## FLASH MEMORY

## CMOS

## $16 \mathrm{M}(2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16)$ BIT Dual Operation

## MBM29DL16XTD/BD ${ }_{-7090012}$

## ■ FEATURES

- $0.33 \mu \mathrm{~m}$ Process Technology
- Simultaneous Read/Write operations (dual bank) Multiple devices available with different bank sizes (Refer to Table 1)
Host system can program or erase in one bank, then immediately and simultaneously read from the other bank Zero latency between read and write operations
Read-while-erase
Read-while-program
- Single 3.0 V read, program, and erase

Minimizes system level power requirements
(Continued)

## ■ PRODUCT LINE UP

| Part No. |  | MBM29DL16XTD/MBM29DL16XBD |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Ordering Part No. | $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}{ }_{-0.3 \mathrm{~V}}^{+0.3 \vee}$ | 70 | - | - |
|  | $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.6}$ | - | 90 | 12 |
|  | 70 | 90 | 120 |  |
| Max. $\overline{\mathrm{CE}}$ Access Time (ns) | 70 | 90 | 120 |  |
| Max. $\overline{\mathrm{OE}}$ Access Time (ns) | 30 | 35 | 50 |  |

## PACKAGES

48-pin plastic TSOP (I)
Marking Side
(FPT-48P-M19)
(BGA-pin plastic TSOP $(\mathrm{I})$
Marking Side
(FPT-48P-M20)

[^0]
## MBM29DL16XTD/BD-70/90/12

## (Continued)

- Compatible with JEDEC-standard commands Uses same software commands as E2PROMs
- Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP(I) (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type) 48-ball FBGA (Package suffix: PBT)

- Minimum 100,000 program/erase cycles
- High performance

70 ns maximum access time

- Sector erase architecture

Eight 4 K word and thirty one 32 K word sectors in word mode Eight 8 K byte and thirty one 64K byte sectors in byte mode
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Hidden ROM (Hi-ROM) region

64 K byte of Hi -ROM, accessible through a new "Hi-ROM Enable" command sequence Factory serialized and protected to provide a secure electronic serial number (ESN)

- $\overline{\text { WP }} / \mathbf{A C C}$ input pin

At VIL, allows protection of boot sectors, regardless of sector protection/unprotection status
At $\mathrm{V}_{\mathrm{H}}$, allows removal of boot sector protection
At $V_{\text {Acc, }}$ increases program performance

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode.

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

- Sector group protection

Hardware method disables any combination of sector groups from program or erase operations

- Sector Group Protection Set function by Extended sector group protection command
- Fast Programming Function by Extended Command
- Temporary sector group unprotection Temporary sector group unprotection via the RESET pin.
- In accordance with CFI (Common Flash Memory Interface)


## MBM29DL16XTD/BD-70/90/12

## GENERAL DESCRIPTION

The MBM29DL16XTD/BD are a 16M-bit, 3.0 V-only Flash memory organized as 2 M bytes of 8 bits each or 1 M words of 16 bits each. The MBM29DL16XTD/BD are offered in a 48-pin TSOP(I) and 48-ball FBGA Package. These devices are designed to be programmed in-system with the standard system 3.0 V Vcc supply. 12.0 V $\mathrm{V}_{\mathrm{PP}}$ and $5.0 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$ are not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers.

MBM29DL16XTD/BD are organized into two banks, Bank 1 and Bank 2, which can be considered to be two separate memory arrays as far as certain operations are concerned. These devices are the same as Fujitsu's standard 3 V only Flash memories with the additional capability of allowing a normal non-delayed read access from a non-busy bank of the array while an embedded write (either a program or an erase) operation is simultaneously taking place on the other bank.

In the MBM29DL16XTD/BD, a new design concept is implemented, so called "Sliding Bank Architecture". Under this concept, the MBM29DL16XTD/BD can be produced a series of devices with different Bank 1/Bank 2 size combinations; $0.5 \mathrm{Mb} / 15.5 \mathrm{Mb}$, $2 \mathrm{Mb} / 14 \mathrm{Mb}, 4 \mathrm{Mb} / 12 \mathrm{Mb}, 8 \mathrm{Mb} / 8 \mathrm{Mb}$.

The standard MBM29DL16XTD/BD offer access times $70 \mathrm{~ns}, 90 \mathrm{~ns}$ and 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the devices have separate chip enable ( $\overline{\mathrm{CE}}$ ), write enable ( $\overline{\mathrm{WE}}$ ), and output enable ( $\overline{\mathrm{OE}}$ ) controls.

The MBM29DL16XTD/BD are pin and command set compatible with JEDEC standard E2PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the devices is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The MBM29DL16XTD/BD are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the devices automatically time the erase pulse widths and verify proper cell margin.

A sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)
The devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29DL16XTD/BD are erased when shipped from the factory.

The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ6, or the RY/BY output pin. Once the end of a program or erase cycle has been completed, the devices internally reset to the read mode.

Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29DL16XTD/BD memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

## MBM29DL16XTD/BD-70/90/12

Table 1 MBM29DL16XTD/BD Device Bank Divisions

| Device Part Number | Organization | Bank 1 |  | Bank 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Megabits | Sector Sizes | Megabits | Sector Sizes |
| MBM29DL161TD/BD | $\times 8 / \times 16$ | 0.5 Mbit | Eight 8K byte/4K word | 15.5 Mbit | Thirty-one 64K byte/32K word |
| MBM29DL162TD/BD |  | 2 Mbit | Eight 8 K byte/4K word, three 64 K byte/32K word | 14 Mbit | Twenty-eight 64K byte/32K word |
| MBM29DL163TD/BD |  | 4 Mbit | Eight 8 K byte/4K word, seven 64 K byte/32K word | 12 Mbit | Twenty-four 64K byte/32K word |
| MBM29DL164TD/BD |  | 8 Mbit | Eight 8 K byte/4K word, fifteen 64 K byte/32K word | 8 Mbit | Sixteen <br> 64K byte/32K word |

## PIN ASSIGNMENTS


(Continued)

## MBM29DL16XTD/BD-70/90/12

(Continued)

## FBGA

(TOP VIEW)
Marking side

$$
\begin{aligned}
& \text { 'A1: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (F1: }
\end{aligned}
$$

(BGA-48P-M13)

| A1 | $\mathrm{A}_{3}$ | A2 | $\mathrm{A}_{7}$ | A3 | RY/ $\overline{\mathrm{BY}}$ | A4 | WE | A5 | A9 | A6 | $\mathrm{A}_{13}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1 | $\mathrm{A}_{4}$ | B2 | $\mathrm{A}_{17}$ | B3 | $\overline{\mathrm{WP}} / \mathrm{ACC}$ | B4 | $\overline{\text { RESET }}$ | B5 | $\mathrm{A}_{8}$ | B6 | $\mathrm{A}_{12}$ |
| C1 | $\mathrm{A}_{2}$ | C2 | $\mathrm{A}_{6}$ | C3 | $\mathrm{A}_{18}$ | C4 | N.C. | C5 | $\mathrm{A}_{10}$ | C6 | $\mathrm{A}_{14}$ |
| D1 | $\mathrm{A}_{1}$ | D2 | $\mathrm{A}_{5}$ | D3 | N.C. | D4 | $\mathrm{A}_{19}$ | D5 | $\mathrm{A}_{11}$ | D6 | $\mathrm{A}_{15}$ |
| E1 | A | E2 | DQ0 | E3 | DQ2 | E4 | DQ5 | E5 | DQ7 | E6 | $\mathrm{A}_{16}$ |
| F1 | $\overline{\mathrm{CE}}$ | F2 | DQ8 | F3 | DQ10 | F4 | $\mathrm{DQ}_{12}$ | F5 | DQ14 | F6 | $\overline{\text { BYTE }}$ |
| G1 | $\overline{\mathrm{OE}}$ | G2 | DQ9 | G3 | DQ11 | G4 | Vcc | G5 | DQ13 | G6 | DQ15/A-1 |
| H1 | Vss | H2 | DQ1 | H3 | DQ3 | H4 | $\mathrm{DQ}_{4}$ | H5 | DQ6 | H6 | Vss |

## BLOCK DIAGRAM



## MBM29DL16XTD/BD-70/90/12

## LOGIC SYMBOL

Table 2 MBM29DL16XTD/BD Pin Configuration


| Pin | Function |
| :---: | :--- |
| $\mathrm{A}_{-1}, \mathrm{~A}_{0}$ to $\mathrm{A}_{19}$ | Address Inputs |
| $\mathrm{DQ}_{0}$ to $\mathrm{DQ}_{15}$ | Data Inputs/Outputs |
| $\overline{\mathrm{CE}}$ | Chip Enable |
| $\overline{\mathrm{OE}}$ | Output Enable |
| $\overline{\mathrm{WE}}$ | Write Enable |
| RY/ $\overline{\mathrm{BY}}$ | Ready/Busy Output |
| $\overline{\text { RESET }}$ | Hardware Reset Pin/Temporary Sector <br> Group Unprotection |
| $\overline{\mathrm{BYTE}}$ | Selects 8-bit or 16-bit mode |
| $\overline{\mathrm{WP} / \mathrm{ACC}}$ | Hardware Write Protection/Program <br> Acceleration |
| N.C. | No Internal Connection |
| Vss | Device Ground |
| Vcc | Device Power Supply |

## - DEVICE BUS OPERATION

Table 3 MBM29DL16XTD/BD User Bus Operations ( $\overline{\text { BYTE }}=\mathrm{V}_{\text {H }}$ )

| Operation | $\overline{C E}$ | $\overline{O E}$ | WE | A 0 | $\mathrm{A}_{1}$ | A6 | A9 | DQ ${ }_{0}$ to $\mathrm{DQ}_{15}$ | RESET | $\overline{\text { WP/ACC }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auto-Select Manufacturer Code (1) | L | L | H | L | L | L | VID | Code | H | X |
| Auto-Select Device Code (1) | L | L | H | H | L | L | VID | Code | H | X |
| Read (3) | L | L | H | A | $\mathrm{A}_{1}$ | $\mathrm{A}_{6}$ | A9 | Dout | H | X |
| Standby | H | X | X | X | X | X | X | HIGH-Z | H | X |
| Output Disable | L | H | H | X | X | X | X | HIGH-Z | H | X |
| Write (Program/Erase) | L | H | L | $\mathrm{A}_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{9}$ | Din | H | X |
| Enable Sector Group Protection (2), (4) | L | VID | 乙 | L | H | L | VID | X | H | X |
| Verify Sector Group Protection (2), (4) | L | L | H | L | H | L | VID | Code | H | X |
| Temporary Sector Group Unprotection (5) | X | X | X | X | X | X | X | X | VID | X |
| Reset (Hardware)/Standby | X | X | X | X | X | X | X | HIGH-Z | L | X |
| Boot Block Sector Write Protection | X | X | X | X | X | X | X | X | X | L |

Table 4 MBM29DL16XTD/BD User Bus Operations ( $\overline{\text { BYTE }}=\mathrm{V}_{\mathrm{L}}$ )

| Operation | $\overline{C E}$ | $\overline{\mathrm{OE}}$ | WE | $\underset{\mathbf{A}-1}{\mathbf{D Q}_{15}}$ | A 0 | $\mathrm{A}_{1}$ | A6 | A9 | DQ ${ }_{0}$ to $\mathrm{DQ}_{7}$ | RESET | WP/ACC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auto-Select Manufacturer Code (1) | L | L | H | L | L | L | L | VID | Code | H | X |
| Auto-Select Device Code (1) | L | L | H | L | H | L | L | VID | Code | H | X |
| Read (3) | L | L | H | A-1 | Ao | $\mathrm{A}_{1}$ | $\mathrm{A}_{6}$ | A9 | Dout | H | X |
| Standby | H | X | X | X | X | X | X | X | HIGH-Z | H | X |
| Output Disable | L | H | H | X | X | X | X | X | HIGH-Z | H | X |
| Write (Program/Erase) | L | H | L | A-1 | Ao | $\mathrm{A}_{1}$ | $A_{6}$ | A9 | Din | H | X |
| Enable Sector Group Protection (2), (4) | L | VIo | Ч | L | L | H | L | VIo | X | H | X |
| Verify Sector Group Protection (2), (4) | L | L | H | L | L | H | L | VID | Code | H | X |
| Temporary Sector Group Unprotection (5) | X | X | X | X | X | X | X | X | X | VID | X |
| Reset (Hardware)/Standby | X | X | X | X | X | X | X | X | HIGH-Z | L | X |
| Boot Block Sector Write Protection | X | X | X | X | X | X | X | X | X | X | L |

Legend: $L=V_{I L}, H=V_{I H}, X=V_{I L}$ or $V_{I H}, ~ 乙=$ Pulse input. See DC Characteristics for voltage levels.
Notes: 1. Manufacturer and device codes may also be accessed via a command register write sequence. See Table 12.
2. Refer to the section on Sector Group Protection.
3. $\overline{\mathrm{WE}}$ can be $\mathrm{V}_{\mathrm{LL}}$ if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}$ at $\mathrm{V}_{\mathbb{H}}$ initiates the write operations.
4. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 10 \%$
5. It is also used for the extended sector group protection.

ABSOLUTE MAXIMUM RATINGS(See WARNING)

| Parameter | Symbol | Conditions | Rating |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |
| Storage Temperature | Tstg | - | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| Ambient Temperature with Power Applied | TA | - | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| Voltage with respect to Ground All pins except A9, OE, RESET (Note 1) | Vin, Vout | - | -0.5 | Vcc+0.5 | V |
| Power Supply Voltage (Note 1) | Vcc | - | -0.5 | +4.0 | V |
| A9, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$ (Note 2) | Vin | - | -0.5 | +13.0 | V |
| $\overline{\text { WP/ACC ( }}$ ( ote 3) | Vin | - | -0.5 | +10.5 | V |

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may negative overshoot V ss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $\mathrm{A}, \overline{\mathrm{OE}}$ and RESET pins are -0.5 V . During voltage transitions, $\mathrm{A}, \overline{\mathrm{OE}}$ and RESET pins may negative overshoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on $\mathrm{A}, \overline{\mathrm{OE}}$ and $\overline{\text { RESET }}$ pins are +13.0 V which may positive overshoot to 14.0 V for periods of up to 20 ns . when $\mathrm{V}_{\mathrm{cc}}$ is applied.
3. Minimum DC input voltage on $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin is -0.5 V . During voltage transitions, $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin may negative overshoot $V_{\text {ss }}$ to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin iis when Vcc is applied.

## RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Conditions |  | Value |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Ambient Temperature |  | Min. | Max. |  |  |
|  | $\mathrm{T}_{\mathrm{A}}$ | MBM29DL16XTD/BD-70 | -20 | +70 | ${ }^{\circ} \mathrm{C}$ |
|  |  | MBM29DL16XTD/BD-90/12 | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| V VCc | MBM29DL16XTD/BD-70 | +3.0 | +3.6 | V |  |
|  |  | MBM29DL16XTD/BD-90/12 | +2.7 | +3.6 | V |

Operating ranges define those limits between which the functionality of the devices are guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

## MAXIMUM OVERSHOOT



Figure 1 Maximum Negative Overshoot Waveform


Figure 2 Maximum Positive Overshoot Waveform 1

*: This waveform is applied for $\mathrm{A} 9, \overline{\mathrm{OE}}$, and RESET.

Figure 3 Maximum Positive Overshoot Waveform 2

## MBM29DL16XTD/BD-70/90/12

## ELECTRICAL CHARACTERISTICS

## 1. DC Characteristics

| Parameter | Symbol | Conditions |  | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Input Leakage Current | ILI | $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}$, $\mathrm{V}_{\text {cc }}=\mathrm{V}_{c c}$ Max. |  | -1.0 | +1.0 | $\mu \mathrm{A}$ |
| Output Leakage Current | Iıo | Vout $=$ Vss to $\mathrm{V}_{\mathrm{cc}}$, V cc $=$ V Vcc Max. |  | -1.0 | +1.0 | $\mu \mathrm{A}$ |
| Aя, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current | Iıt | $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ Max. <br> $\mathrm{A} 9, \overline{\mathrm{OE},} \overline{\mathrm{RESET}}=12.5 \mathrm{~V}$ |  | - | 35 | $\mu \mathrm{A}$ |
| Vcc Active Current (Note 1) | Icc1 | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$ | Byte |  | 13 |  |
|  |  |  | Word |  | 15 |  |
|  |  | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | Byte | - | 7 | mA |
|  |  |  | Word |  | 7 |  |
| Vcc Active Current (Note 2) | Icc2 | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$ |  | - | 35 | mA |
| Vcc Current (Standby) | Ісс3 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Vc} \operatorname{Max.,} \overline{\mathrm{CE}}=\mathrm{V} \mathrm{Vc} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc} \pm} \pm 0.3 \mathrm{~V} \end{aligned}$ |  | - | 5 | $\mu \mathrm{A}$ |
| Vcc Current (Standby, Reset) | Icc4 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max} ., \overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V}_{\mathrm{cc}} \pm \\ & 0.3 \mathrm{~V}, \overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{ss}} \pm 0.3 \mathrm{~V} \end{aligned}$ |  | - | 5 | $\mu \mathrm{A}$ |
| Vcc Current <br> (Automatic Sleep Mode) (Note 3) | Icc5 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \operatorname{Max.,} \overline{\mathrm{CE}}=\mathrm{V} \text { ss } \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc} \pm} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$ |  | - | 5 | $\mu \mathrm{A}$ |
| Vcc Active Current (Note 5) (Read-While-Program) | Icc6 | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ | Byte | - | 48 | mA |
|  |  |  | Word | - | 50 |  |
| Vcc Active Current (Note 5) (Read-While-Erase) | $1 \mathrm{lcc7}$ | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$ | Byte | - | 48 | mA |
|  |  |  | Word | - | 50 |  |
| Vcc Active Current <br> (Erase-Suspend-Program) | Icc8 | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ |  | - | 35 | mA |
| ACC Accelerated Program Current | Iacc | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \operatorname{Max.} \\ & \mathrm{WP} / \mathrm{MCC}=\mathrm{V}_{\mathrm{Acc}} \text { Max. } \end{aligned}$ |  | - | 20 | mA |
| Input Low Level | VIL | - |  | -0.5 | 0.6 | V |
| Input High Level | $\mathrm{V}_{\mathrm{H}}$ | - |  | 2.0 | Vcc+0.3 | V |
| Voltage for $\overline{\mathrm{WP}} / \mathrm{ACC}$ Sector Protection/Unprotection and Program Acceleration | Vacc | - |  | 8.5 | 9.5 | V |
| Voltage for Autoselect and Sector Protection (A9, OE, RESET) (Note 4) | VID | - |  | 11.5 | 12.5 | V |

(Continued)
Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
4. Applicable for only $\mathrm{V}_{\mathrm{cc}}$ applying.
5. Embedded Algorithm (program or erase) is in progress. (@5 MHz)
(Continued)

| Parameter | Symbol | Conditions | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |
| Output Low Voltage Level | Vol | $\mathrm{loL}=4.0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Vcc}$ Min. | - | 0.45 | V |
| Output High Voltage Level | Vor1 | $\mathrm{loh}=-2.0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Vcc}_{\text {cc }} \mathrm{Min}$. | 2.4 | - | V |
|  | Voн2 | Іон $=-100 \mu \mathrm{~A}$ | $\mathrm{Vcc}-0.4$ | - | V |
| Low Vcc Lock-Out Voltage | Vıко | - | 2.3 | 2.5 | V |

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
4. Applicable for only Vcc applying.
5. Embedded Algorithm (program or erase) is in progress. (@5 MHz)

## MBM29DL16XTD/BD-70/90/12

## 2. AC Characteristics

- Read Only Operations Characteristics

| Parameter Symbols |  | Description | Test Setup |  | $\begin{gathered} 70 \\ \text { (Note) } \end{gathered}$ | $\begin{gathered} 90 \\ \text { (Note) } \end{gathered}$ | $\begin{gathered} 12 \\ \text { (Note) } \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JEDEC | Standard |  |  |  |  |  |  |  |
| tavav | trc | Read Cycle Time | - | Min. | 70 | 90 | 120 | ns |
| tavav | tacc | Address to Output Delay | $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ | Max. | 70 | 90 | 120 | ns |
| telav | tce | Chip Enable to Output Delay | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ | Max. | 70 | 90 | 120 | ns |
| tglov | toe | Output Enable to Output Delay | - | Max. | 30 | 35 | 50 | ns |
| tehaz | tof | Chip Enable to Output High-Z | - | Max. | 25 | 30 | 30 | ns |
| tghaz | tof | Output Enable to Output High-Z | - | Max. | 25 | 30 | 30 | ns |
| taxax | tor | Output Hold Time From Addresses, CE or OE, Whichever Occurs First | - | Min. | 0 | 0 | 0 | ns |
| - | tready | $\overline{\text { RESET Pin Low to Read Mode }}$ | - | Max. | 20 | 20 | 20 | $\mu \mathrm{s}$ |
| - | $\begin{aligned} & \text { teleL } \\ & \text { telif } \end{aligned}$ |  | - | Max. | 5 | 5 | 5 | ns |

Note: Test Conditions:
Output Load: 1 TTL gate and 30 pF (MBM29DL16XTD/BD-70)
1 TTL gate and 100 pF (MBM29DL16XTD/BD-90/12)
Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level
Input: 1.5 V
Output:1.5 V


Figure 4 Test Conditions

## MBM29DL16XTD/BD-70/90/12

## - Write/Erase/Program Operations

| Parameter Symbols |  | Description |  |  | 70 | 90 | 12 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JEDEC | Standard |  |  |  |  |  |  |  |
| tavav | twc | Write Cycle Time |  | Min. | 70 | 90 | 120 | ns |
| tavwL | $t_{\text {AS }}$ | Address Setup Time |  | Min. | 0 | 0 | 0 | ns |
| - | taso | Address Setup Time to $\overline{\mathrm{OE}}$ Low During Toggle Bit Polling |  | Min. | 12 | 15 | 15 | ns |
| twlax | tah | Address Hold Time |  | Min. | 45 | 45 | 50 | ns |
| - | $\mathrm{taHt}^{\text {t }}$ | Address Hold Time from $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling |  | Min. | 0 | 0 | 0 | ns |
| tovwh | tos | Data Setup Time |  | Min. | 30 | 35 | 50 | ns |
| twhdx | toh | Data Hold Time |  | Min. | 0 | 0 | 0 | ns |
| - | toen | Output Enable Hold Time | Read | Min. | 0 | 0 | 0 | ns |
|  |  |  | Toggle and Data Polling | Min. | 10 | 10 | 10 | ns |
| - | tceph | $\overline{\mathrm{CE}}$ High During Toggle Bit Polling |  | Min. | 20 | 20 | 20 | ns |
| - | toeph | $\overline{\text { OE High During Toggle Bit Polling }}$ |  | Min. | 20 | 20 | 20 | ns |
| tghwl | tGHwL | Read Recover Time Before Write |  | Min. | 0 | 0 | 0 | ns |
| tghel | tghel | Read Recover Time Before Write |  | Min. | 0 | 0 | 0 | ns |
| telwl | tcs | $\overline{\text { CE S Setup Time }}$ |  | Min. | 0 | 0 | 0 | ns |
| twlel | tws | $\overline{\text { WE Setup Time }}$ |  | Min. | 0 | 0 | 0 | ns |
| twheh | tch | $\overline{\mathrm{CE}}$ Hold Time |  | Min. | 0 | 0 | 0 | ns |
| terwh | twh | $\overline{\text { WE Hold Time }}$ |  | Min. | 0 | 0 | 0 | ns |
| twlwh | twp | Write Pulse Width |  | Min. | 35 | 35 | 50 | ns |
| teleh | tcp | $\overline{\mathrm{CE}}$ Pulse Width |  | Min. | 35 | 35 | 50 | ns |
| twhwL | twph | Write Pulse Width High |  | Min. | 25 | 30 | 30 | ns |
| tehel | tcPh | $\overline{\mathrm{CE}}$ Pulse Width High |  | Min. | 25 | 30 | 30 | ns |
| twhwh 1 | twhwh 1 | Byte Programming Operation |  | Typ. | 8 | 8 | 8 | $\mu \mathrm{s}$ |
| twhwh2 | twhwh2 | Sector Erase Operation (Note 1) |  | Typ. | 1 | 1 | 1 | sec |
| - | tvcs | Vcc Setup Time |  | Min. | 50 | 50 | 50 | $\mu \mathrm{s}$ |
| - | tvidr | Rise Time to VID (Note 2) |  | Min. | 500 | 500 | 500 | ns |
| - | tvaccr | Rise Time to V ${ }_{\text {Acc }}$ (Note 2) |  | Min. | 500 | 500 | 500 | ns |
| - | tvLht | Voltage Transition Time (Note 2) |  | Min. | 4 | 4 | 4 | $\mu \mathrm{s}$ |
| - | twpp | Write Pulse Width (Note 2) |  | Min. | 100 | 100 | 100 | $\mu \mathrm{s}$ |
| - | toesp | $\overline{\text { OE Setup Time to } \overline{\mathrm{WE}} \text { Active (Note 2) }}$ |  | Min. | 4 | 4 | 4 | $\mu \mathrm{s}$ |

(Continued)

## MBM29DL16XTD/BD-70/90/12

(Continued)

| Parameter Symbols |  | Description |  | 70 | 90 | 12 | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JEDEC | Standard |  |  |  |  |  |  |
| - | tcsp | $\overline{C E}$ Setup Time to WE Active (Note 2) | Min. | 4 | 4 | 4 | $\mu \mathrm{s}$ |
| - | trb | Recover Time From RY/ $\overline{B Y}$ | Min. | 0 | 0 | 0 | ns |
| - | trp | RESET Pulse Width | Min. | 500 | 500 | 500 | ns |
| - | tri | $\overline{\text { RESET High Level Period before Read }}$ | Min. | 200 | 200 | 200 | ns |
| - | tFlaz | $\overline{\text { BYTE Switching Low to Output High-Z }}$ | Max. | 30 | 30 | 40 | ns |
| - | tFhav | $\overline{\text { BYTE Switching High to Output Active }}$ | Max. | 70 | 90 | 120 | ns |
| - | tBusY | Program/Erase Valid to RY/ $\overline{B Y}$ Delay | Max. | 90 | 90 | 90 | ns |
| - | teoe | Delay Time from Embedded Output Enable | Max. | 70 | 90 | 120 | ns |
| - | trow | Erase Time-out Time | Min. | 50 | 50 | 50 | $\mu \mathrm{s}$ |
| - | tspo | Erase Suspend Transition Time | Max. | 20 | 20 | 20 | $\mu \mathrm{s}$ |

Notes: 1. This does not include the preprogramming time.
2. This timing is for Sector Group Protection operation.

## ■ ERASE AND PROGRAMMING PERFORMANCE

| Parameter | Limits |  |  | Unit | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Sector Erase Time | - | 1 | 10 | sec | Excludes programming time prior to erasure |
| Word Programming Time | - | 16 | 360 | $\mu \mathrm{s}$ | Excludes system-level |
| Byte Programming Time | - | 8 | 300 | $\mu \mathrm{s}$ | overhead |
| Chip Programming Time | - | - | 50 | sec | Excludes system-level overhead |
| Program/Erase Cycle | 100,000 | - | - | cycles | - |

PIN CAPACITANCE

| Parameter Symbol | Parameter Description | Test Setup | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cin | Input Capacitance | $\mathrm{V}_{\text {IN }}=0$ | 6 | 7.5 | pF |
| Cout | Output Capacitance | Vout $=0$ | 8.5 | 12 | pF |
| CIN2 | Control Pin Capacitance | $\mathrm{V}_{\mathrm{IN}}=0$ | 8 | 10 | pF |
| Cins | WP/ACC Pin Capacitance | $\mathrm{V}_{\mathrm{IN}}=0$ | 17 | 18 | pF |

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHzs}$

## MBM29DL16XTD/BD-70990/12

## TIMING DIAGRAM

- Key to Switching Waveforms

| WAVEFORM | INPUTS | OUTPUTS |
| :---: | :---: | :---: |
|  | Must Be Steady | Will Be Steady |
|  | May Change from H to L | Will Be Changing from H to L |
|  | May Change from L to H | Will Be Changing from L to H |
|  | "H" or "L" <br> Any Change Permitted | Changing State Unknown |
|  | Does Not Apply | Center Line is HighImpedance "Off" State |



Figure 5.1 AC Waveforms for Read Operations


Figure 5.2 AC Waveforms for Hardware Reset/Read Operations

## MBM29DL16XTD/BD-70/90/12



Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 6 AC Waveforms for Alternate $\overline{\text { WE Controlled Program Operations }}$


Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 7 AC Waveforms for Alternate $\overline{\text { CE }}$ Controlled Program Operations

## MBM29DL16XTD/BD-70/90/12



* SA is the sector address for Sector Erase. Addresses $=555 \mathrm{H}$ (Word), AAAH (Byte) for Chip Erase.

Note: These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 8 AC Waveforms for Chip/Sector Erase Operations

*: DQ7 = Valid Data (The device has completed the Embedded operation).
Figure 9 AC Waveforms for Data Polling during Embedded Algorithm Operations

## MBM29DL16XTD/BD-70/90/12


*: DQ6 stops toggling (The device has completed the Embedded operation).
Figure 10 AC Waveforms for Toggle Bit I during Embedded Algorithm Operations


Note: This is example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1: Address of Bank 1.
BA2: Address of Bank 2.
Figure 11 Bank-to-bank Read/Write Timing Diagram


## MBM29DL16XTD/BD-70/90/12



Figure 14 RESET, RY/ $\overline{\text { BY }}$ Timing Diagram


Figure 15 Timing Diagram for Word Mode Configuration


Figure 16 Timing Diagram for Byte Mode Configuration


Figure 17 BYTE Timing Diagram for Write Operations

## MBM29DL16XTD/BD-70/90/12



SGAX : Sector Group Address for initial sector
SGAY : Sector Group Address for next sector
Note: A-1 is VIL on byte mode.

Figure 18 AC Waveforms for Sector Group Protection


Figure 19 Temporary Sector Group Unprotection Timing Diagram

## MBM29DL16XTD/BD-70/90/12



Figure 20 Extended Sector Group Protection Timing Diagram


Figure 21 Accelerated Program Timing Diagram

## FLEXIBLE SECTOR-ERASE ARCHITECTURE

Table 5.1 Sector Address Tables (MBM29DL161TD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | $\begin{aligned} & \text { Sector } \\ & \text { Size } \\ & \text { (Kbytes/ } \\ & \text { Kwords) } \end{aligned}$ | $(\times 8)$ <br> Address Range | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bank Address |  |  |  |  | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | $\mathrm{A}_{18}$ | $\mathrm{A}_{17}$ | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ |  |  |  |  |  |  |
| Bank 2 | SA0 | 0 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 000000H to 00FFFFH | 000000 H to 007FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFH | 008000H to 00FFFFH |
|  | SA2 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000H to 02FFFFH | 010000H to 017FFFH |
|  | SA3 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000 H to 03FFFFH | 018000H to 01FFFFH |
|  | SA4 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000H to 04FFFFH | 020000H to 027FFFH |
|  | SA5 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFH | 028000 H to 02FFFFH |
|  | SA6 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000H to 06FFFFH | 030000H to 037FFFH |
|  | SA7 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000H to 07FFFFH | 038000H to 03FFFFFH |
|  | SA8 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFH | 040000H to 047FFFH |
|  | SA9 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000H to 09FFFFH | 048000H to 04FFFFH |
|  | SA10 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | OA0000H to OAFFFFH | 050000H to 057FFFH |
|  | SA11 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | OB0000H to OBFFFFH | 058000H to 05FFFFFH |
|  | SA12 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0C0000H to 0CFFFFF | 060000H to 067FFFH |
|  | SA13 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to ODFFFFF | 068000H to 06FFFFH |
|  | SA14 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFH | 070000H to 077FFFH |
|  | SA15 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | OFOOOOH to OFFFFFH | 078000H to 07FFFFH |
|  | SA16 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFF | 080000H to 087FFFH |
|  | SA17 | 1 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 110000 H to 11FFFFH | 088000H to 08FFFFFH |
|  | SA18 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA19 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFH | 098000H to 09FFFFH |
|  | SA20 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFH | 0A0000H to 0A7FFFH |
|  | SA21 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFH | 0A8000H to 0AFFFFH |
|  | SA22 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | OB0000H to 0B7FFFH |
|  | SA23 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFH | 0B8000H to 0BFFFFH |
|  | SA24 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFH | 0C0000H to 0C7FFFH |
|  | SA25 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFH | 0C8000H to 0CFFFFH |
|  | SA26 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1 A 0000 H to 1AFFFFH | 0D0000H to 0D7FFFH |
|  | SA27 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to 0DFFFFH |
|  | SA28 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 COOOOH to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA29 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFF | 0E8000H to 0EFFFFH |
|  | SA30 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFH | 0F0000H to 0F7FFFH |
| Bank 1 | SA31 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8/4 | 1F0000H to 1F1FFFH | 0F8000H to 0F8FFFH |
|  | SA32 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 8/4 | 1F2000H to 1F3FFFH | 0F9000H to 0F9FFFH |
|  | SA33 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8/4 | 1F4000H to 1F5FFFH | 0FA000H to 0FAFFFH |
|  | SA34 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/4 | 1 F 6000 H to 1F7FFFH | OFB000H to 0FBFFFH |
|  | SA35 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 8/4 | 1F8000H to 1F9FFFH | OFCOOOH to OFCFFFH |
|  | SA36 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8/4 | 1FA000H to 1FBFFFH | OFD000H to 0FDFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8/4 | $1 \mathrm{FCO00H}$ to 1FDFFFH | OFE000H to OFEFFFH |
|  | SA38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8/4 | 1FE000H to 1FFFFFH | OFFOOOH to OFFFFFH |

Note: The address range is $A_{19}$ : $A_{-1}$ if in byte mode $\left(\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}\right)$.
The address range is $A_{19}: A_{0}$ if in word mode ( $\overline{\mathrm{BYTE}}=\mathrm{V}_{1 H}$ )

## MBM29DL16XTD/BD-70/90/12

Table 5.2 Sector Address Tables (MBM29DL161BD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | Sector Size (Kbytes/ Kwords) | $\begin{gathered} (\times 8) \\ \text { Address Range } \end{gathered}$ | $\begin{gathered} (\times 16) \\ \text { Address Range } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bank Address |  |  |  |  | A14 | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | $\mathrm{A}_{18}$ | $\mathrm{A}_{17}$ | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ |  |  |  |  |  |  |
| Bank 2 | SA38 | 1 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 1F0000H to 1FFFFFH | 0F8000H to 0FFFFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1E0000H to 1EFFFFH | 0F0000H to 0F7FFFH |
|  | SA36 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFH | 0E8000H to 0EFFFFFH |
|  | SA35 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 C 0000 H to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA34 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | $1 \mathrm{B0000H}$ to 1BFFFFH | 0D8000H to 0DFFFFFH |
|  | SA33 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1 A 0000 H to 1AFFFFH | 0D0000H to 0D7FFFH |
|  | SA32 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFH | 0C8000H to 0CFFFFFH |
|  | SA31 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18 FFFFH | 0 C 0000 H to 0C7FFFH |
|  | SA30 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFH | 0B8000H to 0BFFFFH |
|  | SA29 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | 0B0000H to 0B7FFFH |
|  | SA28 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFH | 0A8000H to 0AFFFFFH |
|  | SA27 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFH | 0A0000H to 0A7FFFH |
|  | SA26 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFH | 098000H to 09FFFFH |
|  | SA25 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA24 | 1 | 0 | 0 | 0 | X | X | X | X | 64/32 | 110000 H to 11FFFFH | 088000H to 08FFFFH |
|  | SA23 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFH | 080000H to 087FFFH |
|  | SA22 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to 0FFFFFH | 078000H to 07FFFFH |
|  | SA21 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFFH | 070000H to 077FFFH |
|  | SA20 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to 0DFFFFH | 068000H to 06FFFFH |
|  | SA19 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0C0000H to 0CFFFFH | 060000H to 067FFFH |
|  | SA18 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 0B0000H to 0BFFFFH | 058000H to 05FFFFH |
|  | SA17 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 0A0000H to 0AFFFFH | 050000H to 057FFFH |
|  | SA16 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000H to 09FFFFH | 048000H to 04FFFFH |
|  | SA15 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFH | 040000H to 047FFFH |
|  | SA14 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000H to 07FFFFH | 038000H to 03FFFFH |
|  | SA13 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000H to 06FFFFH | 030000H to 037FFFH |
|  | SA12 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000H to 05FFFFH | 028000H to 02FFFFH |
|  | SA11 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000H to 04FFFFH | 020000H to 027FFFH |
|  | SA10 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000H to 03FFFFH | 018000H to 01FFFFH |
|  | SA9 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000H to 02FFFFH | 010000H to 017FFFH |
|  | SA8 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000H to 01FFFFH | 008000H to 00FFFFH |
| Bank 1 | SA7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8/4 | 00E000H to 00FFFFH | 007000H to 007FFFH |
|  | SA6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8/4 | 00 C 000 H to 00DFFFH | 006000H to 006FFFH |
|  | SA5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8/4 | 00 A 000 H to 00BFFFH | 005000H to 005FFFH |
|  | SA4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8/4 | 008000H to 009FFFH | 004000H to 004FFFH |
|  | SA3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8/4 | 006000H to 007FFFH | 003000H to 003FFFH |
|  | SA2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8/4 | 004000 H to 005FFFH | 002000H to 002FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8/4 | 002000H to 003FFFH | 001000H to 001FFFH |
|  | SA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8/4 | 000000H to 001FFFH | 000000 H to 000FFFH |

Note: The address range is $A_{19}: A_{-1}$ if in byte mode $\left(\overline{\overline{B Y T E}}=V_{\mathrm{IL}}\right)$.
The address range is $A_{19}$ : $A_{0}$ if in word mode ( $\overline{B Y T E}=V_{1 н}$ ).

Table 6.1 Sector Address Tables (MBM29DL162TD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | $\begin{aligned} & \text { Sector } \\ & \text { Size } \\ & \text { (Kbytes/ } \\ & \text { Kwords) } \end{aligned}$ | $\stackrel{(\times 8)}{ } \text { Address Range }$ | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BankAddress |  |  | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | $\mathrm{A}_{18}$ | $\mathrm{A}_{17}$ |  |  |  |  |  |  |  |  |
| Bank 2 | SA0 | 0 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 000000H to 00FFFFH | 000000H to 007FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFFH | 008000 H to 00FFFFF |
|  | SA2 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000 H to 02FFFFFH | 010000H to 017FFFH |
|  | SA3 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000 H to 03FFFFFH | 018000H to 01FFFFH |
|  | SA4 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000 H to 04FFFFFH | 020000 H to 027FFFH |
|  | SA5 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFFH | 028000 H to 02FFFFH |
|  | SA6 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000H to 06FFFFH | 030000H to 037FFFH |
|  | SA7 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000H to 07FFFFFH | 038000H to 03FFFFH |
|  | SA8 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000 H to 08FFFFH | 040000H to 047FFFH |
|  | SA9 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000 H to 09FFFFH | 048000H to 04FFFFH |
|  | SA10 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | OA0000H to OAFFFFH | 050000H to 057FFFH |
|  | SA11 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | OB0000H to OBFFFFFH | 058000H to 05FFFFH |
|  | SA12 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0 C 0000 H to OCFFFFH | 060000H to 067FFFH |
|  | SA13 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to ODFFFFH | 068000H to 06FFFFH |
|  | SA14 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFFH | 070000H to 077FFFH |
|  | SA15 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to 0FFFFFFH | 078000H to 07FFFFH |
|  | SA16 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFFH | 080000H to 087FFFH |
|  | SA17 | 1 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 110000 H to 11FFFFFH | 088000H to 08FFFFH |
|  | SA18 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFFH | 090000H to 097FFFH |
|  | SA19 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFFH | 098000H to 09FFFFH |
|  | SA20 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFFH | 0A0000H to 0A7FFFH |
|  | SA21 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFFH | 0A8000H to 0AFFFFH |
|  | SA22 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFFH | OB0000H to 0B7FFFH |
|  | SA23 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFFH | 0B8000H to 0BFFFFH |
|  | SA24 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFFH | 0C0000H to 0C7FFFH |
|  | SA25 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFF | 0C8000H to 0CFFFFH |
|  | SA26 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1 A 0000 H to 1AFFFFFH | 0D0000H to 0D7FFFH |
|  | SA27 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to 0DFFFFH |
| Bank 1 | SA28 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 C 0000 H to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA29 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFH | 0E8000H to 0EFFFFH |
|  | SA30 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFFH | 0F0000H to 0F7FFFH |
|  | SA31 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8/4 | 1F0000H to 1F1FFFH | 0F8000H to 0F8FFFH |
|  | SA32 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 8/4 | 1F2000H to 1F3FFFH | 0F9000H to 0F9FFFH |
|  | SA33 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8/4 | 1 F 4000 H to 1F5FFFH | OFA000H to OFAFFFH |
|  | SA34 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/4 | 1 F 6000 H to 1F7FFFH | 0FB000H to 0FBFFFH |
|  | SA35 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 8/4 | 1 F 8000 H to 1F9FFFH | OFCOOOH to OFCFFFH |
|  | SA36 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8/4 | 1FA000H to 1FBFFFH | OFD000H to 0FDFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8/4 | $1 \mathrm{FCO00H}$ to 1FDFFFH | OFE000H to OFEFFFH |
|  | SA38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8/4 | 1FE000H to 1FFFFFH | OFFOOOH to 0FFFFFFH |

Note: The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{-1}$ if in byte mode $\left(\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{IL}}\right)$.
The address range is $A_{19}$ : $A_{0}$ if in word mode (BYTE $=\mathrm{V}_{\boldsymbol{\prime}}$ )

## MBM29DL16XTD/BD-70/90/12

Table 6.2 Sector Address Tables (MBM29DL162BD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | $\begin{aligned} & \text { Sector } \\ & \text { Size } \\ & \text { (Kbytes/ } \\ & \text { Kwords) } \end{aligned}$ | $\underset{(\times 8)}{(\times 8)}$ | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bank Address |  |  | A16 | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | $\mathrm{A}_{18}$ | $\mathrm{A}_{17}$ |  |  |  |  |  |  |  |  |
| Bank 2 | SA38 | 1 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 1F0000H to 1FFFFFFH | 0F8000H to OFFFFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFH | 0F0000H to 0F7FFFH |
|  | SA36 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1 D 0000 H to 1DFFFFH | 0E8000H to 0EFFFFH |
|  | SA35 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 COOOOH to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA34 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to 0DFFFFH |
|  | SA33 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1 A 0000 H to 1AFFFFH | 0D0000H to 0D7FFFH |
|  | SA32 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFH | 0C8000H to 0CFFFFH |
|  | SA31 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFH | 0C0000H to 0C7FFFH |
|  | SA30 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFH | 0B8000H to 0BFFFFH |
|  | SA29 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | OB0000H to 0B7FFFH |
|  | SA28 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFH | 0 A 8000 H to 0AFFFFH |
|  | SA27 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFFH | 0A0000H to 0A7FFFH |
|  | SA26 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFH | 098000H to 09FFFFH |
|  | SA25 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA24 | 1 | 0 | 0 | 0 | X | X | X | X | 64/32 | 110000 H to 11FFFFH | 088000H to 08FFFFH |
|  | SA23 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFFH | 080000H to 087FFFH |
|  | SA22 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to 0FFFFFFH | 078000H to 07FFFFH |
|  | SA21 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFF | 070000H to 077FFFH |
|  | SA20 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to ODFFFFH | 068000H to 06FFFFH |
|  | SA19 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0 COOOOH to OCFFFFH | 060000H to 067FFFH |
|  | SA18 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | OB0000H to OBFFFFH | 058000H to 05FFFFH |
|  | SA17 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 0A0000H to OAFFFFH | 050000H to 057FFFH |
|  | SA16 | 0 | 1 | 0 | 0 |  | X | X | X | 64/32 | 090000 H to 09FFFFFH | 048000H to 04FFFFFH |
|  | SA15 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFFH | 040000H to 047FFFH |
|  | SA14 | 0 | 0 | 1 | 1 | , | X | X | X | 64/32 | 070000H to 07FFFFH | 038000H to 03FFFFH |
|  | SA13 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000H to 06FFFFH | 030000H to 037FFFH |
|  | SA12 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFFH | 028000H to 02FFFFFH |
|  | SA11 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000H to 04FFFFH | 020000H to 027FFFH |
| Bank 1 | SA10 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000H to 03FFFFFH | 018000H to 01FFFFFH |
|  | SA9 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000H to 02FFFFH | 010000H to 017FFFH |
|  | SA8 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000H to 01FFFFH | 008000H to 00FFFFFH |
|  | SA7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8/4 | 00E000H to 00FFFFFH | 007000H to 007FFFH |
|  | SA6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8/4 | 00 C 000 H to 00DFFFH | 006000H to 006FFFH |
|  | SA5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8/4 | 00A000H to 00BFFFFH | 005000H to 005FFFH |
|  | SA4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8/4 | 008000 H to 009FFFH | 004000H to 004FFFH |
|  | SA3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8/4 | 006000 H to 007FFFH | 003000H to 003FFFH |
|  | SA2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8/4 | 004000 H to 005FFFH | 002000H to 002FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8/4 | 002000 H to 003FFFH | 001000H to 001FFFH |
|  | SA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8/4 | 000000 H to 001FFFH | 000000H to 000FFFH |

Note: The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{-1}$ if in byte mode ( $\left.\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}\right)$.
The address range is $A_{19}: A_{0}$ if in word mode ( $\mathrm{BYTE}=\mathrm{V}_{\boldsymbol{\prime}}$ ).

## MBM29DL16XTD/BD-70/90/12

Table 7.1 Sector Address Tables (MBM29DL163TD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | SectorSize(Kbytes/Kwords) | $(\times 8)$ <br> Address Range | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BA |  | A 17 | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | A18 |  |  |  |  |  |  |  |  |  |
| Bank 2 | SA0 | 0 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 000000 H to 00FFFFFH | 000000 H to 007FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFFH | 008000H to 00FFFFH |
|  | SA2 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000 H to 02FFFFH | 010000H to 017FFFH |
|  | SA3 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000 H to 03FFFFFH | 018000H to 01FFFFH |
|  | SA4 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000 H to 04FFFFFH | 020000H to 027FFFH |
|  | SA5 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFFH | 028000H to 02FFFFH |
|  | SA6 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000 H to 06FFFFFH | 030000H to 037FFFH |
|  | SA7 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000 H to 07FFFFH | 038000H to 03FFFFFH |
|  | SA8 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000 H to 08FFFFFH | 040000H to 047FFFH |
|  | SA9 | 0 | , | 0 | 0 | 1 | X | X | X | 64/32 | 090000H to 09FFFFH | 048000H to 04FFFFFH |
|  | SA10 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | OA0000H to OAFFFFH | 050000H to 057FFFH |
|  | SA11 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | OB0000H to OBFFFFFH | 058000H to 05FFFFFH |
|  | SA12 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0C0000H to 0CFFFFFH | 060000H to 067FFFH |
|  | SA13 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to 0DFFFFH | 068000H to 06FFFFH |
|  | SA14 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFFH | 070000H to 077FFFH |
|  | SA15 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to 0FFFFFFH | 078000H to 07FFFFFH |
|  | SA16 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10 FFFFH | 080000H to 087FFFH |
|  | SA17 | 1 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 110000 H to 11FFFFFH | 088000H to 08FFFFFH |
|  | SA18 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12 FFFFFH | 090000H to 097FFFH |
|  | SA19 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFFH | 098000H to 09FFFFFH |
|  | SA20 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFFH | 0A0000H to 0A7FFFH |
|  | SA21 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15 FFFFFH | 0A8000H to 0AFFFFH |
|  | SA22 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFFH | 0B0000H to 0B7FFFH |
|  | SA23 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFFH | 0B8000H to 0BFFFFH |
| Bank 1 | SA24 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18 FFFFFH | 0C0000H to 0C7FFFH |
|  | SA25 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFFH | 0C8000H to 0CFFFFFH |
|  | SA26 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1 A 0000 H to 1AFFFFFH | 0D0000H to 0D7FFFH |
|  | SA27 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to 0DFFFFFH |
|  | SA28 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 C 0000 H to 1- CFFFFFH | 0E0000H to 0E7FFFH |
|  | SA29 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFFH | 0E8000H to 0EFFFFH |
|  | SA30 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFFH | 0F0000H to 0F7FFFH |
|  | SA31 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8/4 | 1 F 0000 H to 1F1FFFH | 0F8000H to 0F8FFFH |
|  | SA32 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 8/4 | 1 F 2000 H to 1F3FFFH | 0F9000H to 0F9FFFH |
|  | SA33 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8/4 | 1F4000H to 1F5FFFH | 0FA000H to 0FAFFFH |
|  | SA34 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/4 | 1F6000H to 1F7FFFH | OFB000H to 0FBFFFH |
|  | SA35 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 8/4 | 1 F 8000 H to 1F9FFFH | OFCOOOH to 0FCFFFH |
|  | SA36 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8/4 | $1 \mathrm{FAO00H}$ to 1FBFFFH | OFD000H to 0FDFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8/4 | $1 \mathrm{FCO00H}$ to 1FDFFFH | OFE000H to 0FEFFFH |
|  | SA38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8/4 | 1FE000H to 1FFFFFFH | OFFOOOH to OFFFFFH |

BA: Bank Address
Note: The address range is $A_{19}$ : $A_{-1}$ if in byte mode $\left(\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{IL}}\right)$.
The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{0}$ if in word mode ( $\overline{\mathrm{BYTE}}=\mathrm{V}_{\boldsymbol{H}}$ )

## MBM29DL16XTD/BD-70/90/12

Table 7.2 Sector Address Tables (MBM29DL163BD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  |  | $\stackrel{(\times 8)}{ } \text { Address Range }$ | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BA |  | A 17 | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
|  |  | $\mathrm{A}_{19}$ | $\mathrm{A}_{18}$ |  |  |  |  |  |  |  |  |  |
| Bank 2 | SA38 | 1 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 1F0000H to 1FFFFFFH | 0F8000H to OFFFFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFH | 0F0000H to 0F7FFFH |
|  | SA36 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFH | 0E8000H to 0EFFFFH |
|  | SA35 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 COO 00 H to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA34 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to ODFFFFH |
|  | SA33 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1A0000H to 1AFFFFFH | 0D0000H to 0D7FFFH |
|  | SA32 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFFH | 0C8000H to 0CFFFFH |
|  | SA31 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFH | 0C0000H to 0C7FFFH |
|  | SA30 | 1 | 0 | 1 | 1 |  | X | X | X | 64/32 | 170000 H to 17FFFFFH | 0B8000H to OBFFFFH |
|  | SA29 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | OB0000H to 0B7FFFH |
|  | SA28 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFFH | 0A8000H to OAFFFFFH |
|  | SA27 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFH | 0A0000H to 0A7FFFH |
|  | SA26 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFF | 098000H to 09FFFFFH |
|  | SA25 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA24 | 1 | 0 | 0 | 0 | X | X | X | X | 64/32 | 110000 H to 11FFFFH | 088000H to 08FFFFH |
|  | SA23 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFFH | 080000H to 087FFFH |
|  | SA22 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to OFFFFFFH | 078000H to 07FFFFH |
|  | SA21 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFF | 070000H to 077FFFH |
|  | SA20 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 0D0000H to ODFFFFH | 068000H to 06FFFFH |
|  | SA19 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0C0000H to 0CFFFFH | 060000H to 067FFFH |
|  | SA18 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 0B0000H to OBFFFFH | 058000H to 05FFFFH |
|  | SA17 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | OA0000H to OAFFFFH | 050000H to 057FFFH |
|  | SA16 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000 H to 09FFFFFH | 048000H to 04FFFFH |
|  | SA15 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFFH | 040000H to 047FFFH |
| Bank 1 | SA14 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000H to 07FFFFH | 038000H to 03FFFFFH |
|  | SA13 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000 H to 06FFFFFH | 030000H to 037FFFH |
|  | SA12 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFFH | 028000H to 02FFFFFH |
|  | SA11 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000 H to 04FFFFH | 020000H to 027FFFH |
|  | SA10 | 0 | 0 | 0 | 1 |  | X | X | X | 64/32 | 030000 H to 03FFFFFH | 018000H to 01FFFFFH |
|  | SA9 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000 H to 02FFFFF | 010000H to 017FFFH |
|  | SA8 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFFH | 008000H to 00FFFFFH |
|  | SA7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8/4 | 00E000H to 00FFFFFH | 007000 H to 007FFFH |
|  | SA6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8/4 | 00 C 000 H to 00DFFFH | 006000 H to 006FFFH |
|  | SA5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8/4 | 00 A 000 H to 00BFFFFH | 005000 H to 005FFFH |
|  | SA4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8/4 | 008000 H to 009FFFH | 004000H to 004FFFH |
|  | SA3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8/4 | 006000 H to 007FFFH | 003000 H to 003FFFH |
|  | SA2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8/4 | 004000 H to 005FFFH | 002000H to 002FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8/4 | 002000 H to 003FFFH | 001000H to 001FFFH |
|  | SA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8/4 | 000000 H to 001FFFH | 000000 H to 000FFFH |

BA: Bank Address
Note: The address range is $A_{19}$ : $A_{-1}$ if in byte mode $\left(\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}\right)$.
The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{0}$ if in word mode ( $\overline{\mathrm{BYTE}}=\mathrm{V}_{\boldsymbol{H}}$ ).

## MBM29DL16XTD/BD-70/90/12

Table 8.1 Sector Address Tables (MBM29DL164TD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | $\begin{gathered} \text { Sector } \\ \text { Size } \\ \text { (Kbytes/ } \\ \text { Kwords) } \end{gathered}$ | $\stackrel{(\times 8)}{ } \text { Address Range }$ | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BA <br> $\mathbf{A}_{19}$ | $\mathrm{A}_{18}$ | A 17 | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
| Bank 2 | SA0 | 0 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 000000H to 00FFFFFH | 000000 H to 007FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFFH | 008000H to 00FFFFH |
|  | SA2 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000H to 02FFFFH | 010000H to 017FFFH |
|  | SA3 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000 H to 03FFFFFH | 018000H to 01FFFFH |
|  | SA4 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000H to 04FFFFH | 020000H to 027FFFH |
|  | SA5 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFFH | 028000H to 02FFFFH |
|  | SA6 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000 H to 06FFFFFH | 030000 H to 037FFFH |
|  | SA7 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000H to 07FFFFH | 038000H to 03FFFFH |
|  | SA8 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFFH | 040000H to 047FFFH |
|  | SA9 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000H to 09FFFFH | 048000H to 04FFFFH |
|  | SA10 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 0A0000H to 0AFFFFH | 050000H to 057FFFH |
|  | SA11 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | OB0000H to OBFFFFH | 058000H to 05FFFFH |
|  | SA12 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | OCOOOOH to OCFFFFH | 060000 H to 067FFFH |
|  | SA13 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 0D0000H to ODFFFFH | 068000H to 06FFFFH |
|  | SA14 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to OEFFFFH | 070000 to 077FFFH |
|  | SA15 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to OFFFFFFH | 078000H to 07FFFFH |
| Bank 1 | SA16 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFFH | 080000H to 087FFFH |
|  | SA17 | 1 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 110000 H to 11FFFFH | 088000H to 08FFFFH |
|  | SA18 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA19 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFFH | 098000H to 09FFFFH |
|  | SA20 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFH | 0A0000H to 0A7FFFH |
|  | SA21 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFH | 0A8000H to 0AFFFFFH |
|  | SA22 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | 0B0000H to 0B7FFFH |
|  | SA23 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFFH | 0B8000H to 0BFFFFFH |
|  | SA24 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFH | 0 C 0000 H to 0C7FFFH |
|  | SA25 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFH | 0C8000H to 0CFFFFH |
|  | SA26 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1A0000H to 1AFFFFFH | 0D0000H to 0D7FFFH |
|  | SA27 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | OD8000H to ODFFFFH |
|  | SA28 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | $1 \mathrm{CO000H}$ to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA29 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1 D 0000 H to 1DFFFFH | 0E8000H to 0EFFFFFH |
|  | SA30 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1E0000H to 1EFFFFH | 0F0000H to 0F7FFFH |
|  | SA31 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8/4 | 1F0000H to 1F1FFFH | 0F8000H to 0F8FFFH |
|  | SA32 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 8/4 | 1F2000H to 1F3FFFH | 0F9000H to 0F9FFFH |
|  | SA33 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8/4 | 1 F 4000 H to 1F5FFFH | 0FA000H to OFAFFFH |
|  | SA34 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/4 | 1F6000H to 1F7FFFH | 0FB000H to 0FBFFFH |
|  | SA35 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 8/4 | 1F8000H to 1F9FFFH | OFCOOOH to OFCFFFH |
|  | SA36 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8/4 | 1 FA 000 H to 1FBFFFH | OFD000H to OFDFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8/4 | 1FC000H to 1FDFFFH | OFE000H to OFEFFFH |
|  | SA38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8/4 | 1FE000H to 1FFFFFH | OFF000H to OFFFFFH |

BA: Bank Address
Note: The address range is $A_{19}$ : $A_{-1}$ if in byte mode $\left(\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{IL}}\right)$.
The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{0}$ if in word mode ( $\overline{\mathrm{BYTE}}=\mathrm{V}_{\boldsymbol{H}}$ )

## MBM29DL16XTD/BD-70/90/12

Table 8.2 Sector Address Tables (MBM29DL164BD)

| Bank | Sector | Sector Address |  |  |  |  |  |  |  | $\begin{aligned} & \text { Sector } \\ & \text { Size } \\ & \text { (Kbytes/ } \\ & \text { Kwords) } \end{aligned}$ | $\stackrel{(\times 8)}{ } \text { Address Range }$ | $(\times 16)$ <br> Address Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BA | $\mathrm{A}_{18}$ | $\mathrm{A}_{17}$ | $\mathrm{A}_{16}$ | $\mathrm{A}_{15}$ | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ |  |  |  |
| Bank 2 | SA38 | 1 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 1F0000H to 1FFFFFFH | 0F8000H to OFFFFFFH |
|  | SA37 | 1 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 1 E 0000 H to 1EFFFFH | 0F0000H to 0F7FFFH |
|  | SA36 | 1 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | 1D0000H to 1DFFFFH | 0E8000H to 0EFFFFH |
|  | SA35 | 1 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 1 C 0000 H to 1CFFFFH | 0E0000H to 0E7FFFH |
|  | SA34 | 1 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 1 B 0000 H to 1BFFFFH | 0D8000H to 0DFFFFH |
|  | SA33 | 1 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 1A0000H to 1AFFFFFH | 0D0000H to 0D7FFFH |
|  | SA32 | 1 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 190000 H to 19FFFFH | 0 C 8000 H to 0CFFFFH |
|  | SA31 | 1 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 180000 H to 18FFFFFH | 0 C 0000 H to 0C7FFFH |
|  | SA30 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 170000 H to 17FFFFH | 0B8000H to 0BFFFFH |
|  | SA29 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 160000 H to 16FFFFH | OB0000H to 0B7FFFH |
|  | SA28 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 150000 H to 15FFFFH | 0A8000H to 0AFFFFH |
|  | SA27 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 140000 H to 14FFFFFH | OA0000H to 0A7FFFH |
|  | SA26 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 130000 H to 13FFFFFH | 098000 H to 09FFFFFH |
|  | SA25 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 120000 H to 12FFFFH | 090000H to 097FFFH |
|  | SA24 | 1 | 0 | 0 | 0 | X | X | X | X | 64/32 | 110000 H to 11FFFFFH | 088000H to 08FFFFFH |
|  | SA23 | 1 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 100000 H to 10FFFFH | 080000H to 087FFFH |
| Bank 1 | SA22 | 0 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 0F0000H to 0FFFFFFH | 078000H to 07FFFFFH |
|  | SA21 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 0E0000H to 0EFFFFF | 070000H to 077FFFH |
|  | SA20 | 0 | 1 | 1 | 0 | 1 | X | X | X | 64/32 | OD0000H to ODFFFFH | 068000 H to 06FFFFFH |
|  | SA19 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 0 C 0000 H to 0CFFFFH | 060000H to 067FFFH |
|  | SA18 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 0B0000 to OBFFFFF | 058000H to 05FFFFFH |
|  | SA17 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | OA0000H to OAFFFFH | 050000 H to 057FFFH |
|  | SA16 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 090000 H to 09FFFFH | 048000H to 04FFFFFH |
|  | SA15 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 080000H to 08FFFFFH | 040000H to 047FFFH |
|  | SA14 | 0 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 070000 H to 07FFFFH | 038000 H to 03FFFFFH |
|  | SA13 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 060000 H to 06FFFFF | 030000H to 037FFFFH |
|  | SA12 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 050000 H to 05FFFFH | 028000H to 02FFFFFH |
|  | SA11 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 040000 H to 04FFFFFH | 020000 H to 027FFFFH |
|  | SA10 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 030000H to 03FFFFH | 018000H to 01FFFFH |
|  | SA9 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 020000 H to 02FFFFFH | 010000H to 017FFFFH |
|  | SA8 | 0 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 010000 H to 01FFFFH | 008000H to 00FFFFFH |
|  | SA7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8/4 | 00E000H to 00FFFFFH | 007000 H to 007FFFH |
|  | SA6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8/4 | 00 C 000 H to 00DFFFH | 006000 H to 006FFFFH |
|  | SA5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8/4 | 00 A 000 H to 00BFFFFH | 005000 H to 005FFFFH |
|  | SA4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8/4 | 008000 H to 009FFFH | 004000H to 004FFFH |
|  | SA3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8/4 | 006000 H to 007FFFH | 003000 H to 003FFFFH |
|  | SA2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8/4 | 004000 H to 005FFFH | 002000 H to 002FFFH |
|  | SA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8/4 | 002000 H to 003FFFH | 001000H to 001FFFH |
|  | SA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8/4 | 000000 H to 001FFFH | 000000H to 000FFFH |

BA: Bank Address
Note: The address range is $A_{19}$ : $A_{-1}$ if in byte mode ( $\left.\overline{\mathrm{BYTE}}=\mathrm{V}_{\mathrm{L}}\right)$.
The address range is $\mathrm{A}_{19}$ : $\mathrm{A}_{0}$ if in word mode ( $\overline{\mathrm{BYTE}}=\mathrm{V}_{\boldsymbol{H}}$ ).

## MBM29DL16XTD/BD-70/90/12

Table 9.1 Sector Group Addresses (MBM29DL16XTD) (Top Boot Block)

| Sector Group | $\mathrm{A}_{19}$ | A18 | A 17 | $\mathrm{A}_{16}$ | A 15 | $\mathrm{A}_{14}$ | A 13 | $\mathrm{A}_{12}$ | Sectors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SGA0 | 0 | 0 | 0 | 0 | 0 | X | X | X | SA0 |
| SGA1 | 0 | 0 | 0 | 0 | 1 | X | X | X | SA1 to SA3 |
|  | 0 | 0 | 0 | 1 | 0 | X | X | X |  |
|  | 0 | 0 | 0 | 1 | 1 | X | X | X |  |
| SGA2 | 0 | 0 | 1 | X | X | X | X | X | SA4 to SA7 |
| SGA3 | 0 | 1 | 0 | X | X | X | X | X | SA8 to SA11 |
| SGA4 | 0 | 1 | 1 | X | X | X | X | X | SA12 to SA15 |
| SGA5 | 1 | 0 | 0 | X | X | X | X | X | SA16 to SA19 |
| SGA6 | 1 | 0 | 1 | X | X | X | X | X | SA20 to SA23 |
| SGA7 | 1 | 1 | 0 | X | X | X | X | X | SA24 to SA27 |
| SGA8 | 1 | 1 | 1 | 0 | 0 | X | X | X | SA28 to SA30 |
|  | 1 | 1 | 1 | 0 | 1 | X | X | X |  |
|  | 1 | 1 | 1 | 1 | 0 | X | X | X |  |
| SGA9 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | SA31 |
| SGA10 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | SA32 |
| SGA11 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | SA33 |
| SGA12 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | SA34 |
| SGA13 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | SA35 |
| SGA14 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | SA36 |
| SGA15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | SA37 |
| SGA16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | SA38 |

Table 9.2 Sector Group Addresses (MBM29DL16XBD)
(Bottom Boot Block)

| Sector Group | A19 | A18 | A 17 | A 16 | A15 | $\mathrm{A}_{14}$ | $\mathrm{A}_{13}$ | $\mathrm{A}_{12}$ | Sectors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SGA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SA0 |
| SGA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | SA1 |
| SGA2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | SA2 |
| SGA3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | SA3 |
| SGA4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | SA4 |
| SGA5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | SA5 |
| SGA6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | SA6 |
| SGA7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | SA7 |
| SGA8 | 0 | 0 | 0 | 0 | 1 | X | X | X | SA8 to SA10 |
|  | 0 | 0 | 0 | 1 | 0 | X | X | X |  |
|  | 0 | 0 | 0 | 1 | 1 | X | X | X |  |
| SGA9 | 0 | 0 | 1 | X | X | X | X | X | SA11 to SA14 |
| SGA10 | 0 | 1 | 0 | X | X | X | X | X | SA15 to SA18 |
| SGA11 | 0 | 1 | 1 | X | X | X | X | X | SA19 to SA22 |
| SGA12 | 1 | 0 | 0 | X | X | X | X | X | SA23 to SA26 |
| SGA13 | 1 | 0 | 1 | X | X | X | X | X | SA27 to SA30 |
| SGA14 | 1 | 1 | 0 | X | X | X | X | X | SA31 to SA34 |
| SGA15 | 1 | 1 | 1 | 0 | 0 | X | X | X | SA35 to SA37 |
|  | 1 | 1 | 1 | 0 | 1 | X | X | X |  |
|  | 1 | 1 | 1 | 1 | 0 | X | X | X |  |
| SGA16 | 1 | 1 | 1 | 1 | 1 | X | X | X | SA38 |

## MBM29DL16XTD/BD-70/90/12

## ■ FUNCTIONAL DESCRIPTION

## - Simultaneous Operation

MBM29DL16XTD/BD have feature, which is capability of reading data from one bank of memory while a program or erase operation is in progress in the other bank of memory (simultaneous operation), in addition to the conventional features (read, program, erase, erase-suspend read, and erase-suspend program). The bank selection can be selected by bank address $\left(A_{15}\right.$ to $\left.A_{19}\right)$ with zero latency.

The MBM29DL161TD/BD have two banks which contain
Bank 1 ( $8 \mathrm{~KB} \times$ eight sectors) and Bank 2 ( $64 \mathrm{~KB} \times$ thirty-one sectors).
The MBM29DL162TD/BD have two banks which contain
Bank 1 ( $8 \mathrm{~KB} \times$ eight sectors, $64 \mathrm{~KB} \times$ three sectors) and Bank 2 ( $64 \mathrm{~KB} \times$ twenty eight sectors).
The MBM29DL163TD/BD have two banks which contain
Bank 1 ( $8 \mathrm{~KB} \times$ eight sectors, $64 \mathrm{~KB} \times$ seven sectors) and Bank 2 ( $64 \mathrm{~KB} \times$ twenty four sectors).
The MBM29DL164TD/BD have two banks which contain
Bank 1 ( $8 \mathrm{~KB} \times$ eight sectors, $64 \mathrm{~KB} \times$ fifteen sectors) and Bank 2 ( $64 \mathrm{~KB} \times$ sixteen sectors).
The simultaneous operation can not execute multi-function mode in the same bank. Table 10 shows combination to be possible for simultaneous operation. (Refer to the Figure 11 Bank-to-bank Read/Write Timing Diagram.)

Table 10 Simultaneous Operation

| Case | Bank 1 Status | Bank 2 Status |
| :---: | :---: | :---: |
| 1 | Read mode | Read mode |
| 2 | Read mode | Autoselect mode |
| 3 | Read mode | Program mode |
| 4 | Read mode | Erase mode * |
| 5 | Autoselect mode | Read mode |
| 6 | Program mode | Read mode |
| 7 | Erase mode * | Read mode |

*: An erase operation may also be supended to read from or program to a sector not being erased.

## - Read Mode

The MBM29DL16XTD/BD have two control functions which must be satisfied in order to obtain data at the outputs. $\overline{\mathrm{CE}}$ is the power control and should be used for a device selection. $\overline{\mathrm{OE}}$ is the output control and should be used to gate data to the output pins if a device is selected.

Address access time ( $t_{A C C}$ ) is equal to the delay from stable addresses to valid output data. The chip enable access time (tce) is the delay from stable addresses and stable $\overline{\mathrm{CE}}$ to valid data at the output pins. The output enable access time is the delay from the falling edge of $\overline{O E}$ to valid data at the output pins. (Assuming the addresses have been stable for at least tacc-toe time.) When reading out a data without changing addresses after power-up, it is necessary to input hardware reset or to change $\overline{\mathrm{CE}}$ pin from "H" or "L"

## MBM29DL16XTD/BD-70/90/12

## - Standby Mode

There are two ways to implement the standby mode on the MBM29DL16XTD/BD devices, one using both the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{RESET}}$ pins; the other via the $\overline{\text { RESET pin only. }}$
When using both pins, a CMOS standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\operatorname{RESET}}$ inputs both held at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. Under this condition the current consumed is less than $5 \mu \mathrm{~A}$ max. During Embedded Algorithm operation, Vcc active current (Iccz) is required even $\overline{\mathrm{CE}}=$ " H ". The device can be read with standard access time (tcE) from either of these standby modes.
When using the $\overline{R E S E T}$ pin only, a CMOS standby mode is achieved with RESET input held at $\mathrm{Vss} \pm 0.3 \mathrm{~V}$ ( $\overline{\mathrm{CE}}$ $=$ " H " or "L"). Under this condition the current is consumed is less than $5 \mu \mathrm{~A}$ max. Once the $\overline{\text { RESET pin is taken }}$ high, the device requires $\mathrm{trн}$ of wake up time before outputs are valid for read access.

In the standby mode the outputs are in the high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

## - Automatic Sleep Mode

There is a function called automatic sleep mode to restrain power consumption during read-out of MBM29DL16XTD/BD data. This mode can be used effectively with an application requested low power consumption such as handy terminals.

To activate this mode, MBM29DL16XTD/BD automatically switch themselves to low power mode when MBM29DL16XTD/BD addresses remain stably during access fine of 150 ns . It is not necessary to control $\overline{\mathrm{CE}}$, $\overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}$ on the mode. Under the mode, the current consumed is typically $1 \mu \mathrm{~A}$ (CMOS Level).

During simultaneous operation, $\mathrm{V}_{\mathrm{cc}}$ active current (lcc2) is required.
Since the data are latched during this mode, the data are read-out continuously. If the addresses are changed, the mode is canceled automatically and MBM29DL16XTD/BD read-out the data for changed addresses.

## - Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\boldsymbol{H}}\right)$, output from the devices are disabled. This will cause the output pins to be in a high impedance state.

## - Autoselect

The autoselect mode allows the reading out of a binary code from the devices and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the devices to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the devices.

To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{ID}}$ ( 11.5 V to 12.5 V ) on address pin Ag. Two identifier bytes may then be sequenced from the devices outputs by toggling address $A_{0}$ from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$. All addresses are DON'T CARES except Ao, $\mathrm{A}_{1}$, and $\mathrm{A}_{6}$ ( $\mathrm{A}_{-1}$ ). (See Tables 3 and 4.)

The manufacturer and device codes may also be read via the command register, for instances when the MBM29DL16XTD/BD are erased or programmed in a system without access to high voltage on the As pin. The command sequence is illustrated in Table 12. (Refer to Autoselect Command section.)

## MBM29DL16XTD/BD-70/90/12

Byte 0 ( $\mathrm{A}_{0}=\mathrm{V}_{\mathrm{L}}$ ) represents the manufacturer's code (Fujitsu $=04 \mathrm{H}$ ) and word 1 ( $\mathrm{A}_{0}=\mathrm{V}_{\text {IH }}$ ) represents the device identifier code (MBM29DL161TD $=36 \mathrm{H}$ and MBM29DL161BD $=39 \mathrm{H}$ for $\times 8$ mode; MBM29DL161TD $=2236 \mathrm{H}$ and MBM29DL161BD $=2239 \mathrm{H}$ for $\times 16$ mode), (MBM29DL162TD $=2$ DH and MBM29DL162BD $=2 E H$ for $\times 8$ mode; MBM29DL162TD $=222 \mathrm{DH}$ and MBM29DL162BD $=222 \mathrm{EH}$ for $\times 16$ mode $)$, (MBM29DL163TD $=28 \mathrm{H}$ and MBM29DL163BD $=2 B H$ for $\times 8$ mode; MBM29DL163TD $=2228 \mathrm{H}$ and MBM29DL163BD $=222 B H$ for $\times 16$ mode), (MBM29DL164TD $=33 \mathrm{H}$ and MBM29DL164BD $=35 \mathrm{H}$ for $\times 8$ mode $;$ MBM29DL164TD $=2233 \mathrm{H}$ and MBM29DL164BD $=2235 \mathrm{H}$ for $\times 16$ mode). These two bytes/words are given in the tables 11.1 to 11.8. All identifiers for manufactures and device will exhibit odd parity with DQ7 defined as the parity bit. In order to read the proper device codes when executing the autoselect, $A_{1}$ must be VIt. (See Tables 11.1 to 11.8.)
In case of applying Vio on As, since both Bank 1 and Bank 2 enters Autoselect mode, the simultenous operation can not be executed.

Table 11.1 MBM29DL161TD/BD Sector Group Protection Verify Autoselect Codes

| Type |  |  | $\mathrm{A}_{12}$ to $\mathrm{A}_{19}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | A-1 ${ }^{+1}$ | Code (HEX) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacture's Code |  |  | X | VIL | VIL | VIL | VIL | 04H |
| Device Code | MBM29DL161TD | Byte | X | VIL | VIL | VIH | VIL | 36H |
|  |  | Word |  |  |  |  | X | 2236 H |
|  | MBM29DL161BD | Byte | X | VIL | VIL | VIH | VIL | 39 H |
|  |  | Word |  |  |  |  | X | 2239H |
| Sector Group Protection |  |  | Sector Group Addresses | VII | VIH | VIL | VIL | $01 \mathrm{H}^{+2}$ |

*1: A-1 is for Byte mode.
*2: Outputs 01 H at protected sector group addresses and outputs 00 H at unprotected sector group addresses.
Table 11.2 Expanded Autoselect Code Table

| Type |  |  | Code | $\mathrm{DQ}_{15}$ | DQ ${ }_{14}$ | DQ ${ }_{13}$ | DQ ${ }_{12}$ | $\mathrm{DQ}_{11}$ | DQ ${ }_{10}$ | DQ ${ }_{\text {a }}$ | DQ | $\mathrm{DQ}_{7}$ | DQ ${ }_{6}$ | DQ ${ }^{\text {a }}$ | DQ ${ }_{4}$ | $\mathrm{DQ}_{3}$ | $\mathrm{DQ}_{2}$ | DQ ${ }_{1}$ | DQ ${ }_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer's Code |  |  | 04H | A.1/0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Device Code | MBM29DL161TD | (B) | 36H | A-1 | HI-Z | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
|  |  | (W) | 2236H | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
|  | MBM29DL161BD | (B) | 39H | A-1 | HI-Z | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
|  |  | (W) | 2239H | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| Sector Group Protection |  |  | 01H | A.1/0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

(B): Byte mode
(W): Word mode

Table 11.3 MBM29DL162TD/BD Sector Group Protection Verify Autoselect Codes

| Type |  |  | $\mathrm{A}_{12}$ to $\mathrm{A}_{19}$ | $A_{6}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | A. ${ }^{*}{ }^{\text {1 }}$ | Code (HEX) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacture's Code |  |  | X | VIL | $\mathrm{V}_{\text {IL }}$ | VIL | VIL | 04H |
| Device Code | MBM29DL162TD | Byte | X | VIL | VIL | VIH | VIL | 2DH |
|  |  | Word |  |  |  |  | X | 222DH |
|  | MBM29DL162BD | Byte | X | VIL | VIL | VIH | VIL | 2EH |
|  |  | Word |  |  |  |  | X | 222EH |
| Sector Group Protection |  |  | SectorGroup Addresses | VIL | $\mathrm{V}_{1}$ | VIL | VIL | $01 \mathrm{H}^{2}$ |

*1: A-1 is for Byte mode.
*2: Outputs 01 H at protected sector group addresses and outputs 00 H at unprotected sector group addresses.
Table 11.4 Expanded Autoselect Code Table

| Type |  |  | Code | DQ ${ }_{15}$ | DQ ${ }_{14}$ | DQ ${ }_{13}$ | $\mathrm{DQ}_{12}$ | DQ ${ }_{11}$ | DQ ${ }_{10}$ | DQ | $\mathrm{DQ}_{8}$ | DQ | DQ ${ }_{6}$ | DQ ${ }_{5}$ | $\mathrm{DQ}_{4}$ | $\mathrm{DQ}_{3}$ | $\mathrm{DQ}_{2}$ | $\mathrm{DQ}_{1}$ | DQ ${ }_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer's Code |  |  | 04H | A./0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Device Code | MBM29DL162TD | (B) | 2DH | A-1 | HI-Z | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
|  |  | (W) | २2२DH | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
|  | MBM29DL162BD | (B) | 2EH | A-1 | HI-Z | HI-Z | HI-Z | HI-Z | H-Z | HI-Z | H-Z | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
|  |  | (W) | २२२ЕН | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| Sector Group Protection |  |  | 01H | A.10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

(B): Byte mode
(W): Word mode

## MBM29DL16XTD/BD-70/90/12

Table 11.5 MBM29DL163TD/BD Sector Group Protection Verify Autoselect Codes

| Type |  |  | $\mathrm{A}_{12}$ to $\mathrm{A}_{19}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{1}$ | A | A-1 ${ }^{+1}$ | Code (HEX) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacture's Code |  |  | X | VIL | VIL | VIL | VIL | 04H |
| Device Code | MBM29DL163TD | Byte | X | VIL | VIL | $\mathrm{V}_{\text {IH }}$ | VIL | 28H |
|  |  | Word |  |  |  |  | X | 2228 H |
|  | MBM29DL163BD | Byte | X | VIL | VIL | $\mathrm{V}_{\text {IH }}$ | VIL | 2BH |
|  |  | Word |  |  |  |  | X | 222BH |
| Sector Group Protection |  |  | SectorGroup Addresses | VIL | VIH | VIL | VIL | $01 \mathrm{H}^{+2}$ |

*1: A-1 is for Byte mode.
*2: Outputs 01 H at protected sector group addresses and outputs 00 H at unprotected sector group addresses.
Table 11.6 Expanded Autoselect Code Table

| Type |  |  | Code | DQ15 | DQ ${ }_{14}$ | DQ ${ }_{13}$ | $\mathrm{DQ}_{12}$ | DQ ${ }_{11}$ | DQ10 | DQ9 | $\mathrm{DQ}_{8}$ | DQ | DQ ${ }_{6}$ | DQ ${ }_{5}$ | $\mathrm{DQ}_{4}$ | $\mathrm{DQ}_{3}$ | $\mathrm{DQ}_{2}$ | $\mathrm{DQ}_{1}$ | DQ ${ }_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer's Code |  |  | 04H | $\mathrm{A}_{1} / 0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Device Code | MBM29DL163TD | (B) | 28H | A-1 | HI-Z | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
|  |  | (W) | 2२28H | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
|  | MBM29DL163BD | (B) | 2BH | A-1 | HI-Z | HI-Z | HI-Z | H-Z | HI-Z | HI-Z | H-Z | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
|  |  | (W) | २२२ВН | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| Sector Group Protection |  |  | 01H | A./0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

[^1]Table 11.7 MBM29DL164TD/BD Sector Group Protection Verify Autoselect Codes

| Type |  |  | $\mathrm{A}_{12}$ to $\mathrm{A}_{19}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | A. ${ }^{+1}$ | Code (HEX) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacture's Code |  |  | X | VIL | VIL | VIL | VIL | 04H |
| Device Code | MBM29DL164TD | Byte | X | VIL | VIL | VIH | VIL | 33H |
|  |  | Word |  |  |  |  | X | 2233H |
|  | MBM29DL164BD | Byte | X | VIL | VIL | $\mathrm{V}_{\text {H }}$ | VIL | 35H |
|  |  | Word |  |  |  |  | X | 2235H |
| Sector Group Protection |  |  | SectorGroup Addresses | VIL | VIH | VIL | VIL | $01 \mathrm{H}^{+2}$ |

*1: A-1 is for Byte mode.
*2: Outputs 01 H at protected sector group addresses and outputs 00 H at unprotected sector group addresses.
Table 11.8 Expanded Autoselect Code Table

| Type |  |  | Code | DQ ${ }_{15}$ | DQ ${ }_{14}$ | DQ ${ }_{13}$ | DQ ${ }_{12}$ | DQ ${ }_{11}$ | DQ ${ }_{10}$ | DQ | $\mathrm{DQ}_{8}$ | DQ | DQ ${ }_{6}$ | DQ ${ }_{5}$ | $\mathrm{DQ}_{4}$ | $\mathrm{DQ}_{3}$ | $\mathrm{DQ}_{2}$ | $\mathrm{DQ}_{1}$ | DQ ${ }_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer's Code |  |  | 04H | A./0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Device Code | MBM29DL164TD | (B) | 33H | A-1 | HI-Z | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
|  |  | (W) | 2233H | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
|  | MBM29DL164BD | (B) | 35H | A-1 | HI-Z | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
|  |  | (W) | 2235 H | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| Sector Group Protection |  |  | 01H | A.10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

(B): Byte mode
(W): Word mode

## MBM29DL16XTD/BD-70/90/12

## - Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.

The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing $\overline{\mathrm{WE}}$ to $\mathrm{V}_{\mathrm{IL}}$, while $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}$ is at $\mathrm{V}_{\mathrm{IH}}$. Addresses are latched on the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens later; while data is latched on the rising edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$, whichever happens first. Standard microprocessor write timings are used.

Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

## - Sector Group Protection

The MBM29DL16XTD/BD feature hardware sector group protection. This feature will disable both program and erase operations in any combination of seventeen sector groups of memory. (See Tables 9.1 and 9.2). The sector group protection feature is enabled using programming equipment at the user's site. The device is shipped with all sector groups unprotected.

To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{ID}}$ on address pin $\mathrm{A}_{9}$ and control pin $\overline{\mathrm{OE}}$, (suggest $V_{I D}=11.5 \mathrm{~V}$ ), $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}$ and $\mathrm{A}_{0}=\mathrm{A}_{6}=\mathrm{V}_{\mathrm{IL}}, \mathrm{A}_{1}=\mathrm{V}_{1 H}$. The sector group addresses ( $\mathrm{A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and $A_{12}$ ) should be set to the sector to be protected. Tables 5.1 to 8.2 define the sector address for each of the thirty nine (39) individual sectors, and tables 9.1 and 9.2 define the sector group address for each of the seventeen (17) individual group sectors. Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. Sector group addresses must be held constant during the $\overline{W E}$ pulse. See Figures 18 and 26 for sector group protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force $\mathrm{V}_{\text {ID }}$ on address pin $\mathrm{A}_{9}$ with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ at $\mathrm{V}_{12}$ and $\overline{\mathrm{WE}}$ at $\mathrm{V}_{14}$. Scanning the sector group addresses ( $\mathrm{A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and $\left.A_{12}\right)$ while $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " code at device output $D Q_{0}$ for a protected sector. Otherwise the device will produce " 0 " for unprotected sector. In this mode, the lower order addresses, except for $A_{0}, A_{1}$, and $A_{6}$ are DON'T CARES. Address locations with $A_{1}=V_{I L}$ are reserved for Autoselect manufacturer and device codes. A-1 requires to apply to VII on byte mode.

It is also possible to determine if a sector group is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02H, where the higher order addresses ( $\mathrm{A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}$, $\mathrm{A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and $\mathrm{A}_{12}$ ) are the desired sector group address will produce a logical "1" at $\mathrm{DQ}_{0}$ for a protected sector group. See Tables 11.1 to 11.8 for Autoselect codes.

## - Temporary Sector Group Unprotection

This feature allows temporary unprotection of previously protected sector groups of the MBM29DL16XTD/BD devices in order to change data. The Sector Group Unprotection mode is activated by setting the RESET pin to high voltage (VII). During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once the $\mathrm{V}_{\mathrm{ID}}$ is taken away from the RESET pin, all the previously protected sector groups will be protected again. Refer to Figures 19 and 27.

## MBM29DL16XTD/BD-70/90/12

## - RESET

## Hardware Reset

The MBM29DL16XTD/BD devices may be reset by driving the $\overline{\text { RESET }}$ pin to VIL. The $\overline{\text { RESET }}$ pin has a pulse requirement and has to be kept low ( $\mathrm{V}_{\mathrm{L}}$ ) for at least "trp" in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode "tready" after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the devices require an additional "tre"" before it will allow read access. When the RESET pin is low, the devices will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. See Figure 14 for the timing diagram. Refer to Temporary Sector Group Unprotection for additional functionality.

## - Boot Block Sector Protection

The Write Protect function provides a hardware method of protecting certain boot sectors without using VID. This function is one of two provided by the $\overline{W P} / A C C$ pin.
If the system asserts $\mathrm{V}_{\text {IL }}$ on the $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin, the device disables program and erase functions in the two "outermost" 8 K byte boot sectors independently of whether those sectors were protected or unprotected using the method described in "Sector Protection/Unprotection". The two outermost 8K byte boot sectors are the two sectors containing the lowest addresses in a bottom-boot-configured device, or the two sectors containing the highest addresses in a top-boot-congfigured device.
(MBM29DL16XTD: SA37 and SA38, MBM29DL16XBD: SA0 and SA1)
If the system asserts $\mathrm{V}_{\boldsymbol{\prime}}$ on the $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin, the device reverts to whether the two outermost 8 K byte boot sectors were last set to be protected or unprotected. That is, sector protection or unprotection for these two sectors depends on whether they were last protected or unprotected using the method described in "Sector protection/unprotection".

## - Accelerated Program Operation

MBM29DL16XTD/BD offers accelerated program operation which enables the programming in high speed. If the system asserts VACc to the WP/ACC pin, the device automatically enters the acceleration mode and the time required for program operation will reduce to about $60 \%$. This function is primarily intended to allow high speed program, so caution is needed as the sector group will temporarily be unprotected.

The system would use a fact program command sequence when programming during acceleration mode. Set command to fast mode and reset command from fast mode are not necessary. When the device enters the acceleration mode, the device automatically set to fast mode. Therefore, the pressent sequence could be used for programming and detection of completion during acceleration mode.
Removing VACC from the $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin returns the device to normal operation. Do not remove VACc from $\overline{\mathrm{WP}} /$ ACC pin while programming. See Figure 21.

## MBM29DL16XTD/BD-70/90/12

Table 12 MBM29DL16XTD/BD Command Definitions

| Command Sequence |  | BusWrite CyclesReq'd | First Bus Write Cycle |  | Second Bus Write Cycle |  | Third Bus Write Cycle |  | Fourth Bus Read/Write Cycle |  | Fifth Bus Write Cycle |  | Sixth Bus Write Cycle |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Addr. | Data |
| Read/Reset | $\begin{array}{\|l\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ |  | 1 | XXXH | FOH | - | - | - | - | - | - | - | - | - | - |
| Read/Reset | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 3 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | 2AAH | 55H | $\begin{array}{\|c\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | FOH | RA | RD | - | - | - | - |
| Autoselect | Word | 3 | 555H | AAH | 2AAH | 55H | (BA) <br> 555H <br> (BA) <br> AAAH | 90H | - | - | - | - | - | - |
| Program | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 4 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | $\begin{array}{\|c\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | AOH | PA | PD | - | - | - | - |
| Program Susp |  | 1 | BA | BOH | - | - | - | - | - | - | - | - | - |  |
| Program Resu |  | 1 | BA | 30H | - |  | - |  | - |  | - |  | - |  |
| Chip Erase | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 6 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | $\begin{array}{\|l\|} \hline \text { 2AAH } \\ \hline 555 \mathrm{H} \end{array}$ | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | 80H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \\ \hline \end{array}$ | AAH | $\begin{array}{\|l\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | 10H |
| Sector Erase | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 6 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | 2AAH | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | 80H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \\ \hline \end{array}$ | AAH | $\begin{array}{\|l\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | SA | 30 H |
| Erase Susp | end | 1 | BA | BOH | - | - | - | - | - | - | - | - | - | - |
| Erase Resu |  | 1 | BA | 30H | - | - | - | - | - | - | - | - | - | - |
| $\begin{aligned} & \text { Set to } \\ & \text { Fast Mode } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 3 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | $\begin{array}{\|c\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | 20H | - | - | - | - | - | - |
| $\begin{array}{\|l\|} \hline \text { Fast } \\ \text { Program *1 } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 2 | $\begin{aligned} & \mathrm{XXXH} \\ & \hline \mathrm{XXXH} \end{aligned}$ | AOH | PA | PD | - | - | - | - | - | - | - | - |
| Reset from Fast Mode | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 2 | $\begin{aligned} & \mathrm{BA} \\ & \hline \mathrm{BA} \end{aligned}$ | 90H | $\begin{array}{\|l\|} \hline X X X H \\ \hline X X X H \end{array}$ | FOH | - | - | - | - | - | - | - | - |
| Extended Sector Group Protection *2 | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 4 | XXXH | 60H | SPA | 60H | SPA | 40H | SPA | SD | - | - | - | - |
| Query *3 | Word | 1 | $\begin{aligned} & 55 \mathrm{H} \\ & \hline \text { AAH } \end{aligned}$ | 98H | - | - | - | - | - | - | - | - | - | - |
| $\left\lvert\, \begin{aligned} & \mathrm{Hi} \text { HORM } \\ & \text { Entry } \end{aligned}\right.$ | $\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$ | 3 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | $\begin{array}{\|c\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | 88H | - | - | - | - | - | - |
| $\begin{aligned} & \text { Hi-ROM } \\ & \text { Program *4 } \end{aligned}$ | Word | 4 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | 2AAH | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | AOH | PA | PD | - | - | - | - |
| $\left\lvert\, \begin{aligned} & \mathrm{Hi}-\mathrm{ROM} \\ & \text { Erase * } \end{aligned}\right.$ | Word | 6 | $\begin{aligned} & \hline 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$ | AAH | 2AAH | 55H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \end{array}$ | 80H | $\begin{array}{\|l\|} \hline 555 \mathrm{H} \\ \hline \text { AAAH } \\ \hline \end{array}$ | AAH | $\begin{array}{\|l\|} \hline 2 \mathrm{AAH} \\ \hline 555 \mathrm{H} \end{array}$ | 55H | HRA | 30 H |
| $\left\lvert\, \begin{aligned} & \mathrm{Hi}-\mathrm{ROM} \\ & \mathrm{Exit} * 4 \end{aligned}\right.$ | Word <br> Byte | 4 | 555H | AAH | 2AAH | 55H | (HRBA) <br> 555H <br> (HRBA) <br> AAAH | 90H | XXXH | 00H | - | - | - | - |

## MBM29DL16XTD/BD-70/90/12

Notes: 1. Address bits $\mathrm{A}_{11}$ to $\mathrm{A}_{19}=\mathrm{X}=$ " H " or "L" for all address commands except or Program Address (PA), Sector Address (SA), and Bank Address (BA).
2. Bus operations are defined in Tables 3 and 4.
3. $\mathrm{RA}=$ Address of the memory location to be read
$\mathrm{PA}=$ Address of the memory location to be programmed Addresses are latched on the falling edge of the write pulse.
$S A=\quad$ Address of the sector to be erased. The combination of $A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and $A_{12}$ will uniquely select any sector.
BA = Bank Address (A $\mathrm{A}_{15}$ to $\mathrm{A}_{19}$ )
4. $\mathrm{RD}=$ Data read from location RA during read operation.

PD = Data to be programmed at location PA. Data is latched on the falling edge of write pulse.
5. $\mathrm{SPA}=$ Sector group address to be protected. Set sector group address $(S G A)$ and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.

SD = Sector group protection verify data. Output 01H at protected sector group addresses and output 00 H at unprotected sector group addresses.
6. $\mathrm{HRA}=$ Address of the $\mathrm{Hi}-\mathrm{ROM}$ area

29DL16XTD (Top Boot Type) Word Mode: 0F8000H to 0FFFFFFH
Byte Mode: 1F0000H to 1FFFFFH
29DL16XBD (Bottom Boot Type) Word Mode: 000000H to 007FFFH
Byte Mode: 000000 H to 00FFFFH
7. $\mathrm{HRBA}=$ Bank Address of the $\mathrm{Hi}-\mathrm{ROM}$ area

29DL16XTD (Top Boot Type) : $\mathrm{A}_{15}=\mathrm{A}_{16}=\mathrm{A}_{17}=\mathrm{A}_{18}=\mathrm{A}_{19}=1$
29DL16XBD (Bottom Boot Type) : $\mathrm{A}_{15}=\mathrm{A}_{16}=\mathrm{A}_{17}=\mathrm{A} 18=\mathrm{A} 19=0$
8. The system should generate the following address patterns:

Word Mode: 555H or 2AAH to addresses $\mathrm{A}_{0}$ to $\mathrm{A}_{10}$ Byte Mode: AAAH or 555 H to addresses $\mathrm{A}_{-1}$ and $\mathrm{A}_{0}$ to $\mathrm{A}_{10}$
9. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

[^2]
## MBM29DL16XTD/BD-70/90/12

## - COMMAND DEFINITIONS

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the devices to the read mode. Some commands are required Bank Address (BA) input. When command sequences are inputed to bank being read, the commands have priority than reading. Table 12 defines the valid register command sequences. Note that the Erase Suspend $(\mathrm{BOH})$ and Erase Resume $(30 \mathrm{H})$ commands are valid only while the Sector Erase operation is in progress. Also the Program Suspend ( BOH ) and Program Resume $(30 \mathrm{H})$ commands are valid only while the Program operation is in progress. Moreover both Read/Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at $\mathrm{DQ}_{0}$ to $\mathrm{DQ}_{7}$ and $\mathrm{DQ}_{8}$ to $\mathrm{DQ}_{15}$ bits are ignored.

## - Read/Reset Command

In order to return from Autoselect mode or Exceeded Timing Limits ( $\mathrm{DQ}_{5}=1$ ) to Read/Reset mode, the Read/ Reset operation is initiated by writing the Read/Reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The devices remain enabled for reads until the command register contents are altered.

The devices will automatically power-up in the Read/Reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.

## - Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the devices reside in the target system. PROM programmers typically access the signature codes by raising A9 to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.

The device contains an Autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Autoselect command sequence into the command register.

The Autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the bank address (BA) and the Autoselect command. Then the manufacture and device codes can be read from the bank, and an actual data of memory cell can be read from the another bank.
Following the command write, a read cycle from address (BA)00H retrieves the manufacture code of $04 \mathrm{H} . \mathrm{A}$ read cycle from address (BA)01H for $\times 16$ ((BA)02H for $\times 8$ ) returns the device code (MBM29DL161TD $=36 \mathrm{H}$ and MBM29DL161BD $=39 \mathrm{H}$ for $\times 8$ mode; MBM29DL161TD $=2236 \mathrm{H}$ and MBM29DL161BD $=2239 \mathrm{H}$ for $\times 16$ mode $)$, (MBM29DL162TD $=2 \mathrm{DH}$ and MBM29DL162BD $=2 \mathrm{EH}$ for $\times 8$ mode; MBM29DL162TD $=222 \mathrm{DH}$ and MBM29DL162BD $=222 \mathrm{EH}$ for $\times 16$ mode $),($ MBM29DL163TD $=28 \mathrm{H}$ and MBM29DL163BD $=2 \mathrm{BH}$ for $\times 8$ mode; MBM29DL163TD $=2228 \mathrm{H}$ and MBM29DL163BD $=222 \mathrm{BH}$ for $\times 16$ mode), (MBM29DL164TD $=33 \mathrm{H}$ and MBM29DL164BD $=35 \mathrm{H}$ for $\times 8$ mode; MBM29DL164TD $=2233 \mathrm{H}$ and MBM29DL164BD $=2235 \mathrm{H}$ for $\times 16$ mode). (See Tables 11.1 to 11.8.)
All manufacturer and device codes will exhibit odd parity with DQ7 defined as the parity bit. Sector state (protection or unprotection) will be informed by address (BA) 02 H for $\times 16$ ( ( BA ) 04 H for $\times 8$ ). Scanning the sector group addresses ( $A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and $A_{12}$ ) while ( $\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " at device output $\mathrm{DQ}_{0}$ for a protected sector group. The programming verification should be performed by verify sector group protection on the protected sector. (See Tables 3 and 4.)
The manufacture and device codes can be allowed reading from selected bank. To read the manufacture and device codes and sector protection status from non-selected bank, it is necessary to write Read/Reset command sequence into the register and then Autoselect command should be written into the bank to be read.

## MBM29DL16XTD/BD-70/90/12

If the software (program code) for Autoselect command is stored into the Flash memory, the device and manufacture codes should be read from the other bank where is not contain the software.

To terminate the operation, it is necessary to write the Read/Reset command sequence into the register, and also to write the Autoselect command during the operation, execute it after writing Read/Reset command sequence.

## - Byte/Word Programming

The devices are programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens later and the data is latched on the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first. The rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

The system can determine the status of the program operation by using DQ ( $\overline{\text { Data }}$ Polling), DQ ${ }_{6}$ (Toggle Bit), or RY/ $\overline{\mathrm{BY}}$. The $\overline{\text { Data }}$ Polling and Toggle Bit must be performed at the memory location which is being programmed.

The automatic programming operation is completed when the data on $\mathrm{DQ}_{7}$ is equivalent to data written to this bit at which time the devices return to the read mode and addresses are no longer latched. (See Table 13, Hardware Sequence Flags.) Therefore, the devices require that a valid address to the devices be supplied by the system at this particular instance of time. Hence, $\overline{\text { Data }}$ Polling must be performed at the memory location which is being programmed.
Any commands written to the chip during this period will be ignored. If hardware reset occurs during the programming operation, it is impossible to guarantee the data are being written.

Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from Read/Reset mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.

Figure 22 illustrates the Embedded Program ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

## - Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.

Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the devices will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase (Preprogram function). The system is not required to provide any controls or timings during these operations.

The system can determine the status of the erase operation by using DQ7 ( $\overline{\text { Data Polling), DQ6 (Toggle Bit), or }}$ $\mathrm{RY} / \overline{\mathrm{BY}}$. The chip erase begins on the rising edge of the last $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first in the command sequence and terminates when the data on $\mathrm{DQ}_{7}$ is " 1 " (See Write Operation Status section.) at which time the device returns to read the mode.

Chip Erase Time; Sector Erase Time $\times$ All sectors + Chip Program Time (Preprogramming)
Figure 23 illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

## MBM29DL16XTD/BD-70/90/12

## - Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ whichever happens later, while the command ( $\operatorname{Data}=30 \mathrm{H}$ ) is latched on the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ which happens first. After time-out of "trow" from the rising edge of the last sector erase command, the sector erase operation will begin.

Multiple sectors may be erased concurrently by writing the six bus cycle operations on Table 12. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than "trow" otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of "trow" from the rising edge of last $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ whichever happens first will initiate the execution of the Sector Erase command(s). If another falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens first occurs within the "trow" time-out window the timer is reset. (Monitor $\mathrm{DQ}_{3}$ to determine if the sector erase timer window is still open, see section $\mathrm{DQ}_{3}$, Sector Erase Timer.) Any command other than Sector Erase or Erase Suspend during this time-out period will reset the devices to the read mode, ignoring the previous command string. Resetting the devices once execution has begun will corrupt the data in the sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 38).

Sector erase does not require the user to program the devices prior to erase. The devices automatically program all memory locations in the sector(s) to be erased prior to electrical erase (Preprogram function). When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.

The system can determine the status of the erase operation by using DQ7 ( $\overline{\text { Data }}$ Polling), DQ6 (Toggle Bit), or RY/BY.

The sector erase begins after the "trow" time out from the rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ whichever happens first for the last sector erase command pulse and terminates when the data on DQ 7 is " 1 " (See Write Operation Status section.) at which time the devices return to the read mode. Data polling and Toggle Bit must be performed at an address within any of the sectors being erased.
Multiple Sector Erase Time; [Sector Erase Time + Sector Program Time (Preprogramming)] $\times$ Number of Sector Erase

In case of multiple sector erase across bank boundaries, a read from bank (read-while-erase) can not performe.
Figure 23 illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

## - Erase Suspend/Resume

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writting the Erase Suspend command $(\mathrm{BOH})$ during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.

Writing the Erase Resume command (30H) resumes the erase operation. The bank addresses of sector being erasing or suspending should be set when writting the Erase Suspend or Erase Resume command.
When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of "tspo" to suspend the erase operation. When the devices have entered the erase-suspended mode, the

## MBM29DL16XTD/BD-70/90/12

$\mathrm{RY} / \overline{\mathrm{BY}}$ output pin will be at $\mathrm{Hi}-\mathrm{Z}$ and the $\mathrm{DQ}_{7}$ bit will be at logic " 1 ", and $\mathrm{DQ}_{6}$ will stop toggling. The user must use the address of the erasing sector for reading $\mathrm{DQ}_{6}$ and $\mathrm{DQ}_{7}$ to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the devices default to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause $\mathrm{DQ}_{2}$ to toggle. (See the section on $\mathrm{DQ}_{2}$.)

After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the devices are in the erase-suspend-program mode will cause $\mathrm{DQ}_{2}$ to toggle. The end of the erasesuspended Program operation is detected by the RY/ $\overline{B Y}$ output pin, $\overline{D a t a}$ polling of $\mathrm{DQ}_{7}$ or by the Toggle Bit I (DQ6) which is the same as the regular Program operation. Note that DQ7 must be read from the Program address while $\mathrm{DQ}_{6}$ can be read from any address within bank being erase-suspended.

To resume the operation of Sector Erase, the Resume command $(30 \mathrm{H})$ should be written to the bank being erase suspended. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

## MBM29DL16XTD/BD-70/90//12

## - Extended Command

(1) Fast Mode

MBM29DL16XTD/BD has Fast Mode function. This mode dispenses with the initial two unclock cycles required in the standard program command sequence by writing Fast Mode command into the command register. In this mode, the required bus cycle for programming is two cycles instead of four bus cycles in standard program command. (Do not write erase command in this mode.) The read operation is also executed after exiting this mode. To exit this mode, it is necessary to write Fast Mode Reset command into the command register. The first cycle must contain the bank address. (Refer to the Figure 28.) The Vcc active current is required even $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}}$ during Fast Mode.
(2) Fast Programming

During Fast Mode, the programming can be executed with two bus cycles operation. The Embedded Program Algorithm is executed by writing program set-up command ( AOH ) and data write cycles (PA/PD). (Refer to the Figure 28.)
(3) Extended Sector Group Protection

In addition to normal sector group protection, the MBM29DL16XTD/BD has Extended Sector Group Protection as extended function. This function enable to protect sector group by forcing VID on RESET pin and write a command sequence. Unlike conventional procedure, it is not necessary to force Vid and control timing for control pins. The only RESET pin requires Vio for sector group protection in this mode. The extended sector group protection requires Vid on RESET pin. With this condition, the operation is initiated by writing the set-up command $(60 \mathrm{H})$ into the command register. Then, the sector group addresses pins ( $\mathrm{A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}$, $A_{16}, A_{15}, A_{14}, A_{13}$ and $\left.A_{12}\right)$ and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ should be set to the sector group to be protected (recommend to set $\mathrm{V}_{\mathrm{IL}}$ for the other addresses pins), and write extended sector group protection command $(60 \mathrm{H})$. A sector group is typically protected in $250 \mu \mathrm{~s}$. To verify programming of the protection circuitry, the sector group addresses pins ( $A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$ and $A_{12}$ ) and ( $\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ should be set and write a command (40H). Following the command write, a logical "1" at device output DQ ${ }_{0}$ will produce for protected sector in the read operation. If the output data is logical " 0 ", please repeat to write extended sector group protection command $(60 \mathrm{H})$ again. To terminate the operation, it is necessary to set RESET pin to $\mathrm{V}_{\mathrm{I}}$. (Refer to the Figures 20 and 29.)
(4) CFI (Common Flash Memory Interface)

The CFI (Common Flash Memory Interface) specification outlines device and host system software interrogation handshake which allows specific vendor-specified software algorithms to be used for entire families of devices. This allows device-independent, JEDEC ID-independent, and forward-and backwardcompatible software support for the specified flash device families. Refer to CFI specification in detail.
The operation is initiated by writing the query command (98H) into the command register. The bank address should be set when writing this command. Then the device information can be read from the bank, and an actual data of memory cell be read from the another bank. Following the command write, a read cycle from specific address retrives device information. Please note that output data of upper byte ( $\mathrm{DQ}_{8}$ to $\mathrm{DQ}_{15}$ ) is " 0 " in word mode (16 bit) read. Refer to the CFI code table. To terminate operation, it is necessary to write the read/reset command sequence into the register. (See Table 15.)

## MBM29DL16XTD/BD-70/90/12

## - Hidden ROM (Hi-ROM) Region

The Hi-ROM feature provides a Flash memory region that the system may access through a new command sequence. This is primarily intended for customers who wish to use an Electronic Serial Number (ESN) in the device with the ESN protected against modification. Once the Hi-ROM region is protected, any further modification of that region is impossible. This ensures the security of the ESN once the product is shipped to the field.

The $\mathrm{Hi}-\mathrm{ROM}$ region is 64 K bytes in length and is stored at the same address of the $8 \mathrm{~KB} \times 8$ sectors. The MBM29DL16XTD occupies the address of the byte mode 1F0000H to 1FFFFFH (word mode 0F8000H to 0FFFFFH) and the MBM29DL16XBD type occupies the address of the byte mode 000000 H to 00FFFFH (word mode 000000 H to 007 FFFH ). After the system has written the Enter Hi-ROM command sequence, the system may read the Hi-ROM region by using the addresses normally occupied by the boot sectors. That is, the device sends all commands that would normally be sent to the boot sectors to the Hi-ROM region. This mode of operation continues until the system issues the Exit Hi-ROM command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to the boot sectors.

## - Hidden ROM (Hi-ROM) Entry Command

MBM29DL16XTD/BD has a Hidden ROM area with One Time Protect function. This area is to enter the security code and to unable the change of the code once set. Program/erase is possible in this area until it is protected. However, once it is protected, it is impossible to unprotect, so please use this with caution.

Hidden ROM area is 64 K Byte and in the same address area of 8 KB sector. The address of top boot is $1 \mathrm{F0000H}$ to 1 FFFFFH at byte mode ( $0 F 8000 \mathrm{H}$ to 0FFFFFF at word mode) and the bottom boot is 000000 H to 00FFFFH at byte mode $(000000 \mathrm{H}$ to 007 FFFH at word mode). These areas are normally the boot block area ( $8 \mathrm{~KB} \times 8$ sector). Therefore, write the Hidden ROM entry command sequence to enter the Hidden ROM area. It is called as Hidden ROM mode when the Hidden ROM area appears.

Sector other than the boot block area could be read during Hidden ROM mode. Read/program/earse of the Hidden ROM area is possible during Hidden ROM mode. Write the Hidden ROM reset command sequence to exit the Hidden ROM mode. The bank address of the Hidden ROM should be set on the third cycle of this reset command sequence.

In case of MBM29DL161TD/BD, whose Bank 1 size is 0.5 Mbit, the simultaneous operation cannot execute multi-function mode between the Hidden ROM area and Bank 2 Region.

## - Hidden ROM (Hi-ROM) Program Command

To program the data to the Hidden ROM area, write the Hidden ROM program command sequence during Hidden ROM mode. This command is same as the program command in the past except to write the command during Hidden ROM mode. Therefore the detection of completion method is the same as in the past, using the DQ7 data poling, $\mathrm{DQ}_{6}$ toggle bit and RY/BY pin. Need to pay attention to the address to be programmed. If the address other than the Hidden ROM area is selected to program, the data of the address will be changed.

## - Hidden ROM (Hi-ROM) Erase Command

To erase the Hidden ROM area, write the Hidden ROM erase command sequence during Hidden ROM mode. This command is same as the sector erase command in the past except to write the command during Hidden ROM mode. Therefore the detection of completion method is the same as in the past, using the DQ7 data poling, $\mathrm{DQ}_{6}$ toggle bit and $\mathrm{RY} / \overline{\mathrm{BY}}$ pin. Need to pay attention to the sector address to be erased. If the sector address other than the Hidden ROM area is selected, the data of the sector will be changed.

## MBM29DL16XTD/BD-70/90//12

## - Hidden ROM (Hi-ROM) Protect Command

There are two methods to protect the Hidden ROM area. One is to write the sector group protect setup command $(60 \mathrm{H})$, set the sector address in the Hidden ROM area and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$, and write the sector group protect command( 60 H ) during the Hidden ROM mode. The same command sequence could be used because except that it is in the Hidden ROM mode and that it does not apply high voltage to RESET pin, it is the same as the extension sector group protect in the past. Please refer to "Function Explanation Extended Command (3) Extentended Sector Group Protection" for details of extention sector group protect setting.

The other is to apply high voltage ( VID ) to $\mathrm{A}_{9}$ and $\overline{\mathrm{OE}}$, set the sector address in the Hidden ROM area and ( $\mathrm{A}_{6}$, $\left.A_{1}, A_{0}\right)=(0,1,0)$, and apply the write pulse during the Hidden ROM mode. To verify the protect circuit, apply high voltage ( $V_{I D}$ ) to $A_{9}$, specify $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ and the sector address in the Hidden ROM area, and read. When " 1 " appears to $\mathrm{DQ}_{0}$, the protect setting is completed. " 0 " will appear to $\mathrm{DQ}_{0}$ if it is not protected. Please apply write pulse agian. The same command sequence could be used for the above method because other than the Hidden ROM mode, it is the same as the sector group protect in the past. Please refer to "Function Explanation Secor Group Protection" for details of sector group protect setting
Other sector group will be effected if the address other than the Hidden ROM area is selected for the sectoer group address, so please be carefull. Once it is protected, protection can not be cancelled, so please pay closest attention.

## - Write Operation Status

Detailed in Table 13 are all the status flags that can determine the status of the bank for the current mode operation. The read operation from the bank where is not operate Embedded Algorithm returns a data of memory cell. These bits offer a method for determining whether a Embedded Algorithm is completed properly. The information on $\mathrm{DQ}_{2}$ is address sensitive. This means that if an address from an erasing sector is consectively read, then the $\mathrm{DQ}_{2}$ bit will toggle. However, $\mathrm{DQ}_{2}$ will not toggle if an address from a non-erasing sector is consectively read. This allows the user to determine which sectors are erasing and which are not.

The status flag is not output from bank (non-busy bank) not executing Embedded Algorithm. For example, there is bank (busy bank) which is now executing Embedded Algorithm. When the read sequence is [1] <busy bank>, [2] <non-busy bank>, [3] <busy bank>, the $\mathrm{DQ}_{6}$ is toggling in the case of [1] and [3]. In case of [2], the data of memory cell is outputted. In the erase-suspend read mode with the same read sequence, $\mathrm{DQ}_{6}$ will not be toggled in the [1] and [3].
In the erase suspend read mode, $\mathrm{DQ}_{2}$ is toggled in the [1] and [3]. In case of [2], the data of memory cell is outputted.

Table 13 Hardware Sequence Flags

| Status |  |  | DQ 7 | DQ6 | DQ5 | DQ3 | DQ2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In Progress | Embedded Program Algorithm |  | $\overline{\mathrm{DQ}}_{7}$ | Toggle | 0 | 0 | 1 |
|  | Embedded Erase Algorithm |  | 0 | Toggle | 0 | 1 | Toggle* |
|  | Program <br> Suspended <br> Mode | Program Suspend Read (Program Suspended Sector) | Data | Data | Data | Data | Data |
|  |  | Program Suspend Read (Non-Program Suspended Sector) | Data | Data | Data | Data | Data |
|  | Erase <br> Suspended <br> Mode | Erase Suspend Read (Erase Suspended Sector) | 1 | 1 | 0 | 0 | Toggle |
|  |  | Erase Suspend Read (Non-Erase Suspended Sector) | Data | Data | Data | Data | Data |
|  |  | Erase Suspend Program <br> (Non-Erase Suspended Sector) | $\overline{\mathrm{DQ}_{7}}$ | Toggle | 0 | 0 | 1 * |
| Exceeded <br> Time Limits | Embedded Program Algorithm |  | $\overline{\mathrm{DQ}}{ }_{7}$ | Toggle | 1 | 0 | 1 |
|  | Embedded Erase Algorithm |  | 0 | Toggle | 1 | 1 | N/A |
|  | Erase <br> Suspended <br> Mode | Erase Suspend Program (Non-Erase Suspended Sector) | $\overline{\mathrm{DQ}}_{7}$ | Toggle | 1 | 0 | N/A |

* Successive reads from the erasing or erase-suspend sector will cause $\mathrm{DQ}_{2}$ to toggle. Reading from non-erase suspend sector address will indicate logic " 1 " at the DQ2 bit.

Notes: 1. $\mathrm{DQ}_{0}$ and $\mathrm{DQ}_{1}$ are reserve pins for future use.
2. $\mathrm{DQ}_{4}$ is Fujitsu internal use only.

## MBM29DL16XTD/BD-70/90/12

## - DQ7

## Data Polling

The MBM29DL16XTD/BD devices feature $\overline{\text { Data }}$ Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm an attempt to read the devices will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase Algorithm, an attempt to read the device will produce a "0" at the DQ7 output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a " 1 " at the DQ7 output. The flowchart for Data Polling (DQ) is shown in Figure 24.

For programming, the Data Polling is valid after the rising edge of fourth write pulse in the four write pulse sequence.

For chip erase and sector erase, the Data Polling is valid after the rising edge of the sixth write pulse in the six write pulse sequence. Data Polling must be performed at sector address within any of the sectors being erased and not a protected sector. Otherwise, the status may not be valid.

If a program address falls within a protected sector, $\overline{\text { Data }}$ Polling on $\mathrm{DQ}_{7}$ is active for approximately $1 \mu \mathrm{~s}$, then that bank returns to the read mode. After an erase command sequence is written, if all sectors selected for erasing are protected, $\overline{\text { Data }}$ Polling on DQ7 is active for approximately $400 \mu \mathrm{~s}$, then the bank returns to read mode.
Once the Embedded Algorithm operation is close to being completed, the MBM29DL16XTD/BD data pins (DQ7) may change asynchronously while the output enable ( $\overline{\mathrm{OE}}$ ) is asserted low. This means that the devices are driving status information on DQ7 at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ7 has a valid data, the data outputs on DQo to DQ6 may be still invalid. The valid data on $\mathrm{DQ}_{0}$ to $\mathrm{DQ}_{7}$ will be read on the successive read attempts.

The $\overline{\text { Data }}$ Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out. (See Table 13.)

See Figure 9 for the $\overline{\text { Data }}$ Polling timing specifications and diagrams.

- DQ6

Toggle Bit I
The MBM29DL16XTD/BD also feature the "Toggle Bit l" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.

During an Embedded Program or Erase Algorithm cycle, successive attempts to read ( $\overline{\mathrm{OE}}$ toggling) data from the devices will result in DQ6 toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, $\mathrm{DQ}_{6}$ will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit l is valid after the rising edge of the fourth write pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit I is valid after the rising edge of the sixth write pulse in the six write pulse sequence. The Toggle Bit I is active during the sector time out.

In programming, if the sector being written to is protected, the toggle bit will toggle for about $1 \mu \mathrm{~s}$ and then stop toggling without the data having changed. In erase, the devices will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about $400 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.
Either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ toggling will cause the $\mathrm{DQ}_{6}$ to toggle. In addition, an Erase Suspend/Resume command will cause the DQ6 to toggle.

## MBM29DL16XTD/BD-70/90/12

The system can use $\mathrm{DQ}_{6}$ to determine whether a sector is actively erasing or is erase-suspended. When a bank is actively erasing (that is, the Embedded Erase Algorithm is in progress), DQ ${ }_{6}$ toggles. When a bank enters the Erase Suspend mode, $\mathrm{DQ}_{6}$ stops toggling. Successive read cycles during the erase-suspend-program cause DQ6 to toggle.
To operate toggle bit function properly, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ must be high when bank address is changed.
See Figure 10 for the Toggle Bit I timing specifications and diagrams.

- DQ5


## Exceeded Timing Limits

DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. $\overline{\text { Data }}$ Polling is the only operating function of the devices under this condition. The $\overline{\mathrm{CE}}$ circuit will partially power down the device under these conditions (to approximately 2 mA ). The $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ pins will control the output disable functions as described in Tables 3 and 4.

The DQs failure condition may also appear if a user tries to program a non blank location without erasing. In this case the devices lock out and never complete the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ7 bit and DQ6 never stops toggling. Once the devices have exceeded timing limits, the DQ5 bit will indicate a "1." Please note that this is not a device failure condition since the devices were incorrectly used. If this occurs, reset the device with command sequence.

- DQ3


## Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. $\mathrm{DQ}_{3}$ will remain low until the time-out is complete. $\overline{\text { Data }}$ Polling and Toggle Bit are valid after the initial sector erase command sequence.

If $\overline{\text { Data }}$ Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ3 may be used to determine if the sector erase timer window is still open. If $\mathrm{DQ}_{3}$ is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit I. If DQ3 is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of $\mathrm{DQ}_{3}$ prior to and following each subsequent Sector Erase command. If $\mathrm{DQ}_{3}$ were high on the second status check, the command may not have been accepted.

See Table 13: Hardware Sequence Flags.

- DQ2


## Toggle Bit II

This toggle bit II, along with $\mathrm{DQ}_{6}$, can be used to determine whether the devices are in the Embedded Erase Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause $\mathrm{DQ}_{2}$ to toggle during the Embedded Erase Algorithm. If the devices are in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause $\mathrm{DQ}_{2}$ to toggle. When the devices are in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at the DQ2 bit.
$\mathrm{DQ}_{6}$ is different from $\mathrm{DQ}_{2}$ in that $\mathrm{DQ}_{6}$ toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of $\mathrm{DQ}_{7}$, is summarized as follows:

## MBM29DL16XTD/BD-70/90/12

For example, $\mathrm{DQ}_{2}$ and $\mathrm{DQ}_{6}$ can be used together to determine if the erase-suspend-read mode is in progress. ( $\mathrm{DQ}_{2}$ toggles while $\mathrm{DQ}_{6}$ does not.) See also Table 14 and Figure 12.

Furthermore, $\mathrm{DQ}_{2}$ can also be used to determine which sector is being erased. When the device is in the erase mode, $\mathrm{DQ}_{2}$ toggles if this bit is read from an erasing sector.
To operate toggle bit function properly, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ must be high when bank address is changed.
Table 14 Toggle Bit Status

| Mode | DQ $_{7}$ | DQ $_{6}$ | DQ $_{2}$ |
| :--- | :---: | :---: | :---: |
| Program | $\overline{\mathrm{DQ}}_{7}$ | Toggle | 1 |
| Erase | 0 | Toggle | Toggle (Note) |
| Erase-Suspend Read <br> (Erase-Suspended Sector) | 1 | 1 | Toggle |
| Erase-Suspend Program | $\overline{\mathrm{DQ}}_{7}$ | Toggle | 1 (Note) |

Note: Successive reads from the erasing or erase-suspend sector will cause DQ to toggle. Reading from nonerase suspend sector address will indicate logic "1" at the DQ2 bit.

## -RY/BY

Ready/Busy
The MBM29DL16XTD/BD provide a RY/ $\overline{B Y}$ open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the devices are busy with either a program or erase operation. If the output is high, the devices are ready to accept any read/ write or erase operation. When the RY/ $\overline{\mathrm{BY}}$ pin is low, the devices will not accept any additional program or erase commands. If the MBM29DL16XTD/BD are placed in an Erase Suspend mode, the RY/BY output will be high.

During programming, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the fourth write pulse. During an erase operation, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the sixth write pulse. The $\mathrm{RY} / \overline{\mathrm{BY}}$ pin will indicate a busy condition during the RESET pulse. Refer to Figures 13 and 14 for a detailed timing diagram. The RY/BY pin is pulled high in standby mode.
Since this is an open-drain output, $\mathrm{RY} / \overline{\mathrm{BY}}$ pins can be tied together in parallel with a pull-up resistor to V cc.

## - Byte/Word Configuration

The BYTE pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29DL16XTD/BD devices. When this pin is driven high, the devices operate in the word (16-bit) mode. The data is read and programmed at DQo to DQ15. When this pin is driven low, the devices operate in byte (8-bit) mode. Under this mode, the DQ(15/A-1 pin becomes the lowest address bit and $\mathrm{DQ}_{8}$ to $\mathrm{DQ}_{14}$ bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at $\mathrm{DQ}_{0}$ to $\mathrm{DQ}_{7}$ and the $\mathrm{DQ}_{8}$ to $\mathrm{DQ}_{15}$ bits are ignored. Refer to Figures 15,16 and 17 for the timing diagram.

## - Data Protection

The MBM29DL16XTD/BD are designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the devices automatically reset the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.

The devices also incorporate several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

## MBM29DL16XTD/BD-70/90/12

## - Low Vcc Write Inhibit

To avoid initiation of a write cycle during $\mathrm{V}_{\mathrm{cc}}$ power-up and power-down, a write cycle is locked out for V cc less than $V_{\text {Lко }}(\mathrm{min})$. If $\mathrm{V}_{\mathrm{cc}}<\mathrm{V}_{\text {Lко }}$, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the Vcc level is greater than Vıко. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when $\mathrm{V}_{\mathrm{cc}}$ is above $\mathrm{V}_{\mathrm{Lko}}$ (min).
If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector(s) cannot be used.

## - Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, or $\overline{\mathrm{WE}}$ will not initiate a write cycle.

## - Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{I}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$, or $\overline{\mathrm{WE}}=\mathrm{V}_{\boldsymbol{H}}$. To initiate a write cycle $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be a logical zero while $\overline{\mathrm{OE}}$ is a logical one.

## - Power-Up Write Inhibit

Power-up of the devices with $\overline{\mathrm{WE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathbb{I}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathbb{H}}$ will not accept commands on the rising edge of $\overline{\mathrm{WE}}$. The internal state machine is automatically reset to the read mode on power-up.

Table 15 Common Flash Memory Interface Code

| Description | $\mathrm{A}_{0}$ to $\mathrm{A}_{6}$ | DQ ${ }_{0}$ to $\mathrm{DQ}_{15}$ |
| :---: | :---: | :---: |
| Query-unique ASCII string "QRY" | $\begin{aligned} & \text { 10h } \\ & 11 \mathrm{~h} \\ & 12 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & 0051 \mathrm{~h} \\ & 0052 \mathrm{~h} \\ & 0059 \mathrm{~h} \end{aligned}$ |
| Primary OEM Command Set 2h: AMD/FJ standard type | $\begin{aligned} & \text { 13h } \\ & 14 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0002h } \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Address for Primary Extended Table | $\begin{aligned} & 15 \mathrm{~h} \\ & 16 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0040h } \\ & \text { 0000h } \end{aligned}$ |
| Alternate OEM Command Set ( $00 \mathrm{~h}=$ not applicable) | $\begin{aligned} & 17 \mathrm{~h} \\ & 18 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0000h } \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Address for Alternate OEM Extended Table | $\begin{aligned} & \text { 19h } \\ & 1 \mathrm{Ah} \end{aligned}$ | $\begin{aligned} & \text { 0000h } \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Vcc Min. (write/erase) <br> D7-4: volt, D3-0: 100 mvolt | 1Bh | 0027h |
| Vcc Max. (write/erase) D7-4: volt, D3-0: 100 mvolt | 1Ch | 0036h |
| V PP Min. voltage | 1Dh | 0000h |
| Vpp Max. voltage | 1Eh | 0000h |
| Typical timeout per single byte/word write $2^{\mathrm{N}} \mu \mathrm{s}$ | 1Fh | 0004h |
| Typical timeout for Min. size buffer write $2^{\mathrm{N}} \mu \mathrm{s}$ | 20h | 0000h |
| Typical timeout per individual block erase $2^{\mathrm{N}} \mathrm{ms}$ | 21h | 000Ah |
| Typical timeout for full chip erase $2^{\mathrm{N}} \mathrm{ms}$ | 22h | 0000h |
| Max. timeout for byte/word write $2^{\mathrm{N}}$ times typical | 23h | 0005h |
| Max. timeout for buffer write $2^{N}$ times typical | 24h | 0000h |
| Max. timeout per individual block erase $2^{\mathrm{N}}$ times typical | 25h | 0004h |
| Max. timeout for full chip erase $2^{\mathrm{N}}$ times typical | 26h | 0000h |
| Device Size $=2^{N}$ byte | 27h | 0015h |
| Flash Device Interface description | $\begin{aligned} & 28 \mathrm{~h} \\ & 29 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0002h } \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Max. number of byte in multi-byte write $=2^{\mathrm{N}}$ | $\begin{aligned} & 2 \mathrm{2Ah} \\ & 2 \mathrm{Bh} \end{aligned}$ | $\begin{aligned} & \text { 0000h } \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Number of Erase Block Regions within device | 2Ch | 0002h |
| Erase Block Region 1 Information | $\begin{aligned} & \text { 2Dh } \\ & 2 \mathrm{Eh} \\ & 2 \mathrm{Fh} \\ & 30 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0007h } \\ & 0000 \mathrm{~h} \\ & 0020 \mathrm{~h} \\ & 0000 \mathrm{~h} \end{aligned}$ |
| Erase Block Region 2 Information | $\begin{aligned} & 31 \mathrm{~h} \\ & 32 \mathrm{~h} \\ & 33 \mathrm{~h} \\ & 34 \mathrm{~h} \end{aligned}$ | 001Eh 0000h 0000h 0001h |


| Description | $\mathrm{A}_{0}$ to $\mathrm{A}_{6}$ | $\mathrm{DQ}_{0}$ to $\mathrm{DQ}_{15}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { Query-unique ASCII string } \\ & \text { "PRI" } \end{aligned}$ | $\begin{aligned} & \text { 40h } \\ & 41 \mathrm{~h} \\ & 42 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & \text { 0050h } \\ & 0052 \mathrm{~h} \\ & 0049 \mathrm{~h} \end{aligned}$ |
| Major version number, ASCII | 43h | 0031h |
| Minor version number, ASCII | 44h | 0031h |
| Address Sensitive Unlock Oh = Required 1h = Not Required | 45h | 0000h |
| Erase Suspend Oh = Not Supported 1h = To Read Only $2 \mathrm{~h}=$ To Read \& Write | 46h | 0002h |
| Sector Protection Oh = Not Supported $X=$ Number of sectors in per group | 47h | 0001h |
| Sector Temporary Unprotection OOh = Not Supported 01h = Supported | 48h | 0001h |
| Sector Protection Algorithm | 49h | 0004h |
| $\begin{aligned} & \text { Number of Sector for Bank } 2 \\ & \text { 00h }=\text { Not Supported } \\ & \text { 3Fh }=\text { MBM29DL161TD } \\ & \text { 38h }=\text { MBM29DL162TD } \\ & \text { 30h }=\text { MBM29DL163TD } \\ & \text { 20h }=\text { MBM29DL164TD } \\ & \text { 3Fh }=\text { MBM29DL161BD } \\ & \text { 38h }=\text { MBM29DL162BD } \\ & \text { 30h }=\text { MBM29DL163BD } \\ & \text { 20h }=\text { MBM29DL164BD } \end{aligned}$ | 4Ah | 00XXh |
| Burst Mode Type 00h = Not Supported | 4Bh | 0000h |
| Page Mode Type 00h = Not Supported | 4Ch | 0000h |
| ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-4: volt, D3-0: 100 mvolt | 4Dh | 0085h |
| ACC (Acceleration) Supply Maximum 00h = Not Supported, <br> D7-4: volt, D3-0: 100 mvolt | 4Eh | 0095h |
| $\begin{aligned} & \text { Boot Type } \\ & \text { 02h = MBM29DL16XBD } \\ & \text { 03h = MBM29DL16XTD } \end{aligned}$ | 4Fh | 00XXh |

## FLOW CHART

## EMBEDDED ALGORITHMS



Program Command Sequence* (Address/Command):


Program Address/Program Data

* : The sequence is applied for $\times 16$ mode.

The addresses differ from $\times 8$ mode.

Figure 22 Embedded Program ${ }^{\text {TM }}$ Algorithm

## MBM29DL16XTD/BD-70990/12

## EMBEDDED ALGORITHMS



* : The sequence is applied for $\times 16$ mode. The addresses differ from $\times 8$ mode.

Figure 23 Embedded Erase ${ }^{\text {TM }}$ Algorithm


VA = Byte address for programming
= Any of the sector addresses within the sector being erased during sector erase or multiple sector erases operation
= Any of the sector addresses within the sector not being protected during chip erase

Note: $\mathrm{DQ}_{7}$ is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because $\mathrm{DQ}_{7}$ may change simultaneously with DQ5.

Figure 24 Data Polling Algorithm

## MBM29DL16XTD/BD-70/90/12



Note: $\mathrm{DQ}_{6}$ is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because $\mathrm{DQ}_{6}$ may stop toggling at the same time as DQ5 changing to "1".

Figure 25 Toggle Bit Algorithm


## MBM29DL16XTD/BD-70/90/12



Notes: 1. All protected sector groups are unprotected.
2. All previously protected sector groups are protected once again.

Figure 27 Temporary Sector Group Unprotection Algorithm

FAST MODE ALGORITHM


Note: The sequence is applied for $\times 16$ mode. The addresses differ from $\times 8$ mode.

Figure 28 Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode

## MBM29DL16XTD/BD-70990/12



Figure 29 Extended Sector Group Protection Algorithm

## MBM29DL16XTD/BD-70/90/12

## ORDERING INFORMATION

## Standard Products

Fujitsu standard products are available in several packages. The order number is formed by a combination of:


| Valid Combinations |  |  |
| :--- | :---: | :---: |
| MBM29DL161TD/BD |  |  |
| MBM29DL162TD/BD | 70 | PFTN |
| MBM29DL163TD/BD | 90 | PFTR |
| MBM29DL164TD/BD | 12 | PBT |
|  |  |  |

## Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Fujitsu sales office to confirm availability of specific valid combinations and to check on newly released combinations.

## MBM29DL16XTD/BD-70/90/12

## PACKAGE DIMENSIONS



## 48-pin plastic TSOP(I)

 (FPT-48P-M20)
(Continued)


## FUJITSU LIMITED

## For further information please contact:

## Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

## Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

## CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

## F9909

© FUJITSU LIMITED Printed in Japan


[^0]:    Embedded Erase ${ }^{\mathrm{TM}}$ and Embedded Program ${ }^{\mathrm{TM}}$ are trademarks of Advanced Micro Devices, Inc.

[^1]:    (B): Byte mode
    (W): Word mode

[^2]:    *1:This command is valid while Fast Mode.
    *2:This command is valid while $\overline{\text { RESET }}=\mathrm{V}_{\mathrm{ID}}$.
    ${ }^{*} 3$ :The valid addresses are $\mathrm{A}_{6}$ to $\mathrm{A}_{0}$.
    *4:This command is valid while Hi -ROM mode.

