MC7660

Charge Pump DC-to-DC Voltage Converter

The MC7660 is a pin-compatible replacement for the Industry standard ICL7660 charge pump voltage converter. It converts a +1.5 V to +10 V input to a corresponding -1.5 V to -10 V output using only two low-cost capacitors, eliminating inductors and their associated cost, size and EMI.

The on-board oscillator operates at a nominal frequency of 10 kHz . Operation below 10 kHz (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground (with pin 1 open).

The MC7660 is available in an 8-pin SOIC package in extended temperature range.

Features

- Converts +5.0 V Supply to -5.0 V Supply
- Wide Input Voltage Range: 1.5 V to 10 V
- Efficient Voltage Conversion: 99.9\%
- Excellent Power Efficiency: 98\%
- Low Power Supply: $80 \mu \mathrm{~A}$ @ $5.0 \mathrm{~V}_{\mathrm{IN}}$
- Low Cost and Easy to Use
- Only Two External Capacitors Required
- Available in Small Outline (SO) Package
- ESD Protection: $\geq 2.5 \mathrm{kV}$
- No Dx Diode Required for High Voltage Operation

Typical Applications

- RS-232 Negative Bias
- Display Bias
- Data Acquisition Negative Supply Generation

ON Semiconductor ${ }^{\text { }}$

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC7660DR2	8-Pin SOIC	2500 Tape/Reel

Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS*

Rating	Value	Unit
Supply Voltage	+10.5	V
LV and OSC Inputs Voltage (Note 1.) $\begin{aligned} & \mathrm{V}^{+}<5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}>5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.3 \text { to }\left(\mathrm{V}^{+}+0.3\right) \\ \left(\mathrm{V}^{+}-5.5\right) \text { to }\left(\mathrm{V}^{+}+0.3\right) \end{gathered}$	V
Current Into LV (Note 1.) $\mathrm{V}^{+}>3.5 \mathrm{~V}$	20	$\mu \mathrm{A}$
Output Short Duration ($\mathrm{V}_{\text {SUPPLY }} \leq 5.5 \mathrm{~V}$)	Continuous	
Power Dissipation ($\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$) Derate above $50^{\circ} \mathrm{C}$	$\begin{gathered} 470 \\ 5.5 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Seconds)	+300	$\square^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.

ELECTRICAL CHARACTERISTICS (Specifications Measured Over Operating Temperature Range, $\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit (Figure 2), unless otherwise noted.

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current ($\mathrm{R}_{\mathrm{L}}=\infty$)	1^{+}		80	180	$\mu \mathrm{A}$
Supply Voltage Range, High $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \text { LV Open }\right)$	$\mathrm{V}^{+} \mathrm{H}$	3.0	-	10	V
Supply Voltage Range, Low $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, LV to GND)		1.5	-	3.5	V
Output Source Resistance $\begin{aligned} & \text { lout }=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { IOUT }=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \text { IOUT }=20 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}^{+}=2.0 \mathrm{~V}, \text { I OUT }=3.0 \mathrm{~mA}, \mathrm{LV} \text { to } \mathrm{GND}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	Rout	- -	$\begin{gathered} 70 \\ - \\ - \\ 150 \end{gathered}$	$\begin{aligned} & 100 \\ & 120 \\ & 130 \\ & 300 \end{aligned}$	Ω
Oscillator Frequency (Pin 7 Open)	Fosc	-	10	-	kHz
Power Efficiency ($\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$)	$\mathrm{P}_{\text {EFF }}$	95	98	-	\%
Voltage Conversion Efficiency	$\mathrm{V}_{\text {OUT }} \mathrm{E}_{\text {FF }}$	97	99.9	-	\%
Oscillator Impedance $\begin{aligned} & \mathrm{V}^{+}=2.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5.0 \mathrm{~V} \end{aligned}$	Z OSC	-	$\begin{gathered} 1000 \\ 100 \end{gathered}$	-	k Ω

1. Connecting any input terminal to voltages greater than V^{+}or less than GND may cause destructive latch-up. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the MC7660.

*NOTE: For large values of $\mathrm{C}_{\mathrm{OSC}}(>1000 \mathrm{pF})$, the values of C1 and C2 should be increased to $100 \mu \mathrm{~F}$.

Figure 2. MC7660 Test Circuit

APPLICATIONS INFORMATION

Detailed Description

The MC7660 contains all the necessary circuitry to implement a voltage inverter, with the exception of two external capacitors, which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. Operation is best understood by considering Figure 3, which shows an idealized voltage inverter. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2}, such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}.

Figure 3. Idealized Charge Pump Inverter
The four switches in Figure 3 are MOS power switches; S_{1} is a P-channel device, and S_{2}, S_{3} and S_{4} are N-channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of S_{3} and S_{4} must always remain reverse-biased with respect to their sources, but not so much as to degrade their ON resistances. In addition, at circuit start-up, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this will result in high power losses and probable device latch-up.

This problem is eliminated in the MC7660 by a logic network which senses the output voltage ($\mathrm{V}_{\text {OUT }}$) together with the level translators, and switches the substrates of S_{3} and S_{4} to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the MC7660 is an integral part of the anti-latch-up circuitry. Its inherent voltage drop
can, however, degrade operation at low voltages. To improve low-voltage operation, the LV pin should be connected to GND, disabling the regulator. For supply voltages greater than 3.5 V , the LV terminal must be left open to ensure latch-up-proof operation and prevent device damage.

Theoretical Power Efficiency Considerations

In theory, a capacitive charge pump can approach 100\% efficiency if certain conditions are met:
(1) The drive circuitry consumes minimal power.
(2) The output switches have extremely low ON resistance and virtually no offset.
(3) The impedances of the pump and reservoir capacitors are negligible at the pump frequency.

The MC7660 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used. Energy is lost only in the transfer of charge between capacitors if a change in voltage occurs. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}^{2}-V_{2}^{2}\right)
$$

V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 3), compared to the value of R_{L}, there will be a substantial difference in yoltages V_{1} and V_{2}. Therefore, it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

Dos and Don'ts

- Do not exceed maximum supply voltages.
- Do not connect LV terminal to GND for supply voltages greater than 3.5 V .
- Do not short circuit the output to V^{+}supply for voltages above 5.5 V for extended periods; however, transient conditions including start-up are okay.
- When using polarized capacitors in the inverting mode, the + terminal of C_{1} must be connected to pin 2 of the MC7660 and the + terminal of C_{2} must be connected to GND Pin 3.

Simple Negative Voltage Converter

Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5 V to +10 V , keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5 V .

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70Ω. Thus, for a load current of -10 mA and a supply voltage of +5.0 V , the output voltage would be -4.3 V .

The dynamic output impedance of the MC7660 is due, primarily, to capacitive reactance of the charge transfer capacitor $\left(\mathrm{C}_{1}\right)$. Since this capacitor is connected to the output for only $1 / 2$ of the cycle, the equation is:

$$
\mathrm{X}_{\mathrm{C}}=\frac{2}{2 \pi \mathrm{f} \mathrm{C}} 1 \mathrm{l}=3.18 \Omega
$$

where $\mathrm{f}=10 \mathrm{kHz}$ and $\mathrm{C}_{1}=10 \mu \mathrm{~F}$.

Figure 4. Simple Negative Converter

Parallel Devices

Any number of MC7660 voltage converters may be paralleled to reduce output resistance (Figure 5). The reservoir capacitor, C_{2}, serves all devices, while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately:

$$
\mathrm{R}_{\text {OUT }}=\frac{\mathrm{R}_{\text {OUT }}(\text { of MC7660) }}{\mathrm{n} \text { (number of devices) }}
$$

Figure 5. Paralleling Devices Lowers Output Impedance

Cascading Devices

The MC7660 may be cascaded as shown (Figure 6) to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
\mathrm{V}_{\text {OUT }}=-\mathrm{n}\left(\mathrm{~V}_{\text {IN }}\right)
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual MC7660 $\mathrm{R}_{\text {Out }}$ values.

Changing the MC7660 Oscillator Frequency

It may be desirable in some applications (due to noise or other considerations) to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible device latch-up, a $1.0 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer
has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pull-up resistor to V^{+}supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.

It is also possible to increase the conversion efficiency of the MC7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, $\mathrm{C}_{\mathrm{OSC}}$, as shown in Figure 8. Lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and the reservoir $\left(\mathrm{C}_{2}\right)$ capacitors. To overcome this, increase the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin $7(\mathrm{OSC})$ and pin $8\left(\mathrm{~V}^{+}\right)$will lower the oscillator frequency to 1.0 kHz from its nominal frequency of 10 kHz (a multiple of 10), and necessitate a corresponding increase in the values of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F})$.

Figure 6. Increased Output Voltage by Cascading Devices

Figure 7. External Clocking

Figure 8. Lowering Oscillator Frequency

Positive Voltage Multiplication

The MC7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the MC7660 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+}is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2.0 \mathrm{~V}^{+}\right)-\left(2.0 \mathrm{~V}_{\mathrm{F}}\right)$, or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output $\left(\mathrm{V}_{\text {OUT }}\right)$ will depend on the output current, but for $\mathrm{V}^{+}=5.0 \mathrm{~V}$ and an output current of 10 mA , it will be approximately 60Ω.

Figure 9. Positive Voltage Multiplier

Combined Negative Voltage Conversion and Positive Supply Multiplication

Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9.0 V and -5.0 V from an existing +5.0 V supply. In this instance, capacitors C_{1} and C_{3} perform the pump and reservoir functions, respectively, for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir, respectively, for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 10. Combined Negative Converter and Positive Multiplier

Efficient Positive Voltage Multiplication/Conversion

Since the switches that allow the charge pumping operation are bidirectional, the charge transfer can be performed backwards as easily as forwards. Figure 11 shows a MC7660 transforming -5.0 V to +5.0 V (or +5.0 V to +10 V , etc.). The only problem here is that the internal clock and switch-drive section will not operate until some positive
voltage has been generated. An initial inefficient pump, as shown in Figure 10, could be used to start this circuit up, after which it will bypass the other $\left(D_{1}\right.$ and D_{2} in Figure 10 would never turn on), or else the diode and resistor shown dotted in Figure 11 can be used to "force" the internal regulator on.

Figure 11. Positive Voltage Conversion

Voltage Splitting

The same bidirectional characteristics used in Figure 11 can also be used to split a higher supply in half, as shown in Figure 12 . The combined load will be evenly shared between the two sides. Once again, a high value resistor to the LV pin ensures start-up. Because the switches share the load in
parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure 6, +15 V can be converted (via +7.5 V and -7.5 V) to a nominal -15 V , though with rather high series resistance ($\sim 250 \Omega$).

Figure 12. Splitting a Supply in Half

Figure 13. Operating Voltage versus Temperature

Figure 15. Output Source Resistance versus Supply Voltage

Figure 17. Frequency of Oscillation versus Oscillator Capacitance

Figure 14. Power Conversion Efficiency versus Oscillator Frequency

Figure 16. Output Source Resistance versus Temperature

Figure 18. Unloaded Oscillator Frequency versus Temperature

TYPICAL CHARACTERISTICS (Cont.)

Figure 19. Output Voltage versus Output Current

Figure 21. Supply Current and Power Conversion Efficiency versus Load Current

Figure 20. Output Voltage versus Load Current

Figure 22. Supply Current and Power Conversion Efficiency versus Load Current

Figure 23. Output Voltage versus Load Current

PACKAGE DIMENSIONS

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or $800-344-3860$ Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

