MC14569B

Programmable Divide-By-N Dual 4-Bit Binary/BCD Down Counter

The MC14569B is a programmable divide-by-N dual 4-bit binary or BCD down counter constructed with MOS P-channel and N -channel enhancement mode devices (complementary MOS) in a monolithic structure.

This device has been designed for use with the MC14568B phase comparator/counter in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

- Speed-up Circuitry for Zero Detection
- Each 4-Bit Counter Can Divide Independently in BCD or Binary Mode
- Can be Cascaded With MC14568B, MC14522B or MC14526B for Frequency Synthesizer Applications
- All Outputs are Buffered
- Schmitt Triggered Clock Conditioning

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

[^0]

ORDERING INFORMATION

MC14XXXBCP	Plastic
MC14XXXBCL	Ceramic
MC14XXXBDW	SOIC

$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages.

BLOCK DIAGRAM

REV 3
1/94

ELECTRICAL CHARACTERISTICS (V (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \text { VDD } \\ & \text { Vdc } \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}} \text { or } 0$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$\mathrm{V}_{\text {in }}=0$ or V_{DD} " "1" Level	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|l\|} \hline \text { Input Voltage } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{array}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	—	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \quad " 1 " \text { Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Output Drive Current } & \\ (\mathrm{VOH}=2.5 \mathrm{Vdc}) & \text { Source } \\ (\mathrm{VOH}=4.6 \mathrm{Vdc}) & \\ (\mathrm{VOH}=9.5 \mathrm{Vdc}) & \\ (\mathrm{V} \mathrm{OH}=13.5 \mathrm{Vdc}) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{V} \mathrm{OL}=0.5 \mathrm{Vdc}) & \\ (\mathrm{V} \mathrm{OL}=1.5 \mathrm{Vdc}) & \end{array}$	${ }^{\text {IOL}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{Cin}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{~T}=(0.58 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(1.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(1.95 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \end{aligned}$							$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	VDD Vdc	All Types			Unit
			Min	Typ \#	Max	
Output Rise Time	tTLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Output Fall Time	${ }_{\text {t }}$ HL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Turn-On Delay Time Zero Detect Output	${ }_{\text {tPLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 420 \\ & 175 \\ & 125 \end{aligned}$	$\begin{aligned} & 700 \\ & 300 \\ & 250 \end{aligned}$	ns
Q Output		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 675 \\ & 285 \\ & 200 \end{aligned}$	$\begin{gathered} 1200 \\ 500 \\ 400 \end{gathered}$	ns
Turn-Off Delay Time Zero Detect Output	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 380 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 200 \end{aligned}$	ns
Q Output		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 530 \\ & 225 \\ & 155 \end{aligned}$	$\begin{gathered} 1000 \\ 400 \\ 300 \end{gathered}$	ns
Clock Pulse Width	tWH	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & 115 \end{aligned}$	$\begin{aligned} & 100 \\ & 45 \\ & 30 \end{aligned}$	-	ns
Clock Pulse Frequency	f_{Cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 3.5 \\ 9.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & \hline 2.1 \\ & 5.1 \\ & 7.8 \end{aligned}$	MHz
Clock Pulse Rise and Fall Time	${ }^{\text {tTLH, }}$, ${ }^{\text {THL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	NO LIMIT			$\mu \mathrm{s}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

PIN DESCRIPTIONS

INPUTS

P0, P1, P2, P3 (Pins 3, 4, 5, 6) — Preset Inputs. Programmable inputs for the least significant counter. May be binary or BCD depending on the control input.

P4, P5, P6, P7 (Pins 11, 12, 13, 14) — Preset Inputs. Programmable inputs for the most significant counter. May be binary or BCD depending on the control input.

Clock (Pin 9) - Preset data is decremented by one on each positive transition of this signal.

OUTPUTS

Zero Detect (Pin 1) - This output is normally low and goes high for one clock cycle when the counter has decremented to zero.

Q (Pin 15) — Output of the last stage of the most significant counter. This output will be inactive unless the preset input P7 has been set high.

CONTROLS

Cascade Feedback (Pin 7) - This pin is normally set high. When low, loading of the preset inputs (P0 through P7) is inhibited, i.e., P0 through P7 are "don't cares." Refer to Table 1 for output characteristics.

CTL_ $_{1}$ (Pin 2) - This pin controls the counting mode of the least significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.

CTL2 (Pin 10) - This pin controls the counting mode of the most significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.

SUPPLY PINS

VSS (Pin 18) — Negative Supply Voltage. This pin is usually connected to ground.

VDD (Pin 16) — Positive Supply Voltage. This pin is connected to a positive supply voltage ranging from 3.0 volts to 18.0 volts.

OPERATING CHARACTERISTICS

The MC14569B is a programmable divide-by-N dual 4-bit down counter. This counter may be programmed (i.e., preset) in BCD or binary code through inputs P0 to P7. For each counter, the counting sequence may be chosen independently by applying a high (for BCD count) or a low (for binary count) to the control inputs CTL_{1} and CTL_{2}.

The divide ratio N (N being the value programmed on the preset inputs P0 to P7) is automatically loaded into the counter as soon as the count 1 is detected. Therefore, a division ratio of one is not possible. After N clock cycles, one
pulse appears on the Zero Detect output. (See Timing Diagram.) The Q output is the output of the last stage of the most significant counter (See Tables 1 through 5, Mode Controls.)

When cascading the MC14569B to the MC14568B, MC14522B or the MC14526B, the Cascade Feedback input, Q, and Zero Detect outputs must be respectively connected to "0", Clock, and Load of the following counter. If the MC14569B is used alone, Cascade Feedback must be connected to $V_{D D}$.

PIN ASSIGNMENT

$\begin{array}{r} \text { ZERO } \\ \text { DETECT } \end{array}$	$1 \bullet$	16] V_{DD}
CTL1 1	2	15]Q
P0	3	14	P7
P1	4	13	7 P 6
P2	5	12	P5
P3	6	11	7 P 4
$\begin{aligned} & \text { CASCADE } \\ & \text { FEEDBACK } \end{aligned}$	7	10	$7 \mathrm{CTL}_{2}$
VSS	8	9	CLOCK

Table 1. Mode Controls (Cascade Feedback = Low)

Counter Control Values		Divide Ratio	
CTL $_{\mathbf{1}}$	CTL $_{\mathbf{2}}$	Zero Detect	\mathbf{Q}
0	0	256	256
0	1	160	160
1	0	160	160
1	1	100	100

NOTE: Data Preset Inputs (P0-P7) are "Don't Cares" while Cascade Feedback is Low.

Table 2. Mode Controls $\left(\mathrm{CTL}_{1}=\right.$ Low, $C T L_{2}=$ Low, Cascade Feedback $=$ High $)$

			Pres	puts				Divi		
P7	P6	P5	P4	P3	P2	P1	P0	Zero Detect	Q	Comments
0	0	0	0	0	0	0	0	256	256	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	1	1	1	15	X	
0	0	0	1	0	0	0	0	16	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	0	0	0	0	0	32	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	64	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	1	1	1	1	127	X	
1	0	0	0	0	0	0	0	128	128	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	$\stackrel{\rightharpoonup}{0}$	-	-	-	$\stackrel{ }{\circ}$	-	-	$\stackrel{-}{ }$	$\stackrel{-}{ }$	
1	0	0	0	1	0	0	0	136	136	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	1	1	1	1	1	1	1	$\stackrel{\cdot}{255}$	$\stackrel{\bullet}{255}$	\checkmark
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}			
128	64	32	16	8	4	2	1			Bit Value
Counter \#2 Binary				Counter \#1 Binary						Counting Sequence

X = No Output (Always Low)

Table 3. Mode Controls $\left(\right.$ CTL $_{1}=$ High, CTL2 $=$ Low, Cascade Feedback $=$ High $)$

Preset Inputs								Divide Ratio		Comments
P7	P6	P5	P4	P3	P2	P1	P0	Zero Detect	Q	
0	0	0	0	0	0	0	0	160	160	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	0	0	1	9	X	
0	0	0	1	0	0	0	0	10	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	1	1	0	0	1	19	X	
0	0	1	0	0	0	0	0	20	x	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	30	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	40	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	1	0	0	0	0	50	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	0	0	0	0	0	60	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	0	0	0	0	70	X	
-	-	-	-	-	-	-	-	-	x	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
1	0	0	0	0	0	0	0	80	80	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	0	$\dot{0}$	0	0	0	0	
1	0	0	1	0	0	0	0	90	90	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	0	0	0	-		
1	1	1	1	0	0	0	0	150	150	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	1	1	1	1	0	0	1	159	159	\checkmark
80	40	20	10	8	4	2	1			Bit Value
Counter \#2 Binary				Counter \#1 BCD						Counting Sequence

X = No Output (Always Low)

Table 4. Mode Controls $\left(C T L_{1}=\right.$ Low, $C T L_{2}=$ High, Cascade Feedback $=$ High $)$

Preset Values								Divide Ratio		Comments
P7	P6	P5	P4	P3	P2	P1	P0	Zero Detect	Q	
0	0	0	0	0	0	0	0	160	160	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	1	1	1	15	X	
0	0	0	1	0	0	0	0	16	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	1	1	1	1	1	31	X	
0	0	1	0	0	0	0	0	32	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	48	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
0	1	0	0	0	0	0	0	-	$\dot{\text { b }}$	
0	1	0	0	0	0	0	0	64	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
0	1	-	-	0	0	0	0	80	-	
.					0	0		8	X	
-	-	
-	-	-	-	-	-	-	-	-	-	
0	1	1	1	0	0	0	0	112	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	0	0	0	0	0	128	$\stackrel{1}{128}$	
1	0	0	0	0	0	0	0	128	128	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	0	0	0	0	144	144	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	1	1	1	1	$\stackrel{\cdot}{159}$	$\stackrel{\cdot}{159}$	V
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}			
128	64	32	16	8	4	2	1			Bit Value
$\begin{gathered} \text { Counter \#2 } \\ \text { BCD } \end{gathered}$				Counter \#1 Binary						Counting Sequence

X = No Output (Always Low)

Table 5. Mode Controls $\left(\mathrm{CTL}_{1}=\right.$ High, $C T L_{2}=$ High, Cascade Feedback $=$ High $)$

			Prese	alues				Divi		
P7	P6	P5	P4	P3	P2	P1	P0	$\begin{gathered} \text { Zero } \\ \text { Detect } \end{gathered}$	Q	Comments
0	0	0	0	0	0	0	0	100	100	Max Count
0	0	0	0	0	0	0	1	X	X	illegal state
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	0	0	1	9	X	
0	0	0	1	0	0	0	0	10	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	30	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	40	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	1	0	0	0	0	50	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	0	0	0	0	70	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
1	-	-	-	-	$\stackrel{ }{ }$	$\stackrel{ }{\circ}$	-	-	X	
1	0	0	0	0	0	0	0	80	80	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	$\stackrel{ }{ }$	-	$\stackrel{-}{\circ}$	0	
1	0	0	1	0	0	0	0	90	90	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	1	0	0	1	99	99	\checkmark
80	40	20	10	8	4	2	1			Bit Value
Counter \#2 BCD				Counter \#1 BCD						Counting Sequence

X = No Output (Always Low)

TIMING DIAGRAM MC14569B

TYPICAL APPLICATIONS

Figure 3. Cascading MC14568B and MC14522B or MC14526B with MC14569B

Figure 4. Frequency Synthesizer with MC14568B and MC14569B Using a Mixer (Channel Spacing 10 kHz)

DW SUFFIX

PLASTIC SOIC PACKAGE
CASE 751G-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN PRCESS OF D DIMENSION AT MAXIMUM EXCEESIF D DIMENSI.
MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DII	MIN	MAX	MIN	MAX
A	10.15	10.45	0.400	0.411
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050 BSC	
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	00°	7°	0°	$7{ }^{\circ}$
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , dt are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: * Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

 Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
 Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

