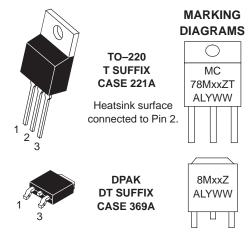

Three-Terminal Medium Current Positive Voltage Regulators

The MC78M00/MC78M00A Series positive voltage regulators are identical to the popular MC7800 Series devices, except that they are specified for only half the output current. Like the MC7800 devices, the MC78M00 three-terminal regulators are intended for local, on-card voltage regulation.

Internal current limiting, thermal shutdown circuitry and safe–area compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe–Area Compensation
- MC78M00A High Accuracy (±2%) Available for 5.0 V, 8.0 V, 12 V and 15 V



This device contains 28 active transistors.

ON Semiconductor

http://onsemi.com

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

Pin 1. Input 2. Ground 3. Output
xx = Voltage Option Z = A, B, or C Option
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year WW, W = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V–18 V)	VI	35	Vdc
(20 V–24V)		40	
Power Dissipation (Package Limitation)			
Plastic Package, T Suffix			
$T_A = 25^{\circ}C$	PD	Internally Limited	
Thermal Resistance, Junction-to-Air	θJA	70	°C/W
Thermal Resistance, Junction-to-Case	θJC	5.0	°C/W
Plastic Package, DT Suffix			
$T_A = 25^{\circ}C$	PD	Internally Limited	
Thermal Resistance, Junction-to-Air	θJA	92	°C/W
Thermal Resistance, Junction-to-Case	θJC	5.0	°C/W
Operating Junction Temperature Range	TJ	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE: ESD data available upon request.

MC78M05C/AC/B ELECTRICAL CHARACTERISTICS (VI = 10 V, IO = 350 mA, 0°C < TJ < 125°C, PD \leq 5.0 W, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C) MC78M05C MC78M05AC	Vo	4.8 4.9	5.0 5.0	5.2 5.1	Vdc
Output Voltage Variation (7.0 Vdc \leq VI \leq 20 Vdc, 5.0 mA \leq IO \leq 350 mA) MC78M05C MC78M05AC	Vo	4.75 4.80		5.25 5.20	Vdc
Line Regulation $(T_J = 25^{\circ}C, 7.0 \text{ Vdc} \le V_I \le 25 \text{ Vdc}, I_O = 200 \text{ mA})$	Reg _{line}	-	3.0	5.0	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA)	Reg _{load}		20 10	100 50	mV
Input Bias Current (T _J = 25° C)	I _{IB}	-	3.2	6.0	mA
Quiescent Current Change (8.0 Vdc \leq V _I \leq 25 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔlIB			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	40	-	μV
	RR	62 62	- 80		dB
Dropout Voltage $(T_J = 25^{\circ}C)$	VI-VO	-	2.0	-	Vdc
Short Circuit Current Limit ($T_J = 25^{\circ}C$, $V_I = 35 V$)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_O = 5.0 \text{ mA})$	Δν _Ο /Δτ	-	±0.2	-	mV/°C
Peak Output Current ($T_J = 25^{\circ}C$)	IO	-	700	-	mA

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = 25^{\circ}C$)	Vo	5.75	6.0	6.25	Vdc
Output Voltage Variation (8.0 Vdc \leq VI \leq 21 Vdc, 5.0 mA \leq IO \leq 350 mA)	VO	5.7	-	6.3	Vdc
Line Regulation (T $_J$ = 25°C, 8.0 Vdc \leq V $_I$ \leq 25 Vdc, I $_O$ = 200 mA)	Reg _{line}	-	5.0	50	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}	_	20 10	120 60	mV
Input Bias Current (T _J = 25°C)	I _{IB}	-	3.2	6.0	mA
Quiescent Current Change (9.0 Vdc \leq V _I \leq 25 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔI _{IB}			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	Vn	_	45	-	μV
Ripple Rejection ($I_O = 100 \text{ mA}, \text{ f} = 120 \text{ Hz}, 9.0 \text{ V} \le \text{V}_I \le 19 \text{ V}$) ($I_O = 300 \text{ mA}, \text{ f} = 120 \text{ Hz}, 9.0 \text{ V} \le \text{V}_I \le 19 \text{ V}, \text{T}_J = 25^{\circ}\text{C}$)	RR	59 59	- 80		dB
Dropout Voltage $(T_J = 25^{\circ}C)$	VI – VO	-	2.0	-	Vdc
Short Circuit Current Limit (T _J = 25°C, V _I = 35 V)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_O = 5.0 \text{ mA})$	$\Delta V_{O} / \Delta T$	-	±0.2	-	mV/°C
Peak Output Current (T _J = 25° C)	IO	-	700	_	mA

$\textbf{MC78M06C ELECTRICAL CHARACTERISTICS} (V_I = 11 \text{ V}, I_O = 350 \text{ mA}, 0^{\circ}\text{C} < T_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ unless otherwise noted.})$

$\textbf{MC78M08C/AC/B ELECTRICAL CHARACTERISTICS} (V_I = 14 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 14 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 14 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 14 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 14 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 14 \text{ V}, \text{ I}_O = 14 \text{ V}$

unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C) MC78M08C MC78M08AC	Vo	7.70 7.84	8.0 8.0	8.30 8.16	Vdc
Output Voltage Variation (10.5 Vdc \leq V _I \leq 23 Vdc, 5.0 mA \leq I _O \leq 350 mA) MC78M08C MC78M08AC	VO	7.6 7.7		8.4 8.3	Vdc
Line Regulation $(T_J = 25^{\circ}C, 10.5 \text{ Vdc} \le V_I \le 25 \text{ Vdc}, I_O = 200 \text{ mA})$	Regline	-	6.0	50	mV
Load Regulation $(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Reg _{load}		25 10	160 80	mV
Input Bias Current (T _J = 25°C)	IIB	_	3.2	6.0	mA
Quiescent Current Change (10.5 Vdc \leq V _I \leq 25 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔI _{IB}			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	Vn	-	52	-	μV
	RR VI–VO	56 56 –	- 80 2.0		dB Vdc
$(T_J = 25^{\circ}C)$ Short Circuit Current Limit $(T_J = 25^{\circ}C, V_I = 35 V)$	los	_	50	_	mA
Average Temperature Coefficient of Output Voltage ($I_O = 5.0 \text{ mA}$)	ΔV _O /ΔT	_	±0.2	-	mV/°C
Peak Output Current $(T_J = 25^{\circ}C)$	IO	_	700	-	mA

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (TJ = 25°C)	Vo	8.64	9.0	9.45	Vdc
Output Voltage Variation (11.5 Vdc \leq V _I \leq 23 Vdc, 5.0 mA \leq I _O \leq 350 mA)	VO	8.55	-	9.45	Vdc
Line Regulation (T _J = 25°C, 11.5 Vdc \leq V _I \leq 25 Vdc, I _O = 200 mA)	Reg _{line}	-	6.0	50	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}		25 10	180 90	mV
Input Bias Current ($T_J = 25^{\circ}C$)	IIB	-	3.2	6.0	mA
Quiescent Current Change (11.5 Vdc \leq V _I \leq 25 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔlIB	-		0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	Vn	_	52	_	μV
$ \begin{array}{l} \mbox{Ripple Rejection} \\ \mbox{(I_O = 100 mA, f = 120 Hz, 12.5 V \leq V_I \leq 22.5 V)} \\ \mbox{(I_O = 300 mA, f = 120 Hz, 12.5 V \leq V_I \leq 22.5 V, T_J = 25^{\circ}C)} \end{array} $	RR	56 56	- 80		dB
Dropout Voltage ($T_J = 25^{\circ}C$)	VI-VO	_	2.0	-	Vdc
Short Circuit Current Limit ($T_J = 25^{\circ}C$, $V_I = 35 V$)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_{O} = 5.0 \text{ mA})$	ΔV _O /ΔT	_	±0.2	-	mV/°C
Peak Output Current ($T_J = 25^{\circ}C$)	IO	-	700	_	mA

$\textbf{MC78M09C/B ELECTRICAL CHARACTERISTICS} (V_I = 15 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ unless otherwise noted.})$

MC78M12C/AC/B ELECTRICAL CHARACTERISTICS (VI = 19 V, IO = 350 mA, 0°C < TJ < 125°C, PD \leq 5.0 W, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Мах	Unit
Output Voltage (T _J = 25°C) MC78M12C MC78M12AC	Vo	11.50 11.76	12 12	12.50 12.24	Vdc
Output Voltage Variation (14.5 Vdc \leq V _I \leq 27 Vdc, 5.0 mA \leq I _O \leq 350 mA) MC78M12C	Vo	11.4	_	12.6	Vdc
$\label{eq:mc78M12AC} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Reg _{line}	-	8.0	12.5 50	mV
Load Regulation $(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Reg _{load}		25 10	240 120	mV
Input Bias Current (T _J = 25°C)	IIB	-	3.2	6.0	mA
Quiescent Current Change (14.5 Vdc \leq V _I \leq 30 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔI _{IB}			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	75	-	μV
	RR	55 55	- 80		dB
Dropout Voltage $(T_J = 25^{\circ}C)$	VI-VO	-	2.0	-	Vdc
Short Circuit Current Limit (T _J = 25°C, V _I = 35 V)	los	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_O = 5.0 \text{ mA})$	Δν _Ο /Δτ	_	±0.3	-	mV/°C
Peak Output Current ($T_J = 25^{\circ}C$)	IO	-	700	-	mA

$\textbf{MC78M15C/AC/B ELECTRICAL CHARACTERISTICS} (V_I = 23 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < \text{T}_J < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ I}_O = 350 \text{ mA}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D \leq 5.0 \text{ W}, 0^\circ\text{C} < 125^\circ\text{C}, \text{ P}_D < 5.0 \text{ W}, 0^\circ\text{C} < 125^\circ\text{C}, 0^\circ\text{C} < 125^\circ\text{C},$

unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = 25^{\circ}C$)	Vo				Vdc
MC78M15C		14.4	15	15.6	
MC78M15AC		14.7	15	15.3	
Output Voltage Variation	VO				Vdc
(17.5 Vdc \leq V _I \leq 30 Vdc, 5.0 mA \leq I _O \leq 350 mA)					
MC78M15C		14.25	-	15.75	
MC78M15AC		14.40	-	15.60	
Input Regulation	Reg _{line}	-	10	50	mV
(T _J = 25°C, 17.5 Vdc \leq V _I \leq 30 Vdc, I _O = 200 mA)					
Load Regulation	Regload				mV
$(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$		-	25	300	
$(T_J = 25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$		-	10	150	
Input Bias Current (T _J = 25° C)	I _{IB}	-	3.2	6.0	mA
Quiescent Current Change	Δl _{IB}				mA
$(17.5 \text{ Vdc} \le \text{V}_{\text{I}} \le 30 \text{ Vdc}, \text{I}_{\text{O}} = 200 \text{ mA})$		-	-	0.8	
$(5.0 \text{ mA} \le I_{O} \le 350 \text{ mA})$		-	-	0.5	
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	90	-	μV
Ripple Rejection	RR				dB
$(I_{O} = 100 \text{ mA}, f = 120 \text{ Hz}, 18.5 \text{ V} \le \text{V}_{I} \le 28.5 \text{ V})$		54	-	- 1	
$(I_{O} = 300 \text{ mA}, \text{ f} = 120 \text{ Hz}, 18.5 \text{ V} \le \text{V}_{I} \le 28.5 \text{ V}, \text{T}_{J} = 25^{\circ}\text{C})$		54	70	-	
Dropout Voltage	VI-VO	_	2.0	-	Vdc
$(T_J = 25^{\circ}C)$					
Short Circuit Current Limit ($T_J = 25^{\circ}C$, $V_I = 35 V$)	IOS	_	50	-	mA
Average Temperature Coefficient of Output Voltage	ΔV _O /ΔT	_	±0.3	- 1	mV/°C
$(I_{O} = 5.0 \text{ mA})$					
Peak Output Current	lo	_	700	-	mA
$(T_J = 25^{\circ}C)$					

$\textbf{MC78M18C ELECTRICAL CHARACTERISTICS} (V_I = 27 \text{ V}, I_O = 350 \text{ mA}, 0^{\circ}\text{C} < T_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ unless otherwise noted.})$

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = 25^{\circ}C$)	Vo	17.3	18	18.7	Vdc
Output Voltage Variation (21 Vdc \leq VI \leq 33 Vdc, 5.0 mA \leq IO \leq 350 mA)	VO	17.1	-	18.9	Vdc
Line Regulation (T $_J$ = 25°C, 21 Vdc \leq V $_I \leq$ 33 Vdc, I $_O$ = 200 mA)	Reg _{line}	-	10	50	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}		30 10	360 180	mV
Input Bias Current (T _J = 25°C)	IIB	-	3.2	6.5	mA
Quiescent Current Change (21 Vdc \leq VI \leq 33 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔI _{IB}			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	Vn	-	100	-	μV
	RR	53 53	- 70		dB
Dropout Voltage $(T_J = 25^{\circ}C)$	VI-VO	-	2.0	-	Vdc
Short Circuit Current Limit ($T_J = 25^{\circ}C$, $V_I = 35 V$)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_O = 5.0 \text{ mA})$	Δν _Ο /Δτ	-	±0.3	-	mV/°C
Peak Output Current ($T_J = 25^{\circ}C$)	IO	_	700	_	mA

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (TJ = 25°C)	Vo	19.2	20	20.8	Vdc
Output Voltage Variation (23 Vdc \leq V _I \leq 35 Vdc, 5.0 mA \leq I _O \leq 350 mA)	VO	19	-	21	Vdc
Line Regulation (T _J = 25°C, 23 Vdc \leq V _I \leq 35 Vdc, I _O = 200 mA)	Reg _{line}	-	10	50	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}		30 10	400 200	mV
Input Bias Current (T _J = 25°C)	I _{IB}	-	3.2	6.5	mA
Quiescent Current Change (23 Vdc \leq V _I \leq 35 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	ΔIB	-		0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	110	-	μV
	RR	52 52	- 70		dB
Dropout Voltage ($T_J = 25^{\circ}C$)	VI-VO	_	2.0	-	Vdc
Short Circuit Current Limit ($T_J = 25^{\circ}C, V_I = 35 V$)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	Δν _Ο /Δτ	-	±0.5	_	mV/°C
Peak Output Current ($T_J = 25^{\circ}C$)	IO	-	700	_	mA

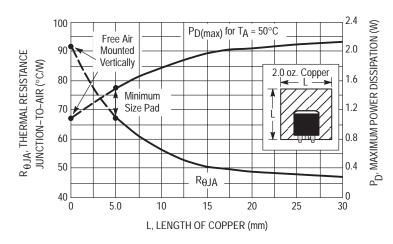
$\textbf{MC78M20C ELECTRICAL CHARACTERISTICS} (V_I = 29 \text{ V}, \text{ I}_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{ P}_D \leq 5.0 \text{ W}, \text{ unless otherwise noted.})$

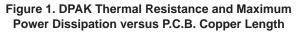
$\textbf{MC78M24C ELECTRICAL CHARACTERISTICS} (V_I = 33 \text{ V}, I_O = 350 \text{ mA}, 0^{\circ}\text{C} < \text{T}_J < 125^{\circ}\text{C}, \text{P}_D \leq 5.0 \text{ W}, \text{ unless otherwise noted.})$

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25° C)	Vo	23	24	25	Vdc
Output Voltage Variation (27 Vdc \leq V _I \leq 38 Vdc, 5.0 mA \leq I _O \leq 350 mA)	VO	22.8	-	25.2	Vdc
Line Regulation (T _J = 25°C, 27 Vdc \leq V _I \leq 38 Vdc, I _O = 200 mA)	Reg _{line}	-	10	50	mV
Load Regulation (T _J = 25°C, 5.0 mA \leq I _O \leq 500 mA) (T _J = 25°C, 5.0 mA \leq I _O \leq 200 mA)	Reg _{load}		30 10	480 240	mV
Input Bias Current (T _J = 25° C)	I _{IB}	-	3.2	7.0	mA
Quiescent Current Change (27 Vdc \leq V _I \leq 38 Vdc, I _O = 200 mA) (5.0 mA \leq I _O \leq 350 mA)	Δl _{IB}			0.8 0.5	mA
Output Noise Voltage (T _A = 25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	170	-	μV
Ripple Rejection ($I_O = 100 \text{ mA}, \text{ f} = 120 \text{ Hz}, 28 \text{ V} \le \text{V}_I \le 38 \text{ V}$) ($I_O = 300 \text{ mA}, \text{ f} = 120 \text{ Hz}, 28 \text{ V} \le \text{V}_I \le 38 \text{ V}, \text{T}_J = 25^{\circ}\text{C}$)	RR	50 50	- 70		dB
Dropout Voltage ($T_J = 25^{\circ}C$)	VI-VO	-	2.0	-	Vdc
Short Circuit Current Limit ($T_J = 25^{\circ}C$)	IOS	-	50	-	mA
Average Temperature Coefficient of Output Voltage $(I_O = 5.0 \text{ mA})$	Δν _Ο /Δτ	-	±0.5	-	mV/°C
Peak Output Current (T _J = 25° C)	lo	-	700	-	mA

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.


Load Regulation – The change in output voltage for a change in load current at constant chip temperature.


Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current – That part of the input current that is not delivered to the load.

Output Noise Voltage – The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

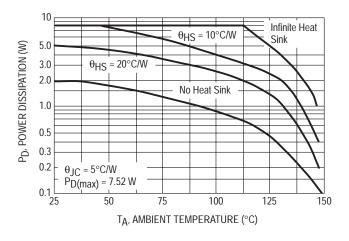


Figure 2. Worst Case Power Dissipation versus Ambient Temperature (TO-220)

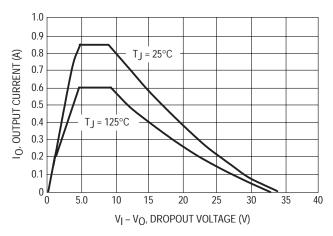


Figure 3. Peak Output Current versus Dropout Voltage

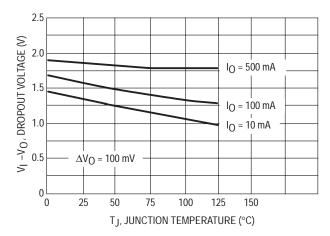


Figure 4. Dropout Voltage versus Junction Temperature

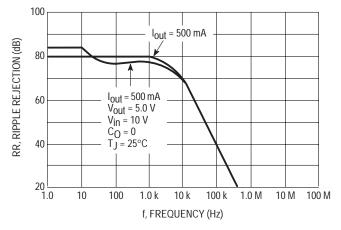


Figure 5. Ripple Rejection versus Frequency

4.0

3.0

2.0

1.0

0

IB, BIAS CURRENT (mA)

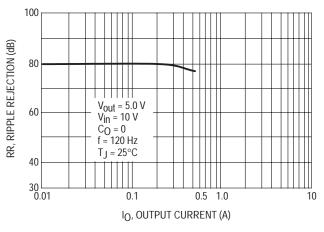


Figure 6. Ripple Rejection versus Output Current

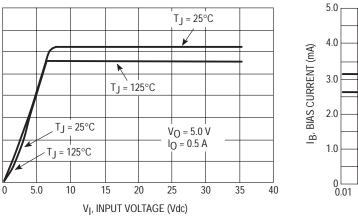
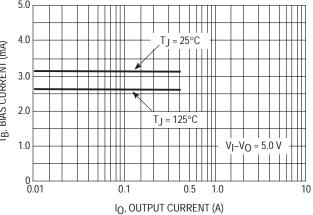
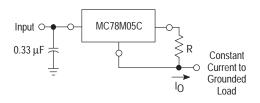


Figure 7. Bias Current versus Input Voltage



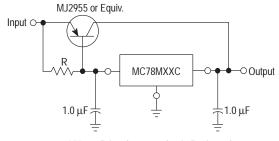

Figure 8. Bias Current versus Output Current

APPLICATIONS INFORMATION

Design Considerations

The MC78M00/MC78M00A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe–Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the


The MC78M00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78M05C is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5.0 \text{ V}}{\text{R}} + I_{\text{IB}}$$

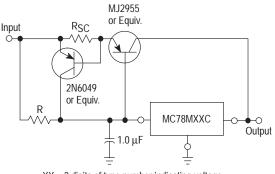
 $I_{IB} = 1.5$ mA over line and load changes.

For example, a 500 mA current source would require R to be a 5.0 Ω , 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V.

Figure 9. Current Regulator

XX = 2 digits of type number indicating voltage.

The MC78M00 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input–output differential voltage minimum is increased by V_{BE} of the pass transistor.


Figure 11. Current Boost Regulator

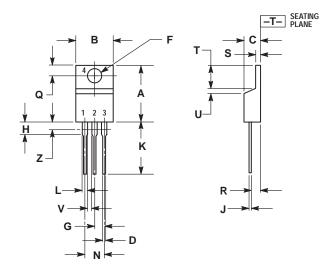
regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.

Figure 10. Adjustable Output Regulator

XX = 2 digits of type number indicating voltage.

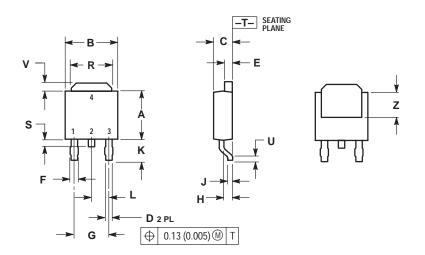
The circuit of Figure 11 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, a 4.0 A plastic power transistor is specified.


Figure 12. Current Boost with Short Circuit Protection

ORDERING INFORMATION

				Shi	pping
Device	Output Voltage	Temperature Range	Package	Rails (No Suffix)	Tape & Reel (RK Suffix)
MC78M05CDT/RK			DDAK		2500 Units/Reel
MC78M05ACDT/RK		T . 00 to . 40500	DPAK	75 Units/Rail	2500 Units/Reel
MC78M05CT	501/	$T_J = 0^\circ$ to +125°C	TO 000		
MC78M05ACT	5.0 V		TO-220	50 Units/Rail	-
MC78M05BDT/RK		T 400 to 10500	DPAK	75 Units/Rail	2500 Units/Reel
MC78M05BT		$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-220	50 Units/Rail	-
MC78M06CDT/RK		T . 0% to 1125%C	DPAK	75 Units/Rail	2500 Units/Reel
MC78M06CT	6.0 V	$T_J = 0^\circ$ to +125°C	TO 000		
MC78M06BT		T _J = -40° to +125°C	TO_220	50 Units/Rail	-
MC78M08CDT/RK			DDAK	75 Linita (Deil	
MC78M08ACDT/RK		T . 0% to 1125%	DPAK	75 Units/Rail	2500 Units/Reel
MC78M08CT	8.0.1/	$T_J = 0^\circ$ to +125°C	TO 220	EQ Unita/Dail	
MC78M08ACT	8.0 V		TO-220	50 Units/Rail	-
MC78M08BDT/RK		T 400 to 140500	DPAK	75 Units/Rail	2500 Units/Reel
MC78M08BT		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-220	50 Units/Rail	-
MC78M09CDT/RK		T . 0% to 1125%	DPAK	75 Units/Rail	2500 Units/Reel
MC78M09CT	9.0 V	$T_J = 0^\circ$ to +125°C	TO-220	50 Units/Rail	-
MC78M09BDT/RK	9.0 V	T . 40% to 1425%	DPAK	75 Units/Rail	2500 Units/Reel
MC78M09BT		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-220	50 Units/Rail	-
MC78M12CDT/RK			DPAK	75 Units/Rail	2500 Units/Reel
MC78M12ACDT/RK	1	$T_J = 0^\circ$ to +125°C	DPAK	75 Units/Rail	2500 Units/Reel
MC78M12CT	12 V		TO 220	EQ Unita/Dail	
MC78M12ACT	12 V		TO-220	50 Units/Rail	-
MC78M12BDT/RK		T . 40% to 1425%	DPAK	75 Units/Rail	2500 Units/Reel
MC78M12BT		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-220	50 Units/Rail	-
MC78M15CDT/RK			DDAK	75 Upito/Poil	2500 Lipito/Pool
MC78M15ACDT/RK		$T_{.1} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	DPAK	75 Units/Rail	2500 Units/Reel
MC78M15CT	15 V	1J = 0 10 + 125 C	TO-220	50 Units/Rail	
MC78M15ACT	15 V		10-220	50 01113/Rail	_
MC78M15BDT/RK	Γ	$T_{1} = 40^{\circ} t_{0} + 125^{\circ}C$	DPAK	75 Units/Rail	2500 Units/Reel
MC78M15BT		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-220	50 Units/Rail	
MC78M18CDT		TJ = 0° to +125°C	DPAK	75 Units/Rail]
MC78M18CT	18 V	$1J = 0 10 + 125^{\circ}C$			1
MC78M18BT		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$			
MC78M20CT	20.1/	T _J = 0° to +125°C	TO-220	50 Lipito/Poil	-
MC78M20BT	20 V		10-220	50 Units/Rail	
MC78M24CT	24 V	$T_J = 0^\circ$ to +125°C			
MC78M24BT	27 V	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$			

PACKAGE DIMENSIONS


TO-220 **T SUFFIX** CASE 221A-09 **ISSUE AA**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Ζ		0.080		2.04

DPAK **DT SUFFIX** CASE 369A-13 ISSUE Z

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Ε	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180 BSC		4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
٧	0.030	0.050	0.77	1.27
Z	0.138		3.51	

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.