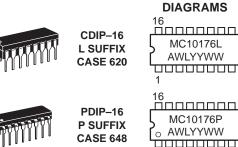
Hex D Master/Slave Flip-Flop

The MC10176 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.

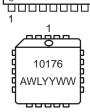
- $P_D = 460 \text{ mW typ/pkg (No Load)}$
- $f_{toggle} = 150 \text{ MHz (typ)}$
- t_r , $t_f = 2.0$ ns typ (20%-80%)

LOGIC DIAGRAM D0 Q0 D1 Q1 6 D2 Q2 D3 10 13 Q3 D4 11 Q4 V_{CC1} = PIN 1 V_{CC2} = PIN 16 VEE = PIN 8 15 Q5 CLOCK

CLOCKED TRUTH TABLE


С	D	Q _{n+1}
L	Х	Q _n
H*	L	L
H*	Н	Н

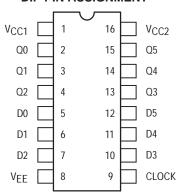
*A clock H is a clock transition from a low to a high state.


ON Semiconductor

http://onsemi.com

PLCC-20 FN SUFFIX CASE 775

MARKING


A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ORDERING INFORMATION

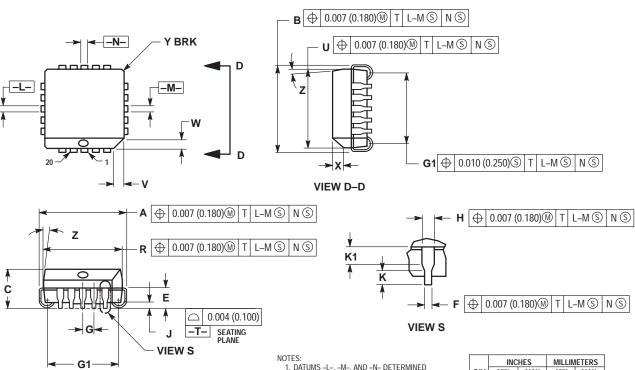
Device	Package	Shipping		
MC10176L	CDIP-16	25 Units / Rail		
MC10176P	PDIP-16	25 Units / Rail		
MC10176FN	PLCC-20	46 Units / Rail		

ELECTRICAL CHARACTERISTICS

			Test Limits							
	Symbol	Pin Under Test	−30°C		+25°C		+85°C		1	
Characteristic			Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	8		121		88	110		121	mAdc
Input Current	l _{inH}	5 9		350 495			220 310		220 310	μAdc
	l _{inL}	5 9	0.5 0.5		0.5 0.5			0.3 0.3		μAdc
Output Voltage Logic 1	Vон	2† 15†	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	VOL	2† 15†	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	Vона	2† 15†	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Threshold Voltage Logic 0	VOLA	2† 15†		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times (50 Ω Load) Clock Input										ns
Propagation Delay	t9+2+ t9+2-	2 2	1.6 1.6	4.6 4.6	1.6 1.6		4.5 4.5	1.6 1.6	5.0 5.0	
Rise Time (20 to 80%)	t ₂₊	2	1.0	4.1	1.1		4.0	1.1	4.4	
Fall Time (20 to 80%)	t ₂ _	2	1.0	4.1	1.1		4.0	1.1	4.4	
Setup Time	t _{setup}	2	2.5		2.5			2.5		ns
Hold Time	thold	2	1.5		1.5			1.5		ns
Toggle Frequency (Max)	f _{tog}	2	125		125	150		125		MHz

[†]Output level to be measured after a clock pulse has been applied to the C Input (Pin 9) VILmin

ELECTRICAL CHARACTERISTICS (continued)


				TEST VOI	LTAGE VALU	JES (Volts)		
	@ Test Te	mperature	V _{IHmax}	V _{ILmin}	VIHAmin	V _{ILAmax}	VEE]
		–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
		+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
	_	+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin	TEST VOLTAGE APPLIED TO PINS LISTED BELOW			BELOW	ω,	
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	V _{ILAmax}	VEE	(VCC) Gnd
Power Supply Drain Current	ΙΕ	8					8	1, 16
Input Current	linH	5 9	5 9				8	1, 16 1, 16
	linL	5 9		5 9			8	1, 16 1, 16
Output Voltage Logic 1	VOH	2† 15†	5 12				8 8	1, 16 1, 16
Output Voltage Logic 0	VOL	2† 15†		5 12			8 8	1, 16 1, 16
Threshold Voltage Logic 1	VOHA	2† 15†			5 12		8 8	1, 16 1, 16
Threshold Voltage Logic 0	VOLA	2† 15†				5 12	8 8	1, 16 1, 16
Switching Times (50Ω Load)			+1.11Vdc	+0.31V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Clock Input Propagation Delay	t ₉₊₂₊ t ₉₊₂₋	2 2			5, 9 5, 9	2 2	8 8	1, 16 1, 16
Rise Time (20 to 80%)	t ₂₊	2			5, 9	2	8	1, 16
Fall Time (20 to 80%)	t ₂ _	2			5, 9	2	8	1, 16
Setup Time	t _{setup}	2			5, 9	2	8	1, 16
Hold Time	thold	2			5, 9	2	8	1, 16
Toggle Frequency (Max)	f _{tog}	2					8	1, 16

[†] Output level to be measured after a clock pulse has been applied to the C Input (Pin 9) VIHmax VILmin

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

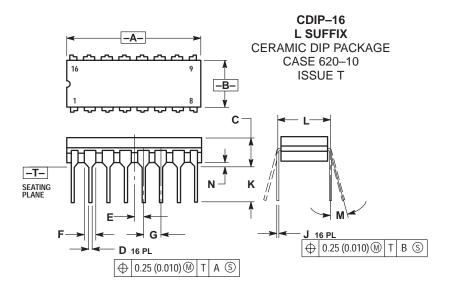
PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 775-02 **ISSUE C**

- WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
- 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD.
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI
- 4. DIMENSIONING AND TOLERANCING FER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE

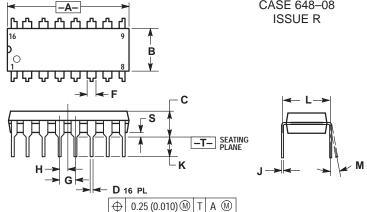

⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑥

- PACKAGE BOTTOM BY UP TO 0.012 (0.300).
 DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
- INCLUDING ANY MISMAICH BE I WEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.385	0.395	9.78	10.03	
В	0.385	0.395	9.78	10.03	
С	0.165	0.180	4.20	4.57	
Ε	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.050	BSC	1.27 BSC		
Н	0.026	0.032	0.66	0.81	
J	0.020		0.51		
K	0.025		0.64		
R	0.350	0.356	8.89	9.04	
U	0.350	0.356	8.89	9.04	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Х	0.042	0.056	1.07	1.42	
Υ		0.020		0.50	
Z	2°	10°	2 °	10 °	
G1	0.310	0.330	7.88	8.38	
K1	0.040		1.02		

PACKAGE DIMENSIONS



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Ε	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62	BSC	
M	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

PDIP-16 **P SUFFIX**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and war trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.