { MB89P195 } \\ & \text { MR89P195 } \end{aligned}$ MB89P195A	MB89PV190 MB89PV190A
Classification	Mask ROM products			One-time product	For development and evaluation
ROM size	$4 \mathrm{~K} \times 8$ bits (internal mask ROM)	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal PROM, to be programmed with generalpurpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	128×8 bits 256×8 bits				
CPU functions	The number of basic instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1,8 , and 16 bits Minimum execution time: $0.95 \mu \mathrm{sta} 4.2 \mathrm{MHz}$ Interrupt processing time: $8.57 \mu \mathrm{~s}$ at 4.2 MHz				
Ports	Output port (N channel open drain): 4 (also serves as peripherals for MB89190A series)or 6 (for MB89190 series) I/O port (CMOS): 16 (also serves as peripherals) Total: 20 or 22				
Timer counter	2 channels of 8 -bit timer counter or one 16-bit event counter (operation clock: $1.9 \mu \mathrm{~s}, 30.4$ $\mu \mathrm{s}$, and $487.6 \mu \mathrm{~s}$ at 4.2 MHz , and external clock)				
Serial I/O	8 bitsLSB/MSB first selectableTransfer clock (external, $1.9 \mu \mathrm{~s}, 7.6 \mu \mathrm{~s}, 30.4 \mu \mathrm{~s}$ at 4.2 MHz)				
A/D converter (MB89190A series only)	8 bits $\times 8$ channels A/D conversion mode (conversion time: 41.9 ss at 4.2 MHz) Sense mode (conversion time: $11.9 \mu \mathrm{~s}$ at 4.2 MHz) Capable of continuous activation by an internal timer. Reference voltage input				

(Continued)

Part number Item	$\begin{gathered} \text { MB89191 } \\ \text { MB89191A } \\ \text { MB89191AH } \end{gathered}$	$\begin{gathered} \text { MB89193 } \\ \text { MB89193A } \\ \text { MB89193AH } \end{gathered}$	$\begin{aligned} & \text { MB89195 } \\ & \text { MB89195A } \end{aligned}$	$\begin{gathered} \text { MB89P195 } \\ \text { MB89P195 } \end{gathered}$	$\begin{aligned} & \text { MB89PV190 } \\ & \text { MB89PV190A } \end{aligned}$
External interrupt 1	3 independent channels (selectable edge, interrupt vector, and interrupt source flag) Rising/falling/both edge selectable Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)				
External interrupt 2 (Wake-up function)	8 channels (low-level interrupt only)				
Remote-control transmitting frequency generator	The pulse width and cycle are software-programmable.				
Standby mode	Sleep mode and stop mode				
Process	CMOS				
Operating voltage*	2.2 V to 6.0 V			2.7 V to 6.0 V	
EPROM for use	$\begin{gathered} \text { MBM27C256A- } \\ \text { 20TVM } \end{gathered}$				

*:Varies with conditions such as operating frequencies (see "■ Electrical Characteristics.") It differs from the operating voltage of an A/D converter.

■ PACKAGE AND CORRESPONDING PRODUCTS

	MB89191 MB89191A MB89191AH MB89193 MB89193A MB89193AH MB89195 MB89195A	MB89P195 MB89P195A	MB89PV190 MB89PV190A
DIP-28P-M05	\bigcirc	\bigcirc	\times
DIP-28P-M03	\bigcirc	\times	\times
FPT-28P-M17	\bigcirc	\bigcirc	\times
MQP-48C-P01	\times	\times	${ }^{*}$

O : Available x : Not available

* : A socket (manufacturer: Sun Hayato Co., Ltd.) for pin pitch conversion is available. 48QF-28SOP-8L: (MQP-48C-P01) \rightarrow for conversion to FPT-28P-M17
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106
Note: For more information on each package, see "■ Package Dimensions."

MB89190/190A Series

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback model, verify its difference from the model that will actually be used. Take particular care on the following points:

- On the MB89191/191A, addresses 0140н to 0180н cannot be used for register banks.
- The stack area, etc., is set in the upper limit of the RAM.

2. Current Consumption

- In the case of MB89PV190/PV190A, added is the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the products with an OTPROM (EPROM) will consume more current than the products with a mask ROM.
However, the same is current consumption in the sleep/stop mode. (For more information, see "■ Electrical Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary with product.
Before using options, check "■ Mask Options."
Take particular care on the following points:

- Pull-up resistor optional cannot be set for P00 to P03, and P40 to P45 on the MB89191A/193A/195A/P195A.
- The power-on reset option is fixed as "enabled" for MB89P195/P195A.
- Options are fixed on the MB89PV190/PV190A.

4. MB89191AH/MB89193AH

MB89191AH/193AH are "L" level heavy output current drive type of P30 to P32 and P40 to P43 of MB89191A/ 193A.Characteristics other than " L " level output of P30 to P32 and P40 to P43 are the same as MB89191A/193A.

MB89190/190A Series

PIN ASSIGNMENT

MB89190/190A Series

- Pin assignment on the package top (MB89PV190/PV190A only)

Pin no.	Pin name						
49	$V_{\text {PP }}$	57	N.C.	65	O4	73	$\overline{\mathrm{OE}}$
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	07	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	$\overline{\mathrm{CE}}$	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
	MQFP ${ }^{4}$			
7	31	X0	A	Clock oscillation pins
8	32	X1		
5	29	TEST	B	Test input pin Connect directly to Vss.
6	30	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin consists of an N-ch open-drain output with a pull-up resistor and of hysteresis input. A low level is output from this pin by internal source. The internal circuit is initialized by the input of a low level.
24 to 27	$\begin{aligned} & 12 \\ & 13, \\ & 23, \\ & 24 \end{aligned}$	P00/INT20/ AN4 to P03/ INT23/AN7	G	General-purpose I/O ports Also serve as external interrupt input pins. In the MB89190A series, also serve as analog input pins. External interrupt input is of hysteresis input type.
1 to 4	25 to 28	P04/NT24 to P07/INT27	D	General-purpose I/O ports Also serve as external interrupt input. External interrupt input is of hysteresis input type.
17	5	P30/SCK	D	General-purpose I/O port Also serves as clock I/O for the 8-bit serial I/O interface. The serial I/O clock input is of hysteresis input type with a built-in noise filter.
16	4	P31/SO	E	General-purpose I/O port Also serves as a serial I/O data output pin.
15	3	P32/SI	D	General-purpose I/O port Also serves as a serial I/O data input pin. The serial I/O data input is of hysteresis input type with a built-in noise filter.
14	2	P33/EC	D	General-purpose I/O port Also serves as an external clock input pin for the 8bit timer/counter. External clock input of the 8 -bit timer/counter is hysteresis input type with a built-in noise filter.
13	1	$\begin{aligned} & \text { P34/TO/ } \\ & \text { INT10 } \end{aligned}$	D	General-purpose I/O port Also serves as the overflow output and external interrupt input for the 8-bit timer/counter. External interrupt input is of hysteresis input type with a built-in noise filter.

*1: FPT-28P-M17
(Continued)
*2: DIP-28C-M05
*3: DIP-28P-M03
*4: MQP-48C-P01

MB89190/190A Series

(Continued)

Pin no.		Cin name	Circuit type	Function

*1: FPT-28P-M17
*2: DIP-28P-M05
*3: DIP-28P-M03
*4: MQP-48C-P01

- External EPROM pins (MB89PV190/PV190A)

Pin no .	Pin name	1/0	Function
49	Vpp	O	"H" level output pin
$\begin{aligned} & 79 \\ & 78 \\ & 50 \\ & 75 \\ & 71 \\ & 76 \\ & 77 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \end{aligned}$	O1 O2 O3 O4 O5 O6 O7 O8	1	Data input pins
70	$\overline{\mathrm{CE}}$	0	ROM chip enable pin Outputs "H" during standby.
73	$\overline{\mathrm{OE}}$	0	ROM output enable pin Outputs "L" at all times.
80	V cc	0	EPROM power pin
64	Vss	0	Power supply (GND) pin

MB89190/190A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation feedback registor of approximately $1 \mathrm{M} \Omega$ at 5 V - When crystal and ceramic oscillators are selected optionally
		- When CR oscillation is selected optionally
B	$\square \square$	
C		- Output pull-up resistor (P-ch): Approx. $50 \mathrm{k} \Omega$ at 5 V - Hysteresis input
D		- CMOS output - CMOS input - Hysteresis input (resource input) - Pull-up resistor optional

(Continued)

MB89190/190A Series

(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional
F		- N-ch open-drain output - Analog input - Pull-up resistor optional (MB89190 series only)
G		- CMOS output - CMOS input - Hysteresis input (resource input) - Analog input - Pull-up resistor optional (MB89190 series only)

MB89190/190A Series

HANDLING DEVICES

1. Preventing Latch-up

Latchup may occur on CMOS ICs if voltage higher than V cc or lower than $\mathrm{V}_{\text {ss }}$ is applied to input or output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc to Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AV cc and $A V R$) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V c c=D A V C=V c c$ and $A V s s=A V R=V$ ss even if the A / D and D / A converters are not in use.

4. Treatment of N.C. Pin

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although operation is assured within the rated range of $V c c$ power supply voltage, a rapid fluctuation of the voltage could cause malfunctions within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and release from stop mode.

MB89190/190A Series

PROGRAMMING TO PROM ON THE MB89P195/P195A

The MB89P195/P195A can program data in the internal PROM using a dedicated conversion adaptor and specified general-purpose EPROM programmer.

1. Memory Space

- Programming procedure

(1) Load program data into the ROM programmer at addresses 4000 to 7FFFH. (Addresses 0C000H to 0FFFFH in the operation mode correspond to 4000 н to 7 FFFн in ROM programmer. See the illustration above.)
(2) Set the data at addresses 0000 н to 3 FFFH of the programmer ROM in the ROM programmer, to FFн.
(3) Program in the successive-address write mode of the ROM programmer.

Note: Program must be started at the address 00000 H .
For details, contact our Sales Division.

MB89190/190A Series

2. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcontroller program.

3. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yield of 100% cannot be assured at all times.

4. EPROM Programmer Socket Adapter

| Part no. | Recommended programmer manufacturer
 and programmer name |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Minato Electronics Inc.: TEL: USA (1)-916-348-6066
JAPAN (81)-45-591-5611
Data I/O Co., Ltd.:TEL: USA/ASIA (1)-206-881-6444
EUROPE (49)-8-985-8580

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

2. Programming Socket Adapter

To program to the EPROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) below.

Package	Adapter socket part number
LCC-32	ROM-32LC-28DP-YS

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106

3. Memory Space

4. Programming to the EPROM

(1) Set the EPROM programmer for MBM27C256A.
(2) Load program data into the EPROM programmer at 0000 н to 7 FFFн.
(3) Program to 0000^{H} to 7 FFFH with the EPROM programmer.

MB89190/190A Series

BLOCK DIAGRAM

MB89190/190A Series

CPU CORE

1. Memory Space

The microcontrollers of MB89190/190A series offer a 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I / O area, that is, the highest address. The tables of interrupt reset vectors, and vector call instructions are allocated from the highest address within the program area. The memory space of the MB89190/190A series is structured below:

MB89190/190A Series

2. Registers

The F${ }^{2}$ MC-8L family has two types of registers; dedicated hardware registers and general-purpose memory registers. The following dedicated registers are provided:

Program counter (PC): A 16-bit-long register for indicating the instruction storage positions
Accumulator (A):
A 16-bit-long temporary register for arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit-long register which is used for arithmetic operations with the accumulator. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit-long register for index modification
Extra pointer (EP) :
A 16-bit-long pointer for indicating a memory address
Stack pointer (SP) :
A 16-bit-long pointer for indicating a stack area
Program status (PS): A 16-bit-long register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

Structure of the Program Status Register

MB89190/190A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to ' 1 ' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to ' 1 '. Interrupt is disabled when the flag is cleared to ' 0 '. Cleared to ' 0 ' at the reset.
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low

N-flag: Set to ' 1 ' if the MSB becomes ' 1 ' as the result of an arithmetic operation. Cleared to ' 0 ' otherwise.
Z-flag: Set to ' 1 ' when an arithmetic operation results in 0 . Cleared to ' 0 ' otherwise.
V-flag: Set to ' 1 ' if the complement on ' 2 ' overflows as a result of an arithmetic operation. Cleared to ' 0 ' if the overflow does not occur.

C-flag: Set to ' 1 ' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise. Set to ' 1 ' the shift-out value in the case of a shift instruction.

MB89190/190A Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit-long register for storing data
The general-purpose registers are of 8 bits and located in register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89190/190A (8 banks on MB89191/191A). The bank currently in use is indicated by the register bank pointer. (RP)

Note: The number of register banks that can be used varies with the RAM size.

Register Bank Configuraiton

MB89190/190A Series

I/O MAP

Address	Read/write	Register name	Register description
00H	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	ENIO	Port 0 input enable register
03н to 07н			Vacancy
08H	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog control register
ОАн	(R/W)	TBTC	Time-base timer control register
ОВн			Vacancy
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
0Dн	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
OFH	(R/W)	BUZR	Buzzer register
10 to 13н			Vacancy
14H	(R/W)	RCR1	Remote-control transmit control register 1
15 H	(R/W)	RCR2	Remote-control transmit control register 2
16 H			Vacancy
17H			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19н	(R/W)	T1CR	Timer 1 control register
1 Ан $^{\text {¢ }}$	(R/W)	T2DR	Timer 2 data register
1В ${ }_{\text {H }}$	(R/W)	T1DR	Timer 1 data register
1 CH	(R/W)	SMR	Serial mode register
1Dн	(R/W)	SDR	Serial data register
1Ен			Vacancy
1FH			Vacancy
20 H	(R/W)	ADC1	A/D converter control register 1
21н	(R/W)	ADC2	A/D converter control register 2
22 H	(R/W)	ADCD	A/D converter data register
23H	(R/W)	EIC1	External interrupt control register 1
24H	(R/W)	EIC2	External interrupt control register 2
25 н to 31н			Vacancy
32н	(R/W)	EIE2	External interrupt 2 enable register
33	(R/W)	EIF2	External interrupt 2 flag register
34 to 7Вн $^{\text {7 }}$			Vacancy
7С	(W)	ILR1	Interrupt level register 1
7D	(W)	ILR2	Interrupt level register 2
7Ен	(W)	ILR3	Interrupt level register 3
7FH			Vacancy

Note: Do not use vacancies.

MB89190/190A Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	Vss - 0.3	Vss +7.0	V	
	AVR	Vss-0.3	Vss +7.0	V	Must not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$. MB89190A series only
EPROM program voltage	VPP	Vss-0.3	Vss +13.0	V	MB89P195/P195A only
Input voltage	VI	Vss -0.3	Vcc +0.3	V	
Output voltage	Vo	Vss - 0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level maximum output current	loL1	-	10	mA	Except P33 and P34 (Except P30 toP34 and P40 to P43 for MB89191AH/193AH)
	lot2	-	20	mA	P33, P34(P30 toP34 and P40 to P43 for MB89191AH/193AH)
"L" level average output current	lolav1	-	4	mA	Except P33 and P34 (Except P30 toP34 and P40 to P43 for MB89191AH/193AH) Average value (operating current \times operation rate)
	lolav2	-	8	mA	P33 and P34(P30 toP34 and P40 to P43 for MB89191AH/193AH) Average value (operating current \times operation rate)
"L" level total average output current	Elolav	-	20	mA	Average value (operating current \times operation rate)
"L" level total maximum output current	Elo	-	100	mA	
"H" level maximum output current	Іory	-	-10	mA	Except P33, P34, and P37
	Іон2	-	-20	mA	P33, P34, P37
"H" level average output current	lohav1	-	-2	mA	Except P33, P34, and P37 Average value (operating current \times operation rate)
	lohav2	-	-4	mA	Except P33, P34, and P37 Average value (operating current \times operation rate)
"H" level total average output current	Гlohav	-	-10	mA	Average value (operating current \times operation rate)
" H " level total maximum output current	ऽloн	-	-30	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, tem-

 perature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
MB89190/190A Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2*	6.0*	V	Normal operation assurance range* MB89191/191A/193/193A/195/195A
		2.7*	6.0*	V	Normal operation assurance range* MB89P195/P195A/PV190/PV190A
		1.5	6.0	V	Retains the RAM state in the stop mode
A/D converter reference input voltage	AVR	0.0	Vcc	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operation frequency and the assured analog operation range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Note: The shaded area is assured only for the MB89191/191A/193/193A/195/195A.

Figure 1 Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 / \mathrm{Fc}$.

MB89190/190A Series

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

$\left(\mathrm{V} \mathrm{Cc}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym-bol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	P00 to P07, P30 to P37, TEST	-	0.7 Vcc	-	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}+ \\ 0.3 \end{gathered}$	V	
	Vıнs	$\overline{\mathrm{RST}}$, INT10 to INT12, EC, SCK, SI, INT20 to INT27	-	0.8 Vcc	-	$\begin{gathered} V_{c c}+ \\ 0.3 \end{gathered}$	V	
"L" level input voltage	VII	P00 to P03, P33 to P36, TEST	-	$\begin{gathered} V_{\text {ss }}- \\ 0.3 \end{gathered}$	-	0.3 Vcc	V	
	VıLs	RST, INT10 to INT12, EC, SCK, SI, INT 20 to INT27	-	$\begin{gathered} \text { Vss- } \\ 0.3 \end{gathered}$	-	0.2 Vcc	V	
Open-drain output pin applied voltage	V	P40 to P44	-	$\begin{gathered} \text { Vss- } \\ 0.3 \end{gathered}$	-	$\begin{gathered} \text { Vss+ } \\ 0.3 \end{gathered}$	V	
"H" level output voltage	Vон1	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P30 to P32, } \\ & \text { P35, P36 } \end{aligned}$	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4	-	-	V	
	Voн2	P33, P34	$\mathrm{I} \mathrm{H}=-15 \mathrm{~mA}$	2.4	-	-	V	
	Vонз	P37	$\mathrm{IOH}=-7.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol1	P00 to P07, P40 to P45, P30 to P32, P35 to P37	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	$\begin{aligned} & \text { Except } \\ & \text { MB89191AH/ } \\ & 193 \mathrm{AH} \end{aligned}$
		$\begin{aligned} & \text { P00 to P07, } \\ & \text { P35 to P37, } \end{aligned}$						$\begin{aligned} & \text { MB89191AH } \\ & \text { 193AH } \end{aligned}$
	VoL2	$\overline{\text { RST }}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	Voı3	P33, P34	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	$\begin{aligned} & \text { Except } \\ & \text { MB89191AH } \\ & 193 A H \end{aligned}$
		$\begin{aligned} & \text { P30 to P34, } \\ & \text { P40 to P43, } \end{aligned}$						$\begin{aligned} & \text { MB89191AH } \\ & \text { 193AH } \end{aligned}$
Input leakage current(Hi-z output leakage current)	$1 \mathrm{Ll1}$	P00 to P07, P30 to P37, TEST	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Open-drain output leakage current (Off state)	ILD 1	P40 to P45	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 1	$\mu \mathrm{A}$	Without pull-up resistor

(Continued)

MB89190/190A Series

(Continued)
$\left(\mathrm{V} c \mathrm{c}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Pull-up resistance	Rpull	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P30 to P37, } \\ & \text { P40 to P45, } \\ & \hline \text { RST } \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	
Power supply voltage*	Icc	Vcc	$\mathrm{Fc}=4.2 \mathrm{MHz}$	-	5	10	mA	MB89191/ 191A/193/ 193A/195/ 195A/PV190/ PV190A
				-	7	12	mA	$\begin{array}{\|l\|} \hline \text { MB89P195/ } \\ \text { P195A } \\ \hline \end{array}$
	Iccs		$\mathrm{Fc}=4.2 \mathrm{MHz}$	-	3	7	mA	Sleep mode
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$	Stop mode
	Icca		$\mathrm{F}_{\mathrm{c}}=4.2 \mathrm{MHz}$ During A/D converter operation	-	6	13	mA	$\begin{aligned} & \text { MB89191A/ } \\ & \text { 193A/195A/ } \\ & \text { PV190A } \end{aligned}$
				-	8	15	mA	MB89P195A
Input capacitance	Cin	Except AVR, AVss, Vcc , and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*: For the MB89PV190/PV190A, the current consumption of a connected EPROM and ICE is not included. The mesurement condition of the power supply current are set as $\mathrm{Vcc}=5.0 \mathrm{~V}$ with an external clock.

MB89190/190A Series

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzızH	-	16 txcyL	-	ns	

Note: txcyl is the oscillation period $(1 / \mathrm{Fc})$ input to the X 0 pin.

(2) Power-on Reset

Parameter					Vss	Ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ}$
	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the oscillation stabilization time selected.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.
\square

MB89190/190A Series

(3) Clock Timings

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	4.2	MHz	
Clock cycle time	txcyL	X0, X1	-	238	1000	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{P} w \mathrm{wh} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	-	20	-	ns	External clock
Input clock pulse risilng/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$	X0	-	-	10	ns	External clock

X0, X1 Timings and Conditions of Applied Voltage

Clock Conditions

(4) Instruction Cycles

				$\left(\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$		
Parameter	Symbol	Value (typical)	Unit	Remarks		
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{c}}$	$\mu \mathrm{s}$	tinst $=0.95 \mu \mathrm{~s}$ when operating at $\mathrm{Fc}=$ 4.2 MHz		

MB89190/190A Series

(5) Recommended Resonator Manufacturers

- Sample Application of Piezoelectric Resonator (FAR Series)

FAR part number (built-in capacitor type)	Frequency $(\mathbf{M H z})$	Dumping resistor	Initial deviation of FAR frequency $\left(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right)$	Temperature characteristics of FAR frequency $\left(\mathrm{T}_{\mathrm{A}}=-\mathbf{2 0} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$	Loading capacitors ${ }^{\star 2}$
FAR-C4SA-04000- $\square 01 \mathrm{M}$	4.00	200Ω	$\pm 0.5 \%$	$\pm 0.5 \%$	Built-in

Inquiry: FUJITSU LIMITED

MB89190/190A Series

Resonator manufacturer	Resonator	$\begin{gathered} \text { Frequency } \\ (M H z) \end{gathered}$	C1 (pF)	C2 (pF)	R
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040		Built-in	Built-in	Not required
	CSA4.00MG	4.00	30	30	Not required
	CST4.00MGW		Built-in	Built-in	Not required
	CSTCS4.00MG0C5		Built-in	Built-in	Not required
TDK. Co., Ltd.	CCR4.0MC3	4.00	Built-in	Built-in	Not required
	FCR4.0MC5		Built-in	Built-in	Not required

- One-time products

Resonator manufacturer*	Resonator	$\begin{gathered} \text { Frequency } \\ (M H z) \end{gathered}$	C1 (pF)	C2 (pF)	R
Murata Mfg. Co., Ltd.	CSA3.20MGCA	3.20	30	30	$1 \mathrm{k} \Omega$
	CST3.20MGA		Built-in	Built-in	$1 \mathrm{k} \Omega$
	CSA3.20MGA040		100	100	Not required
	CST3.20MGWA040		Built-in	Built-in	Not required
	CSA3.58MGCA	3.58	30	30	Not required
	CSTЗ.58MGWHA		Built-in	Built-in	Not required

Inquiry: Murata Mfg. Co., Ltd

- Murata Electronics North America. Inc.: TEL 1-404-436-1300
- Murata Europe Mnagement GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

TDK Corporation

- TDK Corporation of America

Chicago Regional Office: TEL 1-708-803-6100

- TDK Electronics Europe GmbH Components Division: TEL 49-2102-9450
- TDK Singapore (PTE) Ltd.: TEL 65-273-5022
- TDK Hongkong Co., Ltd.: TEL 852-736-2238
- Korea Branch, TDK Corporation: TEL 82-2-554-6633

MB89190/190A Series

(6) Serial I/O Timings

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal clock operation	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst*******	-	$\mu \mathrm{S}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*********	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External clock operation	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tstsh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsH	SI, SCK		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*******	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycles."

Internal Shift Clock Mode

External Shift Clock Mode

MB89190/190A Series

(7) Peripheral Input Timings

$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width 1	tııн	EC, INT10 to INT12, $\overline{\mathrm{INT} 20}$ to $\overline{\mathrm{INT} 27}$	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thwl-1		2 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycles."

Peripheral Input Timing Diagram

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Peripheral input "H" noise limit width	thnnc	EC, SI, SCK INT10 to INT12	7	15	23	ns	
Peripheral input " L " noise limit width	tınc	EC, SI, SCK INT10 to INT12	7	15	23	ns	

Peripheral Input Timing Diagram

MB89190/190A Series

5. A/D Converter Electrical Characteristics (MB89190A Series Only)

Parameter	$\underset{\substack{\text { Sym- } \\ \text { bol }}}{ }$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	8	bit	
Total error			$\mathrm{AVR}=\mathrm{AV} \mathrm{cc}$	-	-	± 1.5	LSB	
Linearity error				-	-	± 1.0	LSB	
Differential linearity error				-	-	± 0.9	LSB	
Zero transition voltage	Vot			$\begin{gathered} \text { AVss } \\ -1.0 \\ \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{A} \mathrm{~V}_{\mathrm{ss}} \\ +0.5 \\ \mathrm{LSB} \end{gathered}$	AVss +2.0 LSB	mV	
Full-scale transition voltage	$V_{\text {fst }}$			$\begin{aligned} & \text { AVR } \\ & -3.0 \\ & \text { LSB } \end{aligned}$	$\begin{gathered} \text { AVR } \\ -1.5 \\ \text { LSB } \end{gathered}$	AVR	mV	
Inter channel disparity	-			-	-	0.5	LSB	
A/D mode conversion time			-	-	44 tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
Sense mode conversion time				-	12 tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
Analog port input current	Iain	AN0 to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-			0	-	AVR	V	
Reference voltage		AVR		0	-	Vcc	V	
Reference voltage supply current	IR		$\mathrm{AVR}=\mathrm{V}_{\mathrm{cc}}=$ 5.0 V when $\mathrm{A} /$ D conversion is operating	-	100	300	$\mu \mathrm{A}$	
	IRH			-	-	1	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycles" in "4. AC Characteristics."

6. A/D Converter Glossary

- Resolution

Analog changes that are identifiable by the A / D converter.
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.
Linearity error (unit: LSB)
The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1110" \leftrightarrow "1111 1111") from actual conversion characteristics.
Differential linearity error (unit: LSB)
The deviation of input voltage needed change the output code by 1 LSB from the theoretical value.

- Total error (unit: LSB)

The difference between theoretical and actual conversion values.

MB89190/190A Series

7. Notes on Using A/D Converter

- Input impedance of analog input pins

The A/D converter used for the MB89190A series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$ for the analog input pin.

- Error

The smaller the $|A V R-A V s s|$, the greater the error would become relatively.

MB89190/190A Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

MB89190/190A Series

(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

VIHs: Threshold when input voltage in hysteresis 2 characteristics is set to " H " level
VILs: Threshold when input voltage in hysteresis characteristics is set to "L" level

MB89190/190A Series

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

- INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

MB89190/190A Series

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	The number of instructions
$\#:$	The number of bytes
Operation:	Operation of an instruction
$\mathrm{TL}, \mathrm{TH}, \mathrm{AH}:$	A content change when each of the TL, TH, and AH instructions is executed. Symbols in

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of $A L$ and $A H$ prior to the instruction executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ +--	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	++--	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	++--	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (A) }\end{array}\right)$	AL	-	-	+ +--	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ +--	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	++--	08 to 0F
MOV dir,\#d8	4	3	(dir) $\leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-		87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ +	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow(e x t+1)$	AL	AH	dH	+	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{l}+1)$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3		$($ (A) $) \leftarrow(\mathrm{T})$	-	-	-	----	82
MOVW @A,T	4		$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2		$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	---	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	_	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89190/190A Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(A) \leftarrow(A)+((I X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) + off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(A) \leftarrow(A L) \times(T L)$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	-	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\longrightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \leftarrow \mathrm{A} \leftarrow$	-	-	-	$++-+$	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(A) \leftarrow(A L) \wedge d 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ (dir)	-	-	-	+ + R -	65

(Continued)
(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow(A L) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	_	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall N=1$ then $P C \leftarrow P C+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b$)=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-		E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-		31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-		20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	--	51		
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1		-	-	-	----	90

MB89190／190A Series

INSTRUCTION MAP

$\stackrel{ }{4}$		$\begin{aligned} & 3_{0}^{00} \\ & 3_{0}^{0} \\ & 0^{2} \end{aligned}$					$\begin{aligned} & \frac{3}{\widehat{x}} \\ & \hat{\mathbf{x}} \end{aligned}$		$\mathrm{O}_{\text {O}}^{0}$			\％${ }_{\text {¢ }}^{\text {¢ }}$			蓖	$\stackrel{\text { ¢ }}{\text { ¢ }}$
ш	$\sum_{j}^{0}{ }_{j}^{\text {® }}$	$\begin{aligned} & 3_{0}^{6} \\ & \sum_{0}^{6} \\ & \hline \end{aligned}$		$\sum_{0_{0}^{2}}^{\substack{4 \\ 4}}$						$\underset{\sim}{3}$	$\underset{~ \#}{\text { \# }}$	$\vec{d}_{\substack{3 \\ ~}}$	$\stackrel{z}{\frac{1}{0}}^{\#}$			$2^{\text {\＃}}$
\bigcirc		${\underset{3}{3}}_{3_{0}^{0}}^{u_{0}^{0}}$			\sum_{0}^{3}				莒						쌈	$\begin{array}{\|l\|l\|} \hat{x} \\ 0_{0} \end{array}$
0	$\underset{\substack{2 \\ \underset{Z}{2} \\ \hline}}{ }$	${\underset{\underline{0}}{\underline{2}}}_{0}^{0}$	$\underset{\underset{Z}{2}}{\substack{2 \\ \hline}}$	${\underset{\underline{0}}{\underline{3}}}_{\frac{0}{w}}$	$\underset{0_{2}^{2}}{3}$	$\widehat{C l}_{0}^{30}$		若若			$\underset{\underline{x}}{\text { ®̃ }}$		$\begin{aligned} & \text { d } \\ & \underset{\underline{x}}{2} \end{aligned}$	$\underbrace{\substack{\text { ® }}}_{\underline{x}}$	$\underset{\sim}{0}$	$\underset{\underline{x}}{\hat{x}}$
๓							$\underbrace{0}_{0}$			品妾		\wp_{0}^{∞}		0	\wp_{∞}^{∞}	
¢									缶	$\underset{\sim}{\underset{\omega}{m}}$		$\underbrace{\underline{\sim}}_{\underline{\omega}}$				
\square	岕	制			䒨	$\sum_{0}^{\frac{\infty}{0}}$			\sum_{0}^{n}			$\sum_{0}^{n} \stackrel{\#+\pi}{c}$	\sum_{0}^{n}		\sum_{0}^{n}	
∞	$\overline{\mathrm{x}}$	$\begin{aligned} & \text { OU } \\ & \underset{\sim}{0} \end{aligned}$		$\underset{\substack{2}}{\substack{\text { ® } \\ \text { ® }}}$	\％				$\underset{\Sigma}{\circ}$							
－			¢	$\underset{\substack{3 \\ \underset{y}{0}}}{\substack{3}}$		$\stackrel{\text { 砉 }}{\substack{c}}$		若	§	$\mathbb{\circ}$	$\underset{\substack{\mathbb{x}}}{\stackrel{\pi}{<}}$	\mathfrak{x}			$\underset{0}{\circ}$	
\bullet			呈	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\underbrace{\frac{0}{8}}_{i}$	$\sum_{c_{<}^{2}}^{\frac{2}{\bar{z}}}$	号苃	苍范	$\sum_{<}^{\ll}$	$\sum_{i}^{0_{<}^{4}}$		$\sum_{\substack{\text { en }}}^{\substack{\text { < }}}$	$\sum_{i}^{\text {灾 }}$	$\sum_{i}^{0_{<}^{4}}$	$\sum_{i}^{0_{<}^{4}}$	$\sum_{\substack{\hat{x} \\ \sum_{<}^{2}}}$
\llcorner		${\underset{0}{0}}_{3_{0}^{x}}^{x}$														
－	$\begin{array}{\|l\|} \hline 3_{1}^{4} \\ \mathbf{z}^{\top} \\ \frac{1}{2} \end{array}$	$\begin{array}{\|l\|} \hline \frac{3}{1} \\ \frac{1}{9} \\ \frac{1}{2} \end{array}$									¢			$\underbrace{\substack{\text { ¢ }}}_{\sum}$	$\stackrel{\rightharpoonup}{2}^{\text {² }}$	
∞	$\underset{\sim}{\underset{\sim}{\mid x}}$	-		$\begin{array}{\|l\|l} \substack{0 \\ \stackrel{y}{v} \\ \hline} \end{array}$				信				品㤩			$\begin{aligned} & \text { Oぐ } \\ & \text { 䍐 } \end{aligned}$	㐌
\sim	$\underset{\text { ¢ }}{\text { ¢ }}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$					$\begin{aligned} & 0 \stackrel{x}{\alpha} \\ & \text { 安 } \end{aligned}$						芼	
－	$\left\lvert\, \begin{aligned} & 0 \\ & \sum_{0}^{0} \end{aligned}\right.$	כ	\sum_{0}^{0}	\sum_{0}^{3}	$\sum_{0}^{\frac{\infty}{0}}$	$\sum_{i}^{\frac{2}{z}}$		\sum_{0}^{n}	\sum_{0}^{n}	\sum_{0}^{0}	$\sum_{0}^{\frac{\pi}{c}}$	$\sum_{0}^{0} \frac{\pi}{8}$		\sum_{0}^{0}	$\sum_{0}^{n}{ }^{\text {c }}$	\sum_{0}^{n}
\bigcirc	$\begin{aligned} & \text { ò } \\ & \text { z} \\ & \hline \end{aligned}$		$$	$\begin{array}{\|l} \hline 0 \\ \text { U } \\ \text { Xix } \\ \hline \end{array}$				B				$\stackrel{\rightharpoonup}{\partial}^{\text {® }}$		$\frac{\stackrel{6}{2}}{\substack{\text { O} \\ 2}}$		
I/	－	－	\sim	\cdots	＊	$ぃ$	\bullet	\wedge	∞	の	«	∞	0	－	ш	u

MASK OPTION LIST

No.	Part number		$\begin{aligned} & \text { MB89191 } \\ & \text { MB89193 } \\ & \text { MB89195 } \end{aligned}$	MB89191A MB89193A MB89195A	MB89P195		MB89P195A		MB89PV190 MB89PV190A
	Specifying procedure		Specify when ordering masking		-101^{*}	Specify when ordering masking		$-201 * 2$	Fixed
	Por	$\begin{aligned} & \text { P00 to P07 } \\ & \text { P30 to P37 } \end{aligned}$	Selectable by pin		None	Selectable by pin		None	Not available
1	resistors	$\begin{aligned} & \text { P00 to P03 } \\ & \text { P40 to P45 } \end{aligned}$	Selectable by pin	Not available	None	Selectable by pin	Not available	None	Not available
2	Power-on reset - Power-on reset provided - No power-on reset		Selectable		Provided	Provi	ded	Provided	Provided
3	Selection of stabilization (at 4.2 MHz) - $2^{18} / \mathrm{Fc}$ (app - $2^{16} / \mathrm{Fc}$ (app - $2^{12} / \mathrm{Fc}$ (app - $2^{2 / F}$ F (app	oscillation wait time rox. 62.4 ms$)$ rox. 15.6 ms$)$ rox. 0.98 ms$)$ ox. 0 ms)	Selectable		Fixed to $2^{16 / F c}$	Selectable		Fixed to $2^{16 / F c}$	Fixed to $2^{16} / \mathrm{Fc}_{\mathrm{c}}$
4	Reset pin output - Reset output provided - No reset output		Selectable		Provided	Selectable		Provided	Provided
5	Oscillation type of clock 1 Crystal and ceramic oscillators$2 C R$		Selectable		"1" only	Select	able	"1" only	"1" only

*1: The oscillation stabilization time is generated by dividing the original clock oscillation. The time described in this item should be used as a rough guideline since the oscillation cycle is unstable immediately after oscillation starts. "Fc" indicates the original oscillation frequency.
*2: -101 and -201 are provided respectively for the MB89P195 and MB89P195A OTP versions as the standard products.

MB89190/190A Series

ORDERING INFORMATION

Part number	Package	Remarks
MB89191PF		
MB89193PF		
MB89195PF		
MB89P195PF-101	28-pin Plastic SOP	
MB89191APF	(FPT-28P-M17)	
MB89191AHPF		
MB89193APF		
MB89193AHPF		
MB89195APF		
MB89195APF-201		
MB819193P-SH		
MB89195P-SH		
MB89191AP-SH		
MB89191AHP-SH	28-pin Plastic SH-DIP	
MB88193AP-SH	(DIP-28C-M03)	
MB89193AHP-SH		
MB89195AP-SH		
MB89191P		
MB88193P		
MB89195P		
MB89P195P-101		
MB89191AP		
MB88191AHP	28-pin Plastic DIP	
MB89193AP	(DIP-28P-M05)	
MB89193AHP		
MB89195AP		
MB899195AP-201	M8190CF	MQP-48C-P01)

MB89190/190A Series

PACKAGE DIMENSION

(c) 1994 FUJITSU LIMITED F28048S-1C-1

Dimensions in mm (inches)

MB89190/190A Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9901
© FUJITSU LIMITED Printed in Japan

