4-BIT ARITHMETIC LOGIC UNIT

The MC54/74F181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. It is 40% faster than the Schottky ALU and only consumes 30% as much power.

- Provides 16 Arithmetic Operations, ie, Add, Subtract, Compare, Double, Plus Twelve Other Arithmetic Operations
- Provides all 16 Logic Operations of Two Variables, ie, Exclusive-OR, Compare, AND, NAND, OR, NOR, Plus Ten Other Logic Operations
- Full Lookahead for High-Speed Arithmetic Operation on Long Words

CONNECTION DIAGRAM

MC54/74F181

4-BIT ARITHMETIC LOGIC UNIT

FAST ${ }^{\text {T }}$ SCHOTTKY TTL

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54,74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
I_{OH}	Output Current - High	54,74			-1.0	mA
$\mathrm{~V}_{\mathrm{OH}}$	Output Voltage - High A = B output	54,74			5.5	V
IOL	Output Current - Low	54,74			20	

MC54/74F181

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter			Limits			Unit	Test Conditions	
				Min	Typ	Max			
V_{IH}	Input HIGH Voltage			2.0			V	Guaranteed Inp	GH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V	Guaranteed Inp	W Voltage
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage					-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }^{\text {OH }}$	Output Current - HIGH					250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{A}=\mathrm{B}$
VOH	Output HIGH Voltage		54, 74	2.5	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
			74	2.7	3.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage				0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current					20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	
						100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	$V_{C C}=$ MAX
IIL	Input LOW Current	M Input				-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	$V_{C C}=$ MAX
		A and B Inputs				-1.8	mA		
		S_{0-3} Inputs				-2.4	mA		
		C_{n} Input				-3.0	mA		
Ios	Output Short Circuit Current (Note 2)			-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$V_{C C}=\mathrm{MAX}$
ICC	Power Supply Current				43	65	mA	$\mathrm{V}_{C C}=\mathrm{MAX}$	

NOTES:

1. For conditions such as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

FUNCTIONAL DESCRIPTION

The F181 is a 4-bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active-HIGH or active-LOW operands. The Function Table lists these operations.
When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_{n}+4$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and \bar{G} (Carry Generate). In the Add mode, \bar{P} indicates that \bar{F} is 15 or more, while \bar{G} indicates that \bar{F} is 16 or more. In the Subtract mode,$\overline{\mathrm{P}}$ indicates that $\overline{\mathrm{F}}$ is zero or less, while $\overline{\mathrm{G}}$ indicates that \bar{F} is less than zero. \bar{P} and \bar{G} are not affected by carry in. When speed requirements are not stringent, it can be used in a simple Ripple Carry mode by connecting the Carry output (C_{n+4}) signal to the Carry input $\left(\mathrm{C}_{\mathrm{n}}\right)$ of the next unit. For high-speed operation the device is used in conjunction with a carry lookahead circuit. One carry lookahead package is required for
each group of four F181 devices. Carry lookahead can be provided at various levels and offers high-speed capability over extremely long word lengths.
The A = B output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the Subtract mode. The $A=B$ output is open collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can be used with the $C n+4$ signal to indicate $A>$ B and $A<B$.
The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active-LOW inputs producing active-LOW outputs or with active-HIGH inputs producing active-HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

AC CHARACTERISTICS

Symbol	Path	Mode	54/74F		54F		74F		Unit
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{to}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}} \mathrm{C}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}} \mathrm{C}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	Min	Max	Min	Max	
tpLH tpHL	C_{n} to $\mathrm{C}_{\mathrm{n}}+4$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 10 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
tpLH tpHL	A or B to C_{n+4}	Sum	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	ns
tpLH tpHL	A or B to C_{n+4}	Dif	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	ns
tpLH tpHL	C_{n} to F	Any	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
tpLH tpHL	$\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
tpLH tpHL	A or B to G	Dif	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
tpLH tpHL	A or B to P	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	$\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{P}}$	Dif	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
tpLH tpHL	A_{i} or Bi_{i} to F_{i}	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns
tpLH tpHL	A_{i} or Bi_{i} to F_{i}	Dif	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	ns
tpLH tpHL	Any \bar{A} or \bar{B} to Any \bar{F}	Sum	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 10 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 12 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 11 \end{gathered}$	ns
tpLH tpHL	Any \bar{A} or \bar{B} to Any \bar{F}	Dif	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	A or B to F	Logic	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	A or B to $\mathrm{A}=\mathrm{B}$	Dif	$\begin{aligned} & 11 \\ & 7.0 \end{aligned}$	$\begin{gathered} 27 \\ 12.5 \end{gathered}$	$\begin{aligned} & 11 \\ & 7.0 \end{aligned}$	$\begin{gathered} 31 \\ 14.5 \end{gathered}$	$\begin{aligned} & 11 \\ & 7.0 \end{aligned}$	$\begin{gathered} 29 \\ 13.5 \end{gathered}$	ns

MC54/74F181

FUNCTION TABLE

Mode Select Inputs				Active-LOW Operands \& F_{n} Outputs		Active-HIGH Operands \& F_{n} Outputs	
S_{3}	S_{2}	S_{1}	S_{0}	Logic $(M=H)$	Arithmetic** $(M=L)\left(C_{n}=L\right)$	Logic $(\mathrm{M}=\mathrm{H})$	Arithmetic** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	\bar{A}	A minus 1	$\overline{\text { A }}$	A
L	L	L	H	$\overline{A B}$	AB minus 1	$\overline{A+B}$	A + B
L	L	H	L	$\bar{A}+B$	$A \bar{B}$ minus 1	$\overline{\text { A }}$ B	$A+\bar{B}$
L	L	H	H	Logic 1	minus 1	Logic 0	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($\mathrm{A}+\overline{\mathrm{B}})$	$\overline{\mathrm{AB}}$	A plus $\bar{A} \bar{B}$
L	H	L	H	$\overline{\text { B }}$	$A B$ plus $(A+\bar{B})$	\bar{B}	$(A+B)$ plus $\bar{A} \bar{B}$
L	H	H	L	$\overline{\mathrm{A} \oplus \mathrm{B}}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L	H	H	H	$\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{A}+\overline{\mathrm{B}}$	$A \bar{B}$	$A \bar{B}$ minus 1
H	L	L	L	$\overline{\text { A }}$ B	A plus ($\mathrm{A}+\mathrm{B}$)	$\bar{A}+B$	A plus AB
H	L	L	H	$A \oplus B$	A plus B	$\overline{\mathrm{A} \oplus \mathrm{B}}$	A plus B
H	L	H	L	B	$A \bar{B}$ plus ($\mathrm{A}+\mathrm{B}$)	B	($\mathrm{A}+\overline{\mathrm{B}})$ plus AB
H	L	H	H	A + B	$A+B$	AB	$A B$ minus 1
H	H	L	L	Logic 0	A plus A^{*}	Logic 1	A plus ${ }^{*}$
H	H	L	H	A \bar{B}	AB plus A	A $+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A B$	$A \bar{B}$ minus A	$A+B$	($\mathrm{A}+\overline{\mathrm{B}}$) plus A
H	H	H	H	A	A	A	A minus 1

