

ARM CortexTM-M0 **32-BIT MICROCONTROLLER**

NuMicro™ Family Mini51 Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

\sim	A I	T		IT	C
CU	N	' I E	=/\	"	J

1			DESCRIPTION	
2			SFORMATION LIST AND PIN CONFIGURATION	
3				
	3.1		Micro Mini51™ Series Product Selection Guide	
	3.2	PIN	CONFIGURATION	15
		3.2.1	LQFP 48-pin	15
		3.2.2	QFN 33-pin	16
	3.3	Pin	Description	17
4	BLC	OCK DI	AGRAM	21
	4.1	NuN	/licro Mini51™ Block Diagram	21
5	FUN	NCTION	NAL DESCRIPTION	22
	5.1	Men	mory Organization	22
		5.1.1	Overview	22
		5.1.2	System Memory Map	
	5.2	Nes	sted Vectored Interrupt Controller (NVIC)	
		5.2.1	Overview	24
		5.2.2	Features	
		5.2.3	Exception Model and System Interrupt Map	
		5.2.4	Vector Table	
		5.2.5	NVIC Operation	
		5.2.6	NVIC Control Registers	28
		5.2.7	Interrupt Source Control Registers	41
	5.3	Sys	tem Manager	47
		5.3.1	Overview	47
		5.3.2	System Reset	47
		5.3.3	System Power Distribution	47
		5.3.4	Memory Mapping Table	49
		5.3.5	System Manager Control Registers	50
	5.4	Clo	ck Controller	75
		5.4.1	Overview	75
		5.4.2	Clock Generator	75
		5.4.3	System Clock and SysTick Clock	76
		5.4.4	AHB Clock Source Selection	77
		5.4.5	Peripheral Clock Source Selection	78
		5.4.6	Power-down Mode Clock	80
		5.4.7	Frequency Divider Output	81
		5.4.8	Clock Control Register Map	
		5.4.9	Clock Control Register	
	5.5	Con	nparator Controller (CMPC)	98
		5.5.1	Overview	98
		5.5.2	Features	98
		5.5.3	Block Diagram	
		5.5.4	Functional Description	100

	5.5.5	Comparator Reference Voltage (CRV)	. 101
	5.5.6	Register Map	. 102
	5.5.7	Register Description	. 103
5.6	Anal	og-to-Digital Converter (ADC) Controller	. 107
	5.6.1	Overview	. 107
	5.6.2	Features	. 107
	5.6.3	Block Diagram	. 108
	5.6.4	ADC Operation Procedure	
	5.6.5	ADC Register Map	. 111
	5.6.6	ADC Register	
5.7	Flasl	n Memory Controller (FMC)	121
	5.7.1	Overview	. 121
	5.7.2	Features	. 121
	5.7.3	Block Diagram	. 121
	5.7.4	Functional Description	
	5.7.5	Flash Control Register Map	
	5.7.6	Flash Control Register	. 134
5.8	Gene	eral Purpose I/O	142
	5.8.1	Overview	. 142
	5.8.2	Features	
	5.8.3	Functional Description	
	5.8.4	Port 0-5 Control Register Map	
	5.8.5	Port 0-5 Control Register	
F 0	120 0	-	
5.9	163	berial Interface Controller (Master/Slave)	. 107
5.9		Serial Interface Controller (Master/Slave)	
5.9	5.9.1 5.9.2	Overview	. 167
5.9	5.9.1	Overview Features	. 167 . 167
5.9	5.9.1 5.9.2	Overview Features	. 167 . 167 . 168
5.9	5.9.1 5.9.2 5.9.3	Overview	. 167 . 167 . 168 . 171
5.9	5.9.1 5.9.2 5.9.3 5.9.4	Overview Features I ² C Protocol. I ² C Protocol Registers Register Mapping.	. 167 . 167 . 168 . 171 . 174
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5	Overview Features I^2C Protocol I^2C Protocol Registers Register Mapping Register Description	. 167 . 167 . 168 . 171 . 174
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6	Overview. Features I ² C Protocol. I ² C Protocol Registers Register Mapping. Register Description Operation Modes	. 167 . 167 . 168 . 171 . 174 . 175 . 184
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7	Overview Features I^2C Protocol I^2C Protocol Registers Register Mapping Register Description	. 167 . 168 . 171 . 174 . 175 . 184
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8	Overview Features	. 167 . 168 . 171 . 174 . 175 . 184 . 184
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9	Overview Features I²C Protocol I²C Protocol Registers Register Mapping Register Description Operation Modes Master Transmitter Mode. Master Receiver Mode.	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184
5.9	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10	Overview Features	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12	Overview. Features I ² C Protocol. I ² C Protocol Registers Register Mapping. Register Description Operation Modes Master Transmitter Mode Master Receiver Mode. Slave Receiver Mode.	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12	Overview	. 167 . 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 184
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enha	Overview	. 167 . 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 184 . 191
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enha	Overview	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 184 . 191 . 191
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enhal	Overview Features	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 184 . 191 . 191 . 191
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enhall 5.10.1 5.10.2 5.10.3	Overview Features I²C Protocol	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 191 . 191 . 191 . 193 . 195
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enha 5.10.1 5.10.2 5.10.3 5.10.4	Overview	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 184 . 191 . 191 . 191 . 193 . 195 . 203
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enhall 5.10.1 5.10.2 5.10.3 5.10.4 5.10.5	Overview	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 191 . 191 . 191 . 193 . 203 . 204
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.9.12 Enha 5.10.1 5.10.2 5.10.3 5.10.4 5.10.5 5.10.6	Overview	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 191 . 191 . 191 . 193 . 195 . 203 . 204
	5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 5.9.6 5.9.7 5.9.8 5.9.9 5.9.10 5.9.11 5.10.2 5.10.3 5.10.4 5.10.5 5.10.6 5.10.7	Overview	. 167 . 168 . 171 . 174 . 175 . 184 . 184 . 184 . 184 . 191 . 191 . 193 . 195 . 203 . 204 . 206

		5.10.1	0 PWM Controller Register	208
	5.11	1 Seri	al Peripheral Interface (SPI) Controller	228
		5.11.1	Overview	228
		5.11.2	Features	228
		5.11.3	SPI Block Diagram	228
		5.11.4	Functional Description	229
		5.11.5	3	
		5.11.6	g	
	5.12	2 Tim	er Controller	251
		5.12.1	Overview	251
		5.12.2		251
		5.12.3	3 3	
		5.12.4		
		5.12.5	3	
	- 4	5.12.6		
	5.13	3 UAF	RT Interface Controller	
		5.13.1		267
		5.13.2		269
		5.13.3	3 3	
		5.13.4	The state of the s	
		5.13.5		
	- 4	5.13.6	•	
	5.14	4 Wat	chdog Timer	
		5.14.1		
		5.14.2		
		5.14.3	3 3	
		5.14.4		
^	۸ ا	5.14.5	3	
6			RTEX™-M0 CORE	
	6.1	Ove	rview	309
	6.2	Fea	tures	310
	6.3	Sys	tem Timer (SysTick)	311
		6.3.1	System Timer Control Register Map	312
		6.3.2	System Timer Control Register	
	6.4	Sys	tem Control Registers	316
		6.4.1	System Control Register Memory Map	316
		6.4.2	System Control Register	
7	APF	PLICAT	ION CIRCUIT	
8	ELE	CTRIC	AL CHARACTERISTICS	325
	8.1		olute Maximum Ratings	
	8.2		Electrical Characteristics	
	8.3		Electrical Characteristics	
	0.0	8.3.1	External Input Clock	
		8.3.2	External 4 ~ 24 MHz XTAL Oscillator	
, a	2012	0.0.2	Page 4 of 342	

	8.3.3	Typical Crystal Application Circuit	331
	8.3.4	External 32.768 KHz XTAL Oscillator	332
	8.3.5	Internal 22.1184 MHz RC Oscillator	332
	8.3.6	Internal 10 KHz RC Oscillator	333
8.4	Anal	og Characteristics	334
	8.4.1	Brown-Out Reset (BOD)	334
	8.4.2	Low Voltage Reset (LVR)	334
	8.4.3	Analog Comparator	334
	8.4.4	Analog Comparator Reference Voltage (CRV)	335
	8.4.5	10-bit ADC	335
	8.4.6	Flash Memory Characteristics	337
PAC	KAGE	DIMENSION	338
9.1	48-pi	in LQFP	338
9.2	33-pi	in QFN (4mm x 4mm)	339
9.3	33-pi	in QFN (5mm x 5mm)	340
REV	ISION	HISTORY	341
	PAC 9.1 9.2 9.3	8.3.4 8.3.5 8.3.6 8.4 Anal 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 PACKAGE 9.1 48-pi 9.2 33-pi 9.3 33-pi	8.3.4 External 32.768 KHz XTAL Oscillator 8.3.5 Internal 22.1184 MHz RC Oscillator 8.3.6 Internal 10 KHz RC Oscillator 8.4 Analog Characteristics 8.4.1 Brown-Out Reset (BOD) 8.4.2 Low Voltage Reset (LVR) 8.4.3 Analog Comparator 8.4.4 Analog Comparator Reference Voltage (CRV) 8.4.5 10-bit ADC 8.4.6 Flash Memory Characteristics PACKAGE DIMENSION. 9.1 48-pin LQFP 9.2 33-pin QFN (4mm x 4mm)

List of Figures

Figure 3.1-1 NuMicro Mini51™ Series Product Selection Guide	
Figure 3.2-1 NuMicro Mini51™ Series LQFP 48-pin Assignment	15
Figure 3.2-2 NuMicro Mini51™ Series QFN 33-pin Assignment	16
Figure 4.1-1 NuMicro Mini51™ Series Block Diagram	21
Figure 5.3-1 NuMicro Mini51™ Series Power Distribution Diagram	48
Figure 5.4-1 Clock Generator Block Diagram	75
Figure 5.4-2 System Clock Block Diagram	76
Figure 5.4-3 SysTick Clock Control Block Diagram	76
Figure 5.4-4 AHB Clock Source for HCLK	77
Figure 5.4-5 Peripherals Clock Source Selection for PCLK	78
Figure 5.4-6 Clock Source of Frequency Divider	81
Figure 5.4-7 Block Diagram of Frequency Divider	81
Figure 5.5-1 Analog Comparator Block Diagram	99
Figure 5.5-2 Comparator Controller Interrupt Sources	100
Figure 5.5-3 Comparator Reference Voltage Block Diagram	101
Figure 5.6-1 ADC Controller Block Diagram	108
Figure 5.6-2 ADC Clock Control	109
Figure 5.6-3 A/D Conversion Result Monitor Logics Diagram	110
Figure 5.6-4 A/D Controller Interrupt	110
Figure 5.7-1 Flash Memory Control Block Diagram	122
Figure 5.7-2 Flash Memory Organization	124
Figure 5.7-3 Flash Memory Structure	126
Figure 5.7-4 ISP Procedure	130
Figure 5.7-5 ISP Operation Flow	131
Figure 5.8-1 Push-Pull Output	143
Figure 5.8-2 Open-Drain Output	143
Figure 5.8-3 Quasi-bidirectional I/O Mode	144
Figure 5.9-1 Bus Timing	167
Figure 5.9-2 I ² C Protocol	168
Figure 5.9-3 Master Transmits Data to Slave	168
Figure 5.9-4 Master Reads Data from Slave	169
Figure 5.9-5 START and STOP Condition	169
Figure 5.9-6 Bit Transfer on the I ² C Bus	170
Figure 5.9-7 Acknowledge on the I ² C Bus	171
Figure 5.9-8 I ² C Data Shifting Direction	172
0 2012 Page 6 of 242	Povision V4 00

UMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

Revision V1.03

NuMicroTM Mini51 Technical Reference Manual

Figure 5.9-9 I ² C Time-out Count Block Diagram	173
Figure 5.9-10 Legend for the Following Five Figures	185
Figure 5.9-11 Master Transmitter Mode	186
Figure 5.9-12 Master Receiver Mode	187
Figure 5.9-13 Slave Transmitter Mode	188
Figure 5.9-14 Slave Receiver Mode	189
Figure 5.9-15 GC Mode	190
Figure 5.10-1 Application Circuit Diagram	192
Figure 5.10-2 PWM Block Diagram	193
Figure 5.10-3 PWM Generator 0 Architecture Diagram	193
Figure 5.10-4 PWM Generator 2 Architecture Diagram	194
Figure 5.10-5 PWM Generator 4 Architecture Diagram	194
Figure 5.10-6 Edge-aligned PWM	196
Figure 5.10-7 PWM Edge-aligned Waveform Output	196
Figure 5.10-8 Edge-aligned Flow Diagram	197
Figure 5.10-9 Legend of Internal Comparator Output of PWM-Timer	198
Figure 5.10-10 PWM Timer Operation Timing	198
Figure 5.10-11 Center-aligned Mode	199
Figure 5.10-12 PWM Center-aligned Waveform Output	200
Figure 5.10-13 Center-aligned Flow Diagram (INT_TYPE = 0)	201
Figure 5.10-14 PWM Double Buffering Illustration	202
Figure 5.10-15 PWM Controller Output Duty Ratio	202
Figure 5.10-16 Dead-zone Insertion	203
Figure 5.10-17 Initial State and Polarity Control with Rising Edge Dead-zone Insertion	205
Figure 5.10-18 Motor Control PWM Architecture	206
Figure 5.11-1 SPI Block Diagram	228
Figure 5.11-3 SPI Slave Mode Application Block Diagram	229
Figure 5.11-4 Two Transfer (Burst Mode) in One Transaction	231
Figure 5.11-5 Word Suspend Mode	231
Figure 5.11-6 Byte Reorder	232
Figure 5.11-7 Byte Suspend Mode	232
Figure 5.11-8 Variable Serial Clock Frequency	233
Figure 5.11-9 SPI Timing in Master Mode	234
Figure 5.11-10 SPI Timing in Master Mode (Alternate Phase of SPICLK)	235
Figure 5.11-11 SPI Timing in Slave Mode	235
Figure 5.11-12 SPI Timing in Slave Mode (Alternate Phase of SPICLK)	236

nuvoTon

↲	
\supset	
$\overline{}$	
_	
⋖	
⋝	
\overline{c}	
ᆂ	
Z.	
$\overline{\sim}$	
щ	
ш.	
ш	
$\overline{\sim}$	
ш	
-	
ᄾ	
\circ	
=	
Z	
т	
\overline{c}	
\smile	
ш	
戸	
↽	
ഗ	
-	
<u> </u>	
≂	
2	
≥	
മ	
$\overline{}$	
\cong	
_	
\supset	

Figure 5.12-1 Timer Controller Block Diagram	252
Figure 5.12-2 Clock Source of Timer Controller	252
Figure 5.12-3 Continuous Counting Mode	254
Figure 5.13-1 UART Clock Control Diagram	270
Figure 5.13-2 UART Block Diagram	271
Figure 5.13-3 Auto Flow Control Block Diagram	273
Figure 5.13-4 IrDA Block Diagram	274
Figure 5.13-5 IrDA TX/RX Timing Diagram	275
Figure 5.13-6 Structure of RS-485 Frame	277
Figure 5.14-1 Timing of Interrupt and Reset Signal	303
Figure 5.14-2 Watchdog Timer Clock Control	303
Figure 5.14-3 Watchdog Timer Block Diagram	304
Figure 6.1-1 Functional Block Diagram	309
Figure 8.3-1 Typical Crystal Application Circuit	332

Revision V1.03

List of Tables

Table 3.3-1 NuMicro Mini51™ Series Pin Description	20
Table 5.1-1 Address Space Assignments for On-Chip Modules	23
Table 5.2-1 Exception Model	25
Table 5.2-2 System Interrupt Map	26
Table 5.2-3 Vector Table Format	26
Table 5.3-1 Memory Mapping Table	49
Table 5.4-1 Peripherals Engine Clock Source Selection Table	79
Table 5.4-2 Power-down Mode Control Table	85
Table 5.7-1 Memory Address Map	123
Table 5.7-2 Boot Selection Table	125
Table 5.7-3 Data Flash Table	125
Table 5.7-4 Data Flash Configuration Example	129
Table 5.7-5 ISP Command Table	132
Table 5.11-1 Byte Order and Byte Clock Idle Internal Conditions	233
Table 5.12-1 Input Capture Mode Operation	255
Table 5.13-1 UART Baud Rate Setting Table	267
Table 5.13-2 UART Baud Rate Setting Table	267
Table 5.13-3 UART Interrupt Sources and Flags Table In Software Mode	294
Table 5.13-4 UART Baud Rate Setting Table	297
Table 5.14-1 Watchdog Time-out Interval Selection	302

nuvoTon

1 GENERAL DESCRIPTION

The NuMicro Mini51™ series 32-bit microcontroller is embedded with an ARM[®] Cortex™-M0 core for industrial controls and applications which require high performance, high integration, and low cost. The Cortex™-M0 is the newest ARM embedded processor with 32-bit performance at a cost equivalent to the traditional 8-bit microcontroller.

The NuMicro Mini51™ series can run up to 24 MHz, and thus can afford to support a variety of industrial controls and applications requiring high CPU performance. The NuMicro Mini51™ series provides 4K/8K/16K-byte embedded program flash, size configurable data flash (shared with program flash), 2K-byte flash for the ISP, and 2K-byte embedded SRAM.

A number of system-level peripheral functions, such as I/O Port, Timer, UART, SPI, I²C, PWM, ADC, Watchdog Timer, and low voltage detector, have been incorporated in the NuMicro Mini51™ series to reduce component count, board space, and system cost. These useful functions make the NuMicro Mini51™ series powerful for a wide range of applications.

Additionally, the NuMicro Mini51™ series is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, allowing user to update program memory without removing a chip from an actual end product.

nuvoTon

2 FEATURES

- Core
 - ◆ ARM[®] Cortex[™]-M0 core running up to 24 MHz
 - One 24-bit system timer
 - Supports low power Idle mode
 - ◆ A single-cycle 32-bit hardware multiplier
 - ◆ NVIC for 32 interrupt inputs, each with 4-level priority
 - ◆ Supports Serial Wire Debug (SWD) with 2 watchpoints/4 breakpoints
- Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
- Memory
 - ◆ 4KB/8KB/16KB flash memory for program memory (APROM)
 - ◆ Configurable flash memory for data memory (Data Flash)
 - ◆ 2KB flash memory for loader (LDROM)
 - ◆ 2KB SRAM for internal scratch-pad RAM (SRAM)
- In-System Programming (ISP) and In-Circuit Programming (ICP)
- Clock Control
 - ◆ Programmable system clock source
 - Switch clock sources on-the-fly
 - ◆ 4 ~ 24 MHz crystal oscillator (HXT)
 - ◆ 32.768K crystal oscillator (LXT) for idle wake-up and system operation clock
 - ◆ 22.1184 MHz internal oscillator (HIRC) (1% accuracy at 25°C, 5V)
 - Dynamically calibrating the HIRC OSC to 22.0 MHz ±1% from -40°C to 85°C by external 32.768K crystal oscillator (LXT)
 - ◆ 10 KHz internal low-power oscillator (LIRC) for watchdog and idle wake-up
- I/O Port
 - ◆ Up to 30 GPIO (General Purpose I/O) pins for LQFP-48 package
 - ◆ Software-configured I/O type
 - Quasi-bidirectional input/output
 - Push-pull output
 - Open-drain output
 - Input-only (high impendence)
 - Optional Schmitt trigger input
- Timer
 - ◆ Two 24-bit Timers with 8-bit prescaler
 - Supports Event Counter mode
 - Supports Toggle Output mode

- Supports external trigger in Pulse Width Measurement mode
 - Supports external trigger in Pulse Width Capture mode
- Watchdog Timer
 - Programmable clock source and time-out period
 - ◆ Supports wake-up function in Power-down mode and Idle mode
 - ◆ Interrupt or reset selectable when time-out happens
- PWM
 - Up to three built-in 16-bit PWM generators with six PWM outputs or three complementary paired PWM outputs
 - Supports edge alignment or center alignment
 - Supports fault detection
 - Individual clock source, clock divider, 8-bit prescalar and dead-zone generator for each PWM generator
 - PWM interrupt synchronized to PWM period
- UART (Universal Asynchronous Receiver/Transmitters)
 - One UART device
 - Buffered receiver and transmitter with 16-byte FIFO
 - Optional flow control function (CTSn and RTSn)
 - Supports IrDA (SIR) function
 - ◆ Programmable baud-rate generator up to 1/16 system clock
 - ◆ Supports RS-485 function
- SPI (Serial Peripheral Interface)
 - ◆ One SPI device
 - ♦ Masters up to 12 MHz, and Slaves up to 4 MHz
 - Supports SPI Master/Slave mode
 - Full duplex synchronous serial data transfer
 - Variable length of transfer data from 1 to 32 bits
 - MSB or LSB first data transfer
 - Rx and Tx on both rising or falling edge of serial clock independently
 - ♦ Byte Suspend mode in 32-bit transmission
- I²C
 - Supports Master/Slave mode
 - ◆ Bi-directional data transfer between masters and slaves
 - Multi-master bus (no central master)
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
 - ◆ Serial clock synchronization allowing devices with different bit rates to

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoton

communicate via one serial bus

- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- ◆ Programmable clocks allowing for versatile rate control
- ◆ Supports multiple address recognition (4 slave addresses with mask option)
- ADC (Analog-to-Digital Converter)
 - ♦ 10-bit SAR ADC with 150K SPS
 - ◆ Up to 8-ch single-end input and one internal input from band-gap
 - ◆ Conversion started by software or external pin
- Analog Comparator
 - ◆ Two analog comparators with programmable 16-level internal voltage reference
 - ◆ Built-in CRV (comparator reference voltage)
- BOD (Brown-Out Detection) Reset
 - ◆ Three programmable threshold levels: 3.8V/2.7V/2.0V (default as 2.0V)
 - ◆ Optional BOD interrupt or reset
- 96-bit unique ID
- Operating Temperature: -40°C ~85°C
- Packages:
 - ◆ Green package (RoHS)
 - ◆ LQFP 48-pin (7x7), QFN 33-pin (5x5), QFN 33-pin (4x4)

3 PARTS INFORMATION LIST AND PIN CONFIGURATION

3.1 NuMicro Mini51™ Series Product Selection Guide

Part Number	APROM	RAM	Data Flash	ISP Loader	I/O	Timer	Cor	nectiv	/ity	Comp.	Comp. PWI	PWM	WM ADC	ISP	IRC 22.1184	Package
				ROM			UART	SPI	I ² C				ICP	MHz		
MINI51LAN	4 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	LQFP48	
MINI51ZAN	4 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(5x5)	
MINI51TAN	4 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(4x4)	
MINI52LAN	8 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	٧	٧	LQFP48	
MINI52ZAN	8 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(5x5)	
MINI52TAN	8 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(4x4)	
MINI54LAN	16 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	LQFP48	
MINI54ZAN	16 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(5x5)	
MINI54TAN	16 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	٧	V	QFN33(4x4)	

Figure 3.1-1 NuMicro Mini51™ Series Product Selection Guide

nuvoton

3.2 PIN CONFIGURATION

3.2.1 LQFP 48-pin

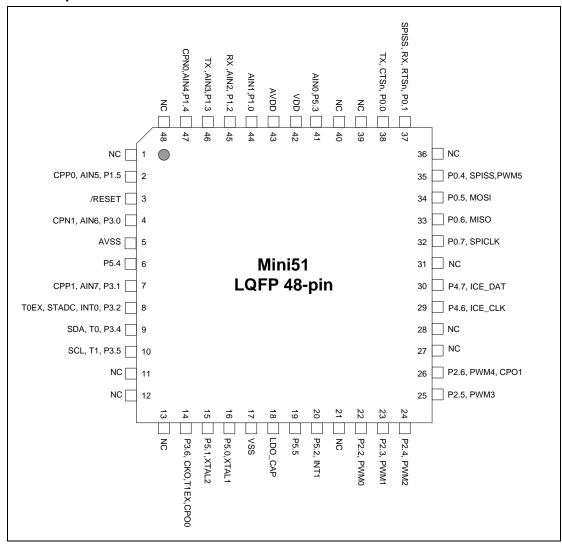


Figure 3.2-1 NuMicro Mini51™ Series LQFP 48-pin Assignment

3.2.2 QFN 33-pin

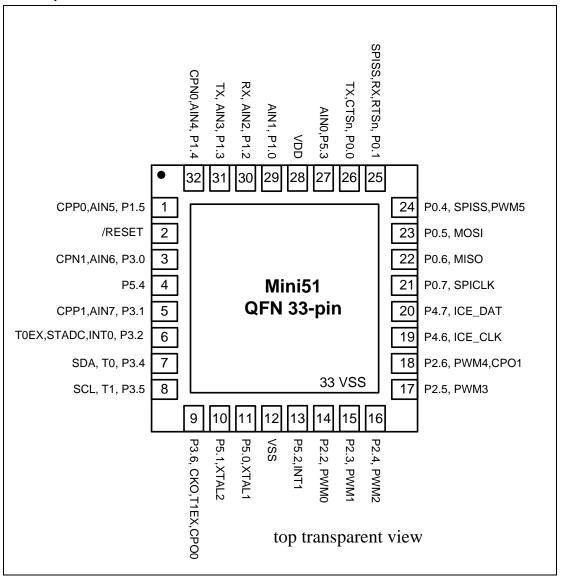


Figure 3.2-2 NuMicro Mini51™ Series QFN 33-pin Assignment

3.3 Pin Description

Pin Nu	Pin Number							
LQFP 48-pin			Pin Type	Description				
1		NC		Not connected				
		P1.5	I/O	Digital GPIO pin				
2	1	AIN5	Al	ADC analog input pin				
		CPP0	Al	Analog comparator Positive input pin				
3	2	/RESET	I(ST)	The Schmitt trigger input pin for hardware device reset. A "Low" on this pin for 768 clock counter of Internal RC 22.1184 MHz while the system clock is running will reset t device. /RESET pin has an internal pull-up resistor allowir power-on reset by simply connecting an external capacito GND.				
		P3.0	I/O	Digital GPIO pin				
4	3	AIN6	Al	ADC analog input pin				
		CPN1	Al	Analog comparator negative input pin				
5		AVSS	AP	Ground pin for analog circuit				
6	4	P5.4	I/O	Digital GPIO pin				
		P3.1	I/O	Digital GPIO pin				
7	5	AIN7	Al	ADC analog input pin				
		CPP1	Al	Analog comparator positive input pin				
		P3.2	1/0	Digital GPIO pin				
8	6	INT0	Ι	External interrupt 0 input pin				
· ·		STADC	1	ADC external trigger input pin				
		T0EX	Ι	Timer 0 external capture/reset trigger input pin				
		P3.4	I/O	Digital GPIO pin				
9	7	ТО	I/O	Timer 0 external event counter input pin				
		SDA	I/O	I ² C data I/O pin				
		P3.5	I/O	Digital GPIO pin				
10	8	T1	I/O	Timer 1 external event counter input pin				
		SCL	I/O	I ² C clock I/O pin				
11		NC		Not connected				
12		NC		Not connected				
13		NC		Not connected				

Pin Nu	umber				
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description	
		P3.6	I/O	Digital GPIO pin	
14	9	CPO0	0	Analog comparator output pin	
14	9	СКО	0	Frequency divider output pin	
		T1EX	I	Timer 1 external capture/reset trigger input pin	
		P5.1	I/O	Digital GPIO pin	
15	10	XTAL2	0	The output pin from the internal inverting amplifier. It emits the inverted signal of XTAL1.	
		P5.0	I/O	Digital GPIO pin	
16	11	XTAL1	1	The input pin to the internal inverting amplifier. The system clock could be from external crystal or resonator.	
17	12	-VSS	Р	Ground hin for digital circuit	
17	33	V 3 3	Г	Ground pin for digital circuit	
18		LDO_CA P	Р	LDO output pin	
				Digital GPIO pin	
19		P5.5	I/O	User program must enable pull-up resistor in the QFN-33 package.	
20	13	P5.2	I/O	Digital GPIO pin	
20	13	INT1	I	External interrupt 1 input pin	
21		NC		Not connected	
22	14	P2.2	I/O	Digital GPIO pin	
	14	PWM0	0	PWM0 output of PWM unit	
23	15	P2.3	1/0	Digital GPIO pin	
	.0	PWM1	0	PWM1 output of PWM unit	
24	16	P2.4	I/O	Digital GPIO pin	
		PWM2	0	PWM2 output of PWM unit	
25	25 17		I/O	Digital GPIO pin	
	.,	PWM3	0	PWM3 output of PWM unit	
		P2.6	I/O	Digital GPIO pin	
26	18	PWM4	0	PWM4 output of PWM unit	
		CPO1	0	Analog comparator output pin	
27		NC		Not connected	

Pin Nu	umber					
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description		
28		NC		Not connected		
29	19	P4.6	I/O	Digital GPIO pin		
29	19	ICE_CLK	I	Serial wired debugger clock pin		
30	20	P4.7	I/O	Digital GPIO pin		
30	20	ICE_DAT	I/O	Serial wired debugger data pin		
31		NC		Not connected		
32	21	P0.7	I/O	Digital GPIO pin		
32	21	SPICLK	I/O	SPI serial clock pin		
33	22	P0.6	I/O	Digital GPIO pin		
33	22	MISO	I/O	SPI MISO (master in/slave out) pin		
34	23	P0.5	I/O	Digital GPIO pin		
34	25	MOSI	0	SPI MOSI (master out/slave in) pin		
	24	P0.4	I/O	Digital GPIO pin		
35		SPISS	I/O	SPI slave select pin		
		PWM5	0	PWM5 output of PWM unit		
36		NC		Not connected		
		P0.1	I/O	Digital GPIO pin		
37	25	RTSn	0	UART RTS pin		
37		RX	I	UART data receiver input pin		
		SPISS	I/O	SPI slave select pin		
		P0.0	I/O	Digital GPIO pin		
38	26	CTSn	I	UART CTS pin		
		TX	0	UART transmitter output pin		
39		NC		Not connected		
40		NC		Not connected		
41	27	P5.3	I/O	Digital GPIO pin		
71	21	AIN0	Al	ADC analog input pin		
42	28	VDD	Р	Power supply for digital circuit		
43		AVDD	Р	Power supply for analog circuit		
44	29	P1.0	I/O	Digital GPIO pin		

Pin N	Pin Number				
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description	
		AIN1	Al	ADC analog input pin	
		P1.2	I/O	Digital GPIO pin	
45	30	AIN2	Al	ADC analog input pin	
		RX	I	UART data receiver input pin	
		P1.3	I/O	Digital GPIO pin	
46	31	AIN3	Al	ADC analog input pin	
		TX	0	UART transmitter output pin	
		P1.4	I/O	Digital GPIO pin	
47	32	AIN4	I/O	PWM5: PWM output/Capture input	
		CPN0	Al	Analog comparator negative input pin	
48		NC		Not connected	

Table 3.3-1 NuMicro Mini51™ Series Pin Description

^[1] I/O type description: I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pin, ST: Schmitt trigger, A: Analog input.

nuvoTon

4 BLOCK DIAGRAM

4.1 NuMicro Mini51™ Block Diagram

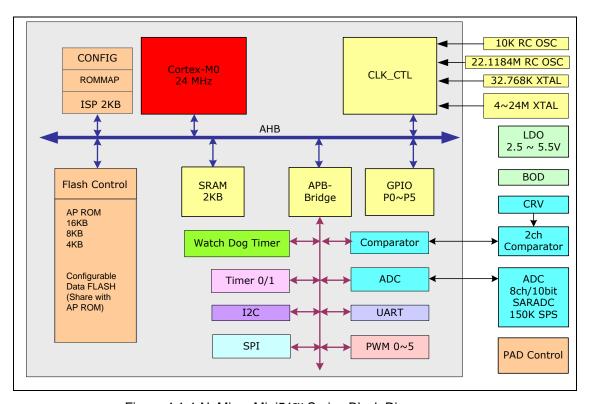


Figure 4.1-1 NuMicro Mini51™ Series Block Diagram

nuvoton

5 FUNCTIONAL DESCRIPTION

5.1 Memory Organization

5.1.1 Overview

The NuMicro Mini51™ series provides a 4G-byte address space for programmers. The memory locations assigned to each on-chip modules are shown in Table 5.1-1. The detailed register and memory addressing and programming will be described in the following sections for individual on-chip modules. The NuMicro Mini51™ series only supports little-endian data format.

5.1.2 System Memory Map

The memory locations assigned to each on-chip controllers are shown in the following table.

Address Space	Token	Controllers
Flash and SRAM Memory Spa	ce	
0x0000_0000 - 0x0000_3FFF	FLASH_BA	Flash Memory Space (16 KB)
0x2000_0000 - 0x2000_07FF	SRAM_BA	SRAM Memory Space (2 KB)
AHB Controllers Space (0x500	00_0000 – 0x501	IF_FFFF)
0x5000_0000 - 0x5000_01FF	GCR_BA	Global Control Registers
0x5000_0200 - 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 - 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 - 0x5000_7FFF	GP_BA	GPIO Control Registers
0x5000_C000 - 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
APB1 Controllers Space (0x40	000_0000 – 0x40	O1F_FFFF)
0x4000_4000 - 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4001_0000 - 0x4001_3FFF	TMR_BA	Timer0/Timer1 Control Registers
0x4002_0000 - 0x4002_3FFF	I2C_BA	I ² C Interface Control Registers
0x4003_0000 - 0x4003_3FFF	SPI_BA	SPI Control Registers
0x4004_0000 - 0x4004_3FFF	PWM_BA	PWM Control Registers
0x4005_0000 - 0x4005_3FFF	UART_BA	UART Control Registers
0x400D_0000 - 0x400D_3FFF	CMP_BA	Analog Comparator Control Registers
0x400E_0000 - 0x400E_3FFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers
System Controllers Space (0x	E000_E000 - 0x	(E000_EFFF)
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	SCS_BA	Nested Vectored Interrupt Control Registers
0xE000_ED00 - 0xE000_ED8F	SCB_BA	System Control Block Registers

Table 5.1-1 Address Space Assignments for On-Chip Modules

5.2 Nested Vectored Interrupt Controller (NVIC)

5.2.1 Overview

The Cortex[™]-M0 CPU provides an interrupt controller as an integral part of the exception mode, named "Nested Vectored Interrupt Controller (NVIC)". It is closely coupled to the processor kernel and provides the following features.

5.2.2 Features

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Dynamic priority change
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When an interrupt is accepted, the starting address of the Interrupt Service Routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, the NVIC will also automatically save the processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "ARM® Cortex™-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

5.2.3 Exception Model and System Interrupt Map

The exception model supported by the NuMicro Mini51™ series is listed in the following table. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that the priority "0" is treated as the fourth priority on the system, after the three system exceptions "Reset", "NMI" and "Hard

Fault".

Exception Name	Exception Number	Priority	
Reset	1	-3	
NMI	2	-2	
Hard Fault	3	-1	
Reserved	4 ~ 10	Reserved	
SVCall	11	Configurable	
Reserved	12 ~ 13	Reserved	
PendSV	14	Configurable	
SysTick	15	Configurable	
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable	

Table 5.2-1 Exception Model

Exception Number	IRQ Number (Bit in Interrupt Registers)	Exception Name	Source IP	Exception Description	Power-down Wake-up
1 ~ 15	-	-	-	System exceptions	-
16	0	BOD_OUT	Brown-out	Brown-out low voltage detected interrupt	Yes
17	1	WDT_INT	WDT	Watchdog Timer interrupt	Yes
18	2	EINT0	GPIO	External signal interrupt from P3.2 pin	
19	3	EINT1	EINT1 GPIO External signal interrupt from P5.2 pin		Yes
20	4	GP0/1_INT	GPIO	External signal interrupt from GPIO group P0~P1	Yes
21	5	GP2/3/4_INT	GP2/3/4_INT GPIO External signal interrupt from GPIO group P2~P4 except P3.2		Yes
22	6	PWM_INT	PWM	PWM interrupt	No
23	7	BRAKE_INT	PWM	PWM interrupt	No
24	8	TMR0_INT	TMR0	MR0 Timer 0 interrupt	
25	9	TMR1_INT	TMR1	Timer 1 interrupt	Yes
26 ~ 27	10 ~ 11	-	-	-	
28	12	UART_INT	UART	UART interrupt	Yes

nuvoTon

Exception Number	IRQ Number (Bit in Interrupt Registers)	Exception Name	Source IP	Exception Description	Power-down Wake-up
29	13	-	-	-	
30	14	SPI_INT	SPI	SPI interrupt	No
31	15	-	-	-	
32	16	GP5_INT	GPIO	External signal interrupt from GPIO group P5 except P5.2	Yes
33	17	HFIRC_TRIM _INT	HFIRC	HFIRC trim interrupt	No
34	18	I2C_INT	I ² C	I ² C interrupt	No
35 ~ 40	19 ~ 24	-	-	-	
41	25	ACMP_INT	ACMP	Analog Comparator 0 or 1 interrupt	Yes
42 ~ 43	26 ~ 27	-	-	-	
44	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake-up from Power-down state	Yes
45	29	ADC_INT	ADC	ADC interrupt	No
46 ~ 47	30 ~ 31	-	-	-	

Table 5.2-2 System Interrupt Map

5.2.4 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at $0x0000_0000$. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in the previous section.

Vector Table Word Offset (Bytes)	Description
0x00	Initial Stack Pointer Value
Exception Number × 0x04	Exception Entry Pointer using that Exception Number

Table 5.2-3 Vector Table Format

5.2.5 NVIC Operation

NVIC interrupts can be enabled or disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, and both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending; however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in the next section.

5.2.6 NVIC Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SCS_BA = 0>	E000_E000			
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0 ~ IRQ3 Priority Control Register	0x0000_0000
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4 ~ IRQ7 Priority Control Register	0x0000_0000
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8 ~ IRQ11 Priority Control Register	0x0000_0000
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12 ~ IRQ15 Priority Control Register	0x0000_0000
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Priority Control Register	0x0000_0000
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20 ~ IRQ23 Priority Control Register	0x0000_0000
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24 ~ IRQ27 Priority Control Register	0x0000_0000
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28 ~ IRQ31 Priority Control Register	0x0000_0000

nuvoTon

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	SCS _BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	SETENA							
23	22	21	20	19	18	17	16	
	SETENA							
15	14	13	12	11	10	9	8	
	SETENA							
7	6	5	4	3	2	1	0	
	SETENA							

Bits	Description	escription					
[31:0]		Enable one or more interrupts within a group of 32 bits. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). 1 = The associated interrupt Enabled. 0 = No effect. The register reads back with the current enable state.					

nuvoTon

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset R/W		Description	Reset Value
NVIC_ICER	SCS _BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CLRENA								
23	22	21	20	19	18	17	16		
	CLRENA								
15	14	13	12	11	10	9	8		
	CLRENA								
7	6	5	4	3	2	1	0		
	CLRENA								

Description	
	Disable one or more interrupts within a group of 32 bits. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). 1 = The associated interrupt Disabled.
	0 = No effect. The register reads back with the current enable state.
	CLRENA[31:0]

nuvoTon

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset R/W		Description	Reset Value
NVIC_ISPR	SCS _BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	SETPEND							
23	22	21	20	19	18	17	16	
	SETPEND							
15	14	13	12	11	10	9	8	
	SETPEND							
7	6	5	4	3	2	1	0	
	SETPEND							

Bits	Description	
[31:0]	SETPEND[31:0]	1 = The associated interrupt under software control pended. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). 0 = No effect. The register reads back with the current pending state.

nuvoTon

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset R/W		Description	Reset Value
NVIC_ICPR	SCS _BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	CLRPEND							
23	22	21	20	19	18	17	16	
	CLRPEND							
15	14	13	12	11	10	9	8	
	CLRPEND							
7	6	5	4	3	2	1	0	
	CLRPEND							

Bits	Description	cription					
[31:0]	CLRPEND[31:0]	1 = The associated interrupt under software control un-pended. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). 0 = No effect. The register reads back with the current pending state.					

nuvoTon

IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	SCS _BA+0x400	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_3				-		
23	22	21	20	19	18	17	16
PR	I_2				-		
15	14	13	12	11	10	9	8
PRI_1							
7	6	5	4	3	2	1	0
PR	I_0				-		

Bits	Description	
[31:30]	PRI_3[1:0]	Priority of IRQ3 "0" denotes the highest priority and "3" denotes the lowest priority.
[29:24]	-	Reserved
[23:22]	PRI_2[1:0]	Priority of IRQ2 "0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_1[1:0]	Priority of IRQ1 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_0[1:0]	Priority of IRQ0 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

nuvoTon

IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1)

Register	Offset R/W Descri		Description	Reset Value
NVIC_IPR1	SCS _BA+0x404	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	PRI_7				-		
23	22	21	20	19	18	17	16
PR	PRI_6				-		
15	14	13	12	11	10	9	8
PR	PRI_5			,			
7	6	5	4	3	2	1	0
PR	PRI_4				-		•

Bits	Description	
[31:30]	PRI_7[1:0]	Priority of IRQ7
[29:24]		"0" denotes the highest priority and "3" denotes the lowest priority. Reserved
[23.24]		Priority of IRQ6
[23:22] PRI_6[1:0]	PRI_6[1:0]	"0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_5[1:0]	Priority of IRQ5 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_4[1:0]	Priority of IRQ4 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

nuvoTon

IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2)

Register	Offset R/W		Description	Reset Value
NVIC_IPR2	SCS _BA+0x408	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	PRI_11				=		
23	22	21	20	19	18	17	16
PRI	PRI_10				-		
15	14	13	12	11	10	9	8
PRI_9							
7	6	5	4	3	2	1	0
PR	PRI_8				-		

Bits	Description					
[31:30]	PRI_11[1:0]	Priority of IRQ11 "0" denotes the highest priority and "3" denotes the lowest priority.				
[29:24]	-	Reserved				
[23:22]	PRI_10[1:0]	Priority of IRQ10 "0" denotes the highest priority and "3" denotes the lowest priority.				
[21:16]	-	Reserved				
[15:14]	PRI_9[1:0]	Priority of IRQ9 "0" denotes the highest priority and "3" denotes the lowest priority.				
[13:8]	-	Reserved				
[7:6]	PRI_8[1:0]	Priority of IRQ8 "0" denotes the highest priority and "3" denotes the lowest priority.				
[5:0]	-	Reserved				

nuvoTon

IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	SCS _BA+0x40C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	PRI_15				-		
23	22	21	20	19	18	17	16
PRI	PRI_14				-		
15	14	13	12	11	10	9	8
PRI	_13			,			
7	6	5	4	3	2	1	0
PRI	PRI_12				_		•

Bits	Description	
[31:30]	PRI_15[1:0]	Priority of IRQ15 "0" denotes the highest priority and "3" denotes the lowest priority.
[29:24]	-	Reserved
[23:22]	PRI_14[1:0]	Priority of IRQ14 "0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_13[1:0]	Priority of IRQ13 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_12[1:0]	Priority of IRQ12 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

nuvoTon

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset R/W		Description	Reset Value
NVIC_IPR4	SCS _BA+0x410	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_19				=		
23	22	21	20	19	18	17	16
PRI	_18				-		
15	14	13	12	11	10	9	8
PRI_17							
7	6	5	4	3	2	1	0
PRI	_16				-		

Bits	Description					
[31:30]	PRI_19[1:0]	Priority of IRQ19 "0" denotes the highest priority and "3" denotes the lowest priority.				
[29:24]	-	Reserved				
[23:22]	PRI_18[1:0]	Priority of IRQ18 "0" denotes the highest priority and "3" denotes the lowest priority.				
[21:16]	-	Reserved				
[15:14]	PRI_17[1:0]	Priority of IRQ17 "0" denotes the highest priority and "3" denotes the lowest priority.				
[13:8]	-	Reserved				
[7:6]	PRI_16[1:0]	Priority of IRQ16 "0" denotes the highest priority and "3" denotes the lowest priority.				
[5:0]	-	Reserved				

nuvoTon

IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	SCS _BA+0x414	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_23				-		
23	22	21	20	19	18	17	16
PRI	_22				-		
15	14	13	12	11	10	9	8
PRI	_21			,			
7	6	5	4	3	2	1	0
PRI	_20				-		

Bits	Description	
[31:30]	PRI_23[1:0]	Priority of IRQ23
[29:24]	-	"0" denotes the highest priority and "3" denotes the lowest priority. Reserved
[23:22]	PRI_22[1:0]	Priority of IRQ22 "0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_21[1:0]	Priority of IRQ21 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_20[1:0]	Priority of IRQ20 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

nuvoTon

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	SCS _BA+0x418	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_27				=		
23	22	21	20	19	18	17	16
PRI	_26				-		
15	14	13	12	11	10	9	8
PRI_25							
7	6	5	4	3	2	1	0
PRI	_24				-		

Bits	Description	
[31:30]	PRI_27[1:0]	Priority of IRQ27 "0" denotes the highest priority and "3" denotes the lowest priority.
[29:24]	-	Reserved
[23:22]	PRI_26[1:0]	Priority of IRQ26 "0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_25[1:0]	Priority of IRQ25 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_24[1:0]	Priority of IRQ24 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

nuvoTon

IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7)

Register	Offset R/W		Description	Reset Value
NVIC_IPR7	SCS _BA+0x41C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_31				-		
23	22	21	20	19	18	17	16
PRI	_30				-		
15	14	13	12	11	10	9	8
PRI	_29			,			
7	6	5	4	3	2	1	0
PRI	_28				_		•

Bits	Description	
[31:30]	PRI_31[1:0]	Priority of IRQ31
[29:24]		"0" denotes the highest priority and "3" denotes the lowest priority. Reserved
		Priority of IRQ30
[23:22]	PRI_30[1:0]	"0" denotes the highest priority and "3" denotes the lowest priority.
[21:16]	-	Reserved
[15:14]	PRI_29[1:0]	Priority of IRQ29 "0" denotes the highest priority and "3" denotes the lowest priority.
[13:8]	-	Reserved
[7:6]	PRI_28[1:0]	Priority of IRQ28 "0" denotes the highest priority and "3" denotes the lowest priority.
[5:0]	-	Reserved

5.2.7 Interrupt Source Control Registers

Besides the interrupt control registers associated with the NVIC, the NuMicro Mini51™ series also implements some specific control registers to facilitate the interrupt functions, including "interrupt source identify", "NMI source selection" and "interrupt test mode", which are described below.

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
INT_BA = 0x5	000_0300	•		
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (Brown-out) Interrupt Source Identity	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (GP0/1) Interrupt Source Identity	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (GP2/3/4) Interrupt Source Identity	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWM) Interrupt Source Identity	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (BRAKE) Interrupt Source Identity	0xXXXX_XXXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	-	Reserved	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	-	Reserved	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART) Interrupt Source Identity	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	-	Reserved	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI) Interrupt Source Identity	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	-	Reserved	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (GP5) Interrupt Source Identity	0xXXXX_XXXX
IRQ17_SRC	INT_BA+0x44	R	IRQ17 (HFIRC trim) Interrupt Source Identity	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I ² C) Interrupt Source Identity	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	-	Reserved	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	-	Reserved	0xXXXX_XXXX
IRQ21_SRC	INT_BA+0x54	-	Reserved	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	-	Reserved	0xXXXX_XXXX
IRQ23_SRC	INT_BA+0x5C	-	Reserved	0xXXXX_XXXX

Register	Offset	R/W	Description	Reset Value
INT_BA = 0x5	000_0300			
IRQ24_SRC	INT_BA+0x60	-	Reserved	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP) Interrupt Source Identity	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	-	Reserved	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	-	Reserved	0xXXXX_XXXX
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (ADC) Interrupt Source Identity	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	-	Reserved	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	-	Reserved	0xXXXX_XXXX
NMI_CON	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000
MCU_IRQ	INT_BA+0x84	R/W	MCU IRQ Number Identity Register	0x0000_0000

nuvoTon

Interrupt Source Identify Register (IRQn_SRC)

Register	Offset	R/W	Description	Reset Value
	INT_BA+0x00		MCU IRQ0 (BOD) Interrupt Source Identity	
IRQn_SRC		R	:	0xXXXX_XXXX
	INT_BA+0x7C		MCU IRQ31 (Reserved) Interrupt Source Identity	

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
		-				INT_SRC	

Bits	Address	IRQ No.	Description
[31:3]	-	-	Reserved.
[2:0]	INT_BA+0x00	0	Bit1~2: Reserved Bit0: BOD_INT
[2:0]	INT_BA+0x04	1	Bit1~2: Reserved Bit0: WDT_INT
[2:0]	INT_BA+0x08	2	Bit1~2: Reserved Bit0: EINT0 – external interrupt 0 from P3.2.
[2:0]	INT_BA+0x0C	3	Bit1~2: Reserved Bit0: EINT1 – external interrupt 1 from P5.2.
[2:0]	INT_BA+0x10	4	Bit2: Reserved Bit1: P1_INT Bit0: P0_INT
[2:0]	INT_BA+0x14	5	Bit2: P4_INT Bit1: P3_INT Bit0: P2_INT
[2:0]	INT_BA+0x18	6	Bit1~2: Reserved Bit0: PWM_INT
[2:0]	INT_BA+0x1C	7	Bit1~2: Reserved Bit0: BRAKE_INT

Bits	Address	IRQ No.	Description
			Bit1~2: Reserved
[2:0]	INT_BA+0x20	8	Bit0: TMR0_INT
[0.0]	INIT DA O OA		Bit1~2: Reserved
[2:0]	INT_BA+0x24	9	Bit0: TMR1_INT
[2:0]	INT_BA+0x28	10	Reserved
[2:0]	INT_BA+0x2C	11	Reserved
[2:0]	INT_BA+0x30	12	Bit1~2: Reserved Bit0: UART_INT
[2:0]	INT_BA+0x34	13	Reserved
[0.0]	INIT DA LOv20	14	Bit1~2: Reserved
[2:0]	INT_BA+0x38	14	Bit0: SPI_INT
[2:0]	INT_BA+0x3C	15	Reserved
[2:0]	INT_BA+0x40	16	Bit1~2: Reserved
[2.0]	IIVI_BATOX40	10	Bit0: P5_INT
[2:0]	INT_BA+0x44	17	Bit1~2: Reserved
[2.0]	IIVI_DATOX44	.,	Bit0: HFIRC_TRIM_INT
[2:0]	INT_BA+0x48	18	Bit1~2: Reserved
,			Bit0: I2C_INT
[2:0]	INT_BA+0x4C	19	Reserved.
[2:0]	INT_BA+0x50	20	Reserved
[2:0]	INT_BA+0x54	21	Reserved
[2:0]	INT_BA+0x58	22	Reserved
[2:0]	INT_BA+0x5C	23	Reserved
[2:0]	INT_BA+0x60	24	Reserved
[2:0]	INT_BA+0x64	25	Bit1~2: Reserved
[2.0]	IIVI_BA+0x04	25	Bit0: ACMP_INT
[2:0]	INT_BA+0x68	26	Reserved
[2:0]	INT_BA+0x6C	27	Reserved
[3:0]	INT_BA+0x70	28	Bit1~2: Reserved
[2:0]	INT_BATOX70	20	Bit0: PWRWU_INT
[2:0]	INT_BA+0x74	29	Bit1~2: Reserved
[- .0]			Bit0: ADC_INT
[2:0]	INT_BA+0x78	30	Reserved
[2:0]	INT_BA+0x7C	31	Reserved

nuvoTon

NMI Interrupt Source Select Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-				NMI_SEL_EN
7	6	5	4	3	2	1	0
	-				NMI_SEL		

Bits	Description	Description			
[31:9]	-	Reserved			
[8]	NMI_SEL_EN	NMI Interrupt Source Enable (Write-protected) Setting this bit will enable NMI_SEL to generate NMI interrupt source of Cortex-M0.			
[7:5]	-	Reserved			
[4:0]	NMI_SEL[4:0]	NMI Interrupt Source Selection The NMI interrupt to Cortex™-M0 CPU can be selected from one of the interrupt[31:0]. The NMI_SEL[4:0] is used to select the NMI interrupt source.			

nuvoTon

MCU Interrupt Request Source Register (MCU_IRQ)

Register	Offset	R/W	Description	Reset Value
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000

31	30	29	28	27	26	25	24
			MCU	_IRQ			
23	22	21	20	19	18	17	16
			MCU	_IRQ			
15	14	13	12	11	10	9	8
			MCU	_IRQ			
7	6	5	4	3	2	1	0
	MCU_IRQ						

Bits	Description	Description			
		MCU IRQ Source Register			
		The MCU_IRQ collects all the interrupts from the peripherals and generates the synchronous interrupt to Cortex-M0 core. There are two modes to generate interrupt to Cortex-M0 - the normal mode and test mode.			
[31:0]	MCU_IRQ[31:0]	The MCU_IRQ collects all the interrupts from each peripheral and synchronizes them then interrupts the Cortex-M0.			
		When the MCU_IRQ[n] is "0", setting MCU_IRQ[n] to "1" will generate an interrupt to Cortex-M0 NVIC[n].			
		When the MCU_IRQ[n] is "1" (mean an interrupt is assert), setting "1" to the MCU_bit[n] will clear the interrupt and setting MCU_IRQ[n] "0" has no effect.			

5.3 System Manager

5.3.1 Overview

The following functions are included in the system manager section:

- System Memory Map
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System management registers for product ID
- System management registers for chip and module functional reset and multi-function pin control
- Brown-out and chip miscellaneous Control Register
- Combined peripheral interrupt source identify

5.3.2 System Reset

The system reset includes one of the following as the event occurs. For these reset events flags can be read by RSTSRC register.

- Power-On Reset (POR)
- Low level on the /RESET pin
- Watchdog Time-out Reset (WDT)
- Brown-out Detected Reset (BOD)
- Cortex[™]-M0 CPU Reset
- Software one shot Reset

5.3.3 System Power Distribution

In this device, the power distribution is divided into three segments.

- Analog power from AVDD and AVSS supplies power for analog module operation
- Digital power from VDD and VSS supplies power to the internal regulator which provides a fixed 1.8V power for digital operation and I/O pins
- Built-in capacitor for internal voltage regulator

The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. Figure 5.3-1 shows the power architecture of this device.

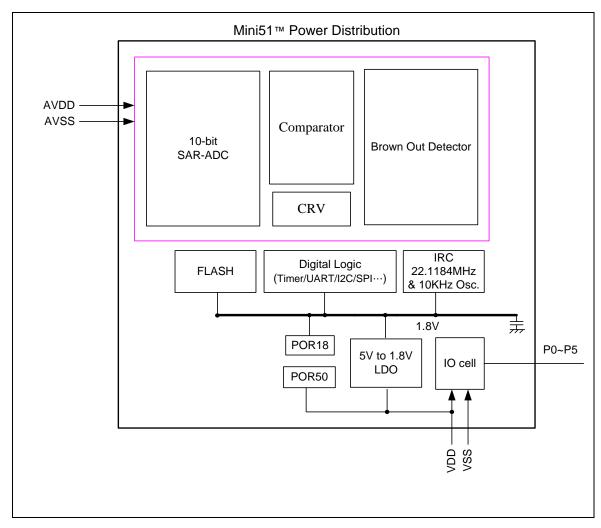


Figure 5.3-1 NuMicro Mini51™ Series Power Distribution Diagram

nuvoTon

5.3.4 Memory Mapping Table

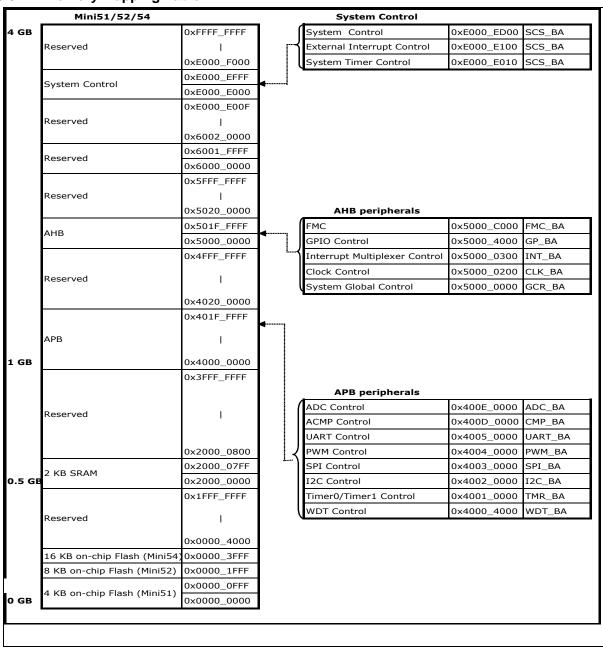


Table 5.3-1 Memory Mapping Table

nuvoTon

5.3.5 System Manager Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GCR_BA = 0x5	000_0000			
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0xXXXX_XXXX ^[1]
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX
IPRSTC1	GCR_BA+0x08	R/W	IP Reset Control Resister 1	0x0000_0000
IPRSTC2	GCR_BA+0x0C	R/W	IP Reset Control Resister 2	0x0000_0000
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x00XX_000X
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_00C0
P5_MFP	GCR_BA+0x44	R/W	P5 Multiple Function and Input Type Control Register	0x0000_0000
IRCTRIMCTL	GCR_BA+0x80	R/W	HIRC Trim Control Register	0x0000_0000
IRCTRIMIEN	GCR_BA+0x84	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000
IRCTRIMINT	GCR_BA+0x88	R/W	HIRC Trim Interrupt Status Register	0x0000_0000
RegLockAddr	GCR_BA+0x100	R/W	Register Lock Key Address Register	0x0000_0000

nuvoTon

Part Device Identification Number Register (PDID)

Register	Offset	R/W	Description	Reset Value
PDID	GCR_BA+0x00	R	Part Device Identification number Register	0xXXXX_XXXX ^[1]

[1] Every part number has a unique default reset value.

31	30	29	28	27	26	25	24
			PC	OID			
23	22	21	20	19	18	17	16
			PC	OID			
15	14	13	12	11	10	9	8
			PC	OID			
7	6	5	4	3	2	1	0
	PDID						

Bits	Description	
		Product Device Identification Number
[31:0]	PDID[31:0]	This register reflects the device part number code. Software can read this register to identify which device is used.
		For example, the MINI51LAN PDID code is "0x00205100".

NuMicro Mini51™ Series	Part Device Identification Number
MINI51LAN	0x00205100
MINI51ZAN	0x00205103
MINI51TAN	0x00205104
MINI52LAN	0x00205200
MINI52ZAN	0x00205203
MINI52TAN	0x00205204
MINI54LAN	0x00205400
MINI54ZAN	0x00205403
MINI54TAN	0x00205404

nuvoton

System Reset Source Register (RSTSRC)

This register provides specific information for software to identify the chip's reset source from the last operation.

Register	Offset	R/W	Description	Reset Value
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
RSTS_CPU	-	RSTS_MCU	RSTS_BOD	-	RSTS_WDT	RSTS_RESET	RSTS_POR

Bits	Description	
[31:8]	-	Reserved
		The RSTS_CPU flag is set by hardware if software writes CPU_RST (IPRSTC1[1]) with "1" to reset the Cortex™-M0 CPU kernel and Flash Memory Controller (FMC).
[7]	RSTS_CPU	1 = The Cortex™-M0 CPU kernel and FMC are reset by setting CPU_RST to "1".
		0 = No reset from CPU.
		Software can write "1" to clear this bit to zero.
[6]	-	Reserved
[5]	RSTS_MCU	The RSTS_MCU flag is set by the "reset signal" from the Cortex-M0 kernel to indicate the previous reset source. 1 = The Cortex-M0 had issued the reset signal to reset the system by software writing "1" to bit SYSRESETREQ (AIRCR[2]), Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex-M0 kernel.
		0 = No reset from the Cortex-M0.
		Software can write "1" to clear this bit to zero.
		The RSTS_BOD flag is set by the "reset signal" from the Brown-out-Detected module to indicate the previous reset source.
[4]	RSTS_BOD	1 = The Brown-out-Detected module had issued the reset signal to reset the system.
		0 = No reset from BOD.
		Software can write "1" to clear this bit to zero.
[3]	-	Reserved

Bits	Description	
		The RSTS_WDT flag is set by the "reset signal" from the Watchdog module to indicate the previous reset source.
[2]	RSTS_WDT	1 = The Watchdog module had issued the reset signal to reset the system.
		0 = No reset from Watchdog.
		Software can write "1" to clear this bit to zero.
		The RSTS_RESET flag is set by the "reset signal" from the /RESET pin to indicate the previous reset source.
[1]	RSTS_RESET	1 = The pin /RESET has issued the reset signal to reset the system.
		0 = No reset from pin /RESET.
		Software can write "1" to clear this bit to zero.
		The RSTS_POR flag is set by the "reset signal", which is from the Power-On Reset (POR) module or bit CHIP_RST (IPRSTC1[0]) set, to indicate the previous reset source.
[0] RSTS	RSTS_POR	1 = The Power-On-Reset (POR) or CHIP_RST=1 has issued the reset signal to reset the system.
		0 = No reset from POR.
		Software can write "1" to clear this bit to zero.

nuvoTon

IP Reset Control Register 1 (IPRSTC1)

Register	Offset	R/W	Description	Reset Value
IPRSTC1	GCR_BA+0x08	R/W	IP Reset Control Resister 1	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
					•	CPU_RST	CHIP_RST

Bits	Description	
[31:2]	-	Reserved
		CPU Kernel One Shot Reset
		Setting this bit will reset the CPU kernel, and this bit will automatically return to "0" after the 2 clock cycles.
[1]	CPU_RST	This bit is the protected bit, programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.
		1 = Reset CPU.
		0 = Normal.
		CHIP One Shot Reset
		Setting this bit will reset the CHIP, including CPU kernel and all peripherals, and this bit will automatically return to "0" after the 2 clock cycles.
[0]	CUID DET	The CHIP_RST is the same as the POR reset, and all the chip module is reset and the chip settings from flash are also reload.
[0]	CHIP_RST	This bit is the protected bit, and programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.
		1 = Reset CHIP.
		0 = Normal.

IP Reset Control Register 2 (IPRSTC2)

Setting the bit "1" will generate the asynchronous reset signal to the corresponding IP. User needs to set the bit to "0" to release IP from the reset state.

Register	Offset	R/W	Description	Reset Value
IPRSTC2	GCR_BA+0x0C	R/W	IP Reset Control Resister 2	0x0000_0000

31	30	29	28	27	26	25	24
	-		ADC_RST			-	
23	22	21	20	19	18	17	16
-	ACMP_RST	-	PWM_RST		-		UART_RST
15	14	13	12	11	10	9	8
	-		SPI_RST		-		I2C_RST
7	6	5	4	3	2	1	0
		-		TMR1_RST	TMR0_RST	GPIO_RST	-

Bits	Description				
[31:29]	-	Reserved			
		ADC Controller Reset			
[28]	ADC_RST	1 = ADC block reset.			
		0 = ADC block normal operation.			
[27:23]	-	Reserved			
		ACMP Controller Reset			
[22]	ACMP_RST	1 = ACMP block reset.			
		0 = ACMP block normal operation.			
[21]	-	Reserved			
		PWM Controller Reset			
[20]	PWM_RST	1 = PWM block reset.			
		0 = PWM block normal operation.			
[19:17]	-	Reserved			
		UART Controller Reset			
[16]	UART_RST	1 = UART block reset.			
		0 = UART Normal operation.			
[15:13]	-	Reserved			
		SPI Controller Reset			
[12]	SPI_ RST	1 = SPI block reset.			
		0 = SPI block normal operation.			
0.2012	<u> </u>	Daga FF of 242	Davisian V4 03		

Bits	Description				
[11:9]	-	Reserved			
		I ² C Controller Reset			
[8]	I2C _RST	$1 = I^2C$ block reset.			
		$0 = I^2C$ normal operation.			
[7:4]	-	Reserved			
		Timer1 Controller Reset			
[3]	TMR1_RST	1 = Timer1 block reset.			
		0 = Timer1 normal operation.			
		Timer0 Controller Reset			
[2]	TMR0_RST	1 = Timer0 block reset.			
		0 = Timer0 normal operation.			
		GPIO (P0~P5) Controller Reset			
[1]	GPIO_RST	1 = GPIO reset.			
		0 = GPIO normal operation.			
[0]	-	Reserved			

Brown-out Detector Control Register (BODCR)

Partial of the BODCR control register values are initiated by the flash configuration and writeprotected by the lock function. If user needs to program the write-protected content, an unlocked sequence is needed. The unlocked sequence is to continuously write the data 0x59, 0x16, 0x88 to the key controller address 0x5000_0100. A different data value or any other write during the three data programs aborts the whole sequence.

After the unlocked sequence, user can check the lock bit at address 0x5000_0100 bit 0, where "1" is unlocked and "0" is locked. Then user can update the write-protected registers. Write any data to the address 0x5000_0100 to re-lock the write-protected register again.

Register	Offset	R/W	Description	Reset Value
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x00XX_000X

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-	BOD_OUT	-	BOD_INTF	BOD_RSTEN	ВОГ	_VL	-

Bits	Description	Description					
[31:7]	-	Reserved					
[6]	BOD_OUT	The status for Brown-out Detector output state 1 = Brown-out Detector status output is "1", the detected voltage is lower than BOD_VL setting. 0 = Brown-out Detector status output is "0", the detected voltage is higher than BOD_VL setting.					
[5]	-	Reserved					
[4]	BOD_INTF	Brown-out Detector Interrupt Flag 1 = When Brown-out Detector detects the VDD is dropped through the voltage of BOD_VL setting or the VDD is raised up through the voltage of BOD_VL setting, this bit is set to "1" and the Brown-out interrupt is requested if Brown-out interrupt is enabled. 0 = Brown-out Detector does not detect any voltage draft at VDD down through or up through the voltage of BOD_VL setting.					

Bits	Description						
		Brown-o	ut Reset Enable (Initiated and Write-protec	ted bit)		
		enab			Brown-out Detector function is threshold then assert a signal to		
		The defa	ult value is set by f	lash controller user configu	ration register config0 bit[20].		
[3]	BOD_RSTEN	is en		tected voltage is lower that	the Brown-out Detector function an the threshold, then assert a		
		till the Bo	When the BOD_EN is enabled and the interrupt is asserted, the interrupt will be kept till the BOD_EN is set to "0". The interrupt for CPU can be blocked by disabling the NVIC in CPU for BOD interrupt or disable the interrupt source by disabling the BOD_EN and then re-enabling the BOD_EN function if the BOD function is required.				
		Brown-o	Brown-out Detector Threshold Voltage Selection (initiated and write-protected bit)				
			The default value is set by flash controller user configuration register config0 bit[22:21].				
			BOD_VL[1]	BOD_VL[0]	Brown-out voltage		
[2:1]	BOD_VL[1:0]		1	1	Disable 2.7V and 3.8V		
			1	0	3.8V		
			0	1	2.7V		
			0	0	Reserved		
[0]	-	Reserve	d	1	1		

nuvoTon

Multiple Function Port0 Control Register (P0_MFP)

Register	Offset	R/W	Description	Reset Value
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			P0_1	YPE			
15	14	13	12	11	10	9	8
			P0_	ALT			
7	6	5	4	3	2	1	0
	P0_MFP						

Bits	Description							
[31:24]	-	Reserved	Reserved					
[23:16]	P0_TYPE[n]	P0[7:0] input Schmitt Trigger function Enable 1 = P0[7:0] I/O input Schmitt Trigger function Enabled.						
[20.10]	, o_, <u>_</u> []		•	gger function Disabled.				
			e Function Selection of P0.7 dependent	tion s on P0_MFP[7] and P	0_ALT[7].			
		P0_ALT[7]	P0_MFP[7]	P0.7 function				
[15]	P0_ ALT[7]	0	0	P0.7				
		0	1	Reserved				
		1	0	SPICLK (SPI)				
		1	1	Reserved				
		P0.6 Alternate	Function Selec	tion				
		The pin function	0_ALT[6].					
		P0_ALT[6]	P0_MFP[6]	P0.6 function				
[14]	P0_ ALT[6]	0	0	P0.6				
		0	1	Reserved				
		1	0	MISO (SPI)				
		1	1	Reserved				

nuvoTon

Bits	Description								
		P0.5 Alternate Function Selection							
		The pin function of P0.5 depends on P0_MFP[5] and P0_ALT[5].							
		P0_ALT[5]	P0_MFP[5]	P0.5 function					
[13]	P0_ ALT[5]	0	0	P0.5					
,	12	0	1	Reserved					
		1	0	MOSI (SPI)					
		1	1	Reserved					
		P0.4 Alternate	Function Select	tion					
		The pin function	on of P0.4 depend	s on P0_MFP[4] and P0_	_ALT[4].				
		P0_ALT[4]	P0_MFP[4]	P0.4 function					
[12]	P0_ ALT[4]	0	0	P0.4					
		0	1	Reserved					
		1	0	SPISS (SPI)					
		1	1	PWM5 (PWM)					
[11:10]	-	Reserved							
		P0.1 Alternate Function Selection							
		The pin function	_ALT[1].						
		P0_ALT[1]	P0_MFP[1]	P0.1 function					
[9]	P0_ ALT[1]	0	0	P0.1					
		0	1	SPISS (SPI)					
		1	0	RTSn (UART)					
		1	1	RX (UART)					
		P0.0 Alternate Function Selection							
		The pin function	_ALT[0].						
		P0_ALT[0]	P0_MFP[0]	P0.0 function					
[8]	P0_ ALT[0]	0	0	P0.0					
		0	1	Reserved					
		1	0	CTSn (UART)					
		1	1	TX (UART)					
		P0 Multiple F	unction Selection	1					
[7:0]	P0_MFP[7:0]	The pin function	on of P0 depends	on P0_MFP and P0_AL1	Г.				
		Refer to P0_A	LT Description for	details.					

NuMicroTM **Mini51 Technical Reference Manual**

nuvoTon

Multiple Function Port1 Control Register (P1_MFP)

Register	Offset	R/W	Description	Reset Value
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			P1_T	YPE			
15	14	13	12	11	10	9	8
			P1_	ALT			•
7	6	5	4	3	2	1	0
			P1_l	MFP			

Description				
-	Reserved			
	P1[7:0] input S	chmitt Trigger fun	ction Enable	
P1_TYPE[n]	1 = P1[7:0] I/O i	nput Schmitt Trigge	r function enable.	
	0 = P1[7:0] I/O i	nput Schmitt Trigge	r function disable.	
-	Reserved			
	P1.5 Alternate	Function Selection	1	
	The pin function	of P1.5 depends o	n P1_MFP[5] and P1_ALT[5].	
	P1_ALT[5]	P1_MFP[5]	P1.5 function	
P1_ ALT[5]	0	0	P1.5	
	0	1	AIN5 (ADC)	
	1	0	Reserved	
	1	1	CPP0 (CMP)	
	P1.4 Alternate	Function Selection	<u> </u>	
	The pin function	of P1.4 depends o	n P1_MFP[4] and P1_ALT[4].	
	P1_ALT[4]	P1_MFP[4]	P1.4 function	
P1_ ALT[4]	0	0	P1.4	
	0	1	AIN4 (ADC)	
	1	0	Reserved	
	1	1	CPN0 (CMP)	
	P1_TYPE[n] - P1_ ALT[5]	- Reserved P1[7:0] input S 1 = P1[7:0] I/O i 0 = P1[7:0] I/O i 0 = P1[7:0] I/O i - Reserved P1.5 Alternate The pin function P1_ALT[5] 0 0 1 1 1 P1.4 Alternate The pin function P1_ALT[4] 0 0 1	- Reserved P1[7:0] input Schmitt Trigger fund 1 = P1[7:0] I/O input Schmitt Trigge 0 = P1[7:0] I/O input Schmitt Trigge - Reserved P1.5 Alternate Function Selection The pin function of P1.5 depends of P1_ALT[5] P1_MFP[5] 0 0 1 1 0 1 1 P1.4 Alternate Function Selection The pin function of P1.4 depends of P1_ALT[4] P1_MFP[4] 0 0 0 1 1 0 0 1	P1[7:0] input Schmitt Trigger function Enable

Bits	Description								
		P1.3 Alternate Function Selection							
		The pin function of P1.3 depends on P1_MFP[3] and P1_ALT[3].							
		P1_ALT[3]	P1_MFP[3]	P1.3 function					
[11]	P1_ ALT[3]	0	0	P1.3					
		0	1	AIN3 (ADC)					
		1	0	TX (UART)					
		1	1	Reserved					
		P1.2 Alternate	Function Selection	1					
		The pin function of P1.2 depends on P1_MFP[2] and P1_ALT[2].							
		P1_ALT[2]	P1_MFP[2]	P1.2 function					
[10]	P1_ ALT[2]	0	0	P1.2					
		0	1	AIN2 (ADC)					
		1	0	RX (UART)					
		1	1	Reserved					
[9]	-	Reserved		-					
		P1.0 Alternate	Function Selection	1					
		The pin function	of P1.0 depends o	n P1_MFP[0] and P1_					
		P1_ALT[0]	P1_MFP[0]	P1.0 function					
[8]	P1_ ALT[0]	0	0	P1.0					
		0	1	AIN1 (ADC)					
		1	0	Reserved					
		1	1	Reserved					
		P1 Multiple Fu	nction Selection						
[7:0]	P1_MFP[7:0]	The pin function	of P1 depends on	P1_MFP and P1_ALT					
		Refer to P1_AL	T Description for de	tails.					

nuvoTon

Multiple Function Port2 Control Register (P2_MFP)

Register	Offset	R/W	Description	Reset Value
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			P2_1	YPE			
15	14	13	12	11	10	9	8
			P2_	ALT			•
7	6	5	4	3	2	1	0
			P2_	MFP			

Bits	Description				
[31:24]	-	Reserved			
		P2[7:0] input S	chmitt Trigger fun	ction Enable	
[23:16]	P2_TYPE[n]	1 = P2[7:0] I/O i	nput Schmitt Trigge	r function Enabled.	
		0 = P2[7:0] I/O i	nput Schmitt Trigge	r function Disabled.	
[15]	-	Reserved			
		P2.6 Alternate	Function Selection	1	
		The pin function	of P2.6 depends o	n P2_MFP[6] and P2_AL	.T[6].
		P2_ALT[6]	P2_MFP[6]	P2.6 function	
[14]	P2_ ALT[6]	0	0	P2.6	
		0	1	Reserved	
		1	0	PWM4 (PWM)	
		1	1	CPO1	
		P2.5 Alternate	Function Selection	 1	
		The pin function	of P2.5 depends o	n P2_MFP[5] and P2_AL	.T[5].
		P2_ALT[5]	P2_MFP[5]	P2.5 function	
[13]	P2_ ALT[5]	0	0	P2.5	
		0	1	Reserved	
		1	0	PWM3 (PWM)	
		1	1	Reserved	

Bits	Description				
		P2.4 Alternate	Function Selection	l	
		The pin function	of P2.4 depends o	n P2_MFP[4] and P2_ALT[4].	
		P2_ALT[4]	P2_MFP[4]	P2.4 function	
[12]	P2_ ALT[4]	0	0	P2.4	
		0	1	Reserved	
		1	0	PWM2 (PWM)	
		1	1	Reserved	
		P2.3 Alternate	Function Selection		
		The pin function	of P2.3 depends o	n P2_MFP[3] and P2_ALT[3].	
		P2_ALT[3]	P2_MFP[3]	P2.3 function	
[11]	P2_ ALT[3]	0	0	P2.3	
		0	1	Reserved	
		1	0	PWM1 (PWM)	
		1	1	Reserved	
		P2.2 Alternate	Function Selection		
		The pin function	of P2.2 depends o	n P2_MFP[2] and P2_ALT[2].	
		P2_ALT[2]	P2_MFP[2]	P2.2 function	
[10]	P2_ ALT[2]	0	0	P2.2	
		0	1	Reserved	
		1	0	PWM0 (PWM)	
		1	1	Reserved	
[9:8]	-	Reserved	•		
		P2 Multiple Fu	nction Selection		
[7:0]	P2_MFP[7:0]	The pin function	of P2 depends on	P2_MFP and P2_ALT.	
		Refer to P2_AL	T Description for de	ails.	

nuvoTon

Multiple Function Port3 Control Register (P3_MFP)

Register	Offset	R/W	Description	Reset Value
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			P3_1	YPE			
15	14	13	12	11	10	9	8
			P3_	ALT			•
7	6	5	4	3	2	1	0
			P3_l	MFP			

trigger function Enable tt Trigger function Enabled. tt Trigger function Disabled. selection pends on P3_MFP[6] and P3_ALT[6].
tt Trigger function Enabled. tt Trigger function Disabled. selection pends on P3_MFP[6] and P3_ALT[6].
tt Trigger function Disabled. selection pends on P3_MFP[6] and P3_ALT[6].
election pends on P3_MFP[6] and P3_ALT[6].
pends on P3_MFP[6] and P3_ALT[6].
pends on P3_MFP[6] and P3_ALT[6].
P[6] P3.6 function
P3.6
T1EX
CKO (Clock Driver output)
CPO0 (CMP)
election
pends on P3_MFP[5] and P3_ALT[5].
P[5] P3.5 function
P3.5
T1 (Timer1)
SCL (I ² C)
Reserved
p

Bits	Description							
		P3.4 Alternate Function Selection						
		The pin function of P3.4 depends on P3_MFP[4] and P3_ALT[4].						
		P3_ALT[4]	P3_MFP[4]	P3.4 function				
[12]	2] P3_ ALT[4]	0	0	P3.4				
		0	1	T0 (Timer0)				
		1	0	SDA (I ² C)				
		1	1	Reserved				
[11]	-	Reserved						
<u> </u>		P3.2 Alternate	Function Selection	1				
		The pin function	of P3.2 depends o	n P3_MFP[2] and P3_Al	_T[2].			
		P3_ALT[2]	P3_MFP[2]	P3.2 function				
[10]	P3_ ALT[2]	0	0	P3.2				
		0	1	INT0				
		1	0	T0EX				
		1	1	STADC (ADC)				
		P3.1 Alternate Function Selection						
		The pin function of P3.1 depends on P3_MFP[1] and P3_AL						
		P3_ALT[1]	P3_MFP[1]	P3.1 function				
[9]	P3_ ALT[1]	0	0	P3.1				
		0	1	Reserved				
		1	0	CPP1				
		1	1	AIN7 (ADC)				
		P3.0 Alternate	Function Selection	<u> </u>				
		The pin function	of P3.0 depends o	n P3_MFP[0] and P3_Al	_T[0].			
		P3_ALT[0]	P3_MFP[0]	P3.0 function				
[8]	P3_ ALT[0]	0	0	P3.0				
		0	1	Reserved				
		1	0	CPN1				
		1	1	AIN6 (ADC)				
		_	nction Selection					
[7:0]	P3_MFP[7:0]	-		P3_MFP and P3_ALT.				
		Refer to P3_AL	T Description for de	ialis.				

nuvoTon

Multiple Function Port4 Control Register (P4_MFP)

Register	Offset	R/W	Description	Reset Value
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_00C0

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
	P4_TYPE							
15	14	13	12	11	10	9	8	
	P4_ALT							
7	6	5	4	3	2	1	0	
	P4_MFP							

Bits	Description							
[31:24]	-	Reserved						
		P4[7:0] input S	P4[7:0] input Schmitt Trigger function Enable					
[23:16]	P4_TYPE[n]		nput Schmitt Trigge					
		0 = P4[7:0] I/O i	nput Schmitt Trigge	r function Disabled.				
			Function Selection of P4.7 depends o	n n P4_MFP[7] and P4_ALT[7].				
		P4_ALT[7]	P4_MFP[7]	P4.7 function				
[15]	P4_ ALT[7]	0	0	P4.7				
		0	1	ICE_DAT (ICE)				
		1	х	Reserved				
		P4.6 Alternate	1					
		The pin function of P4.6 depends on P4_MFP[6] and P4_ALT[6].						
[4.4]	D4 ALTICI	P4_ALT[6]	P4_MFP[6]	P4.6 function				
[14]	P4_ ALT[6]	0	0	P4.6				
		0	1	ICE_CLK (ICE)				
		1	х	Reserved				
[13:8]	-	Reserved						
		P4 Multiple Fur	P4 Multiple Function Selection					
[7:0]	P4_MFP[7:0]	The pin function	of P4 depends on	P4_MFP and P4_ALT.				
		Refer to P4_AL	T Description for de	tails.				

nuvoTon

Multiple Function Port5 Control Register (P5_MFP)

Register	Offset	R/W	Description	Reset Value
P5_MFP	GCR_BA+0x44	R/W	P5 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	-								
23	22	21	20	19	18	17	16		
	P5_TYPE								
15	14	13	12	11	10	9	8		
	P5_ALT								
7	7 6 5 4 3 2 1 0								
	P5_MFP								

Bits	Description							
[31:24]	-	Reserved						
[23:16]	P5_TYPE[n]	1 = P5[7:0] I/O ii	P5[7:0] input Schmitt Trigger function Enable 1 = P5[7:0] I/O input Schmitt Trigger function Enabled. 0 = P5[7:0] I/O input Schmitt Trigger function Disabled.					
[15:14]	-	Reserved						
[13]	P5_ ALT[5]		of P5.5 depends of P5_MFP[5] 0 1	P5.5 function P5.5 Reserved Reserved				
[12]	P5_ ALT[4]		of P5.4 depends of P5_MFP[4] 0 1 x	P5.4 function P5.4 Reserved Reserved				

Bits	Description	Description							
		P5.3 Alternate	Function Selection	1					
		The pin function of P5.3 depends on P5_MFP[3] and P5_ALT[3].							
		P5_ALT[3]	P5_MFP[3]	P5.3 function					
[11]	P5_ ALT[3]	0	0	P5.3					
		0	1	AIN0 (ADC)					
		1	х	Reserved					
		P5.2 Alternate	Function Selection	1					
		The pin function	of P5.2 depends o	n P5_MFP[2] and P5_A	LT[2].				
		P5_ALT[2]	P5_MFP[2]	P5.2 function					
[10]	P5_ ALT[2]	0	0	P5.2					
		0	1	INT1					
		1	х	Reserved					
		P5.1 Alternate Function Selection							
		The pin function of P5.1 depends on P5_MFP[1] and P5_ALT[1].							
		P5_ALT[1]	P5_MFP[1]	P5.1 function					
[9]	P5_ ALT[1]	0	0	P5.1					
,		0	1	XTAL2					
		1	х	Reserved					
		Note: To enable external XTAL function, the PWRCON bit [1:0] (XTLC External 12 MHz or 32 KHz Crystal Oscillator Control register must also be set							
		P5.0 Alternate Function Selection							
		The pin function	of P5.0 depends o	n P5_MFP[0] and P5_A	LT[0].				
		P5_ALT[0]	P5_MFP[0]	P5.0 function					
[8]	P5_ ALT[0]	0	0	P5.0					
,		0	1	XTAL1					
		1	х	Reserved					
		Note: To enable external XTAL function, the PWRCON bit [1:0] (XTLCLK_EN), External 12 MHz or 32 KHz Crystal Oscillator Control register must also be set.							
		P5 Multiple Fu	nction Selection						
[7:0]	P5_MFP[7:0]	The pin function	of P5 depends on	P5_MFP and P5_ALT.					
		Refer to P5_ALT Description for details.							

nuvoTon

HFIRC Trim Control Register (IRCTRIMCTL)

Register	Offset	R/W	Description	Reset Value
IRCTRIMCTL	GCR_BA+0x80	R/W	HIRC Trim Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
Rese	Reserved TRIM_LOOP		LOOP			TRIM_SEL	

Bits	Description					
[31:8]	-	Reserved				
[7:6]	-	Reserved. Keep the default value "00".				
		Trim Calculation Loop				
		This field defines trim value calculation based on the number of 32.768 KHz clock.				
		For example, if TRIM_LOOP is set as "00", auto trim circuit will calculate trim value based on the average frequency difference in 4 32.768 KHz clock.				
		This field also defines how many times the auto trim circuit will try to update the HFIRC trim value before the frequency of HFIRC is locked.				
		Once the HFIRC is locked, the internal trim value update counter will be reset.				
[5:4]	TRIM_LOOP[1:0]	If the trim value update counter reaches this limitation value and frequency of HFIRC is still not locked, the auto trim operation will be disabled and TRIM_SEL will be cleared to "0".				
		00 = Trim value calculation is based on average difference in 4 32.768 KHz clock and trim retry count limitation is 64.				
		01 = Trim value calculation is based on average difference in 8 32.768 KHz clock and trim retry count limitation is 128.				
		10 = Trim value calculation is based on average difference in 16 32.768 KHz clock and trim retry count limitation is 256.				
		11 = Trim value calculation is based on average difference in 32 32.768 KHz clock and trim retry count limitation is 512.				
[3:1]	-	Reserved				

Bits	Description	
		Trim Frequency Selection
		This bit is to enable the HFIRC auto trim.
[0] TRIM_SE	TDIM CEI	When setting this bit to "1", the HFIRC auto trim function will trim HFIRC to 22 MHz automatically based on the 32.768 KHz reference clock.
	_	During auto trim operation, if 32.768 KHz clock error is detected or trim retry limitation count reached, this field will be cleared to "0" automatically.
		0 = HFIRC auto trim function Disabled.
		1 = HFIRC auto trim function Enabled and HFIRC trimmed to 22 MHz.

nuvoTon

HFIRC Trim Interrupt Enable Register (IRCTRIMIEN)

Register	Offset	R/W	Description	Reset Value
IRCTRIMIEN	GCR_BA+0x84	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
					•		
7	6	5	4	3	2	1	0
		-			32K_ERR_IE N	TRIM_FAIL_I EN	-

Bits	Description	Description			
[31:3]	-	Reserved			
[2]		32.768 KHz Clock Error Interrupt Enable			
		This bit controls if CPU could get an interrupt while 32.768 KHz clock is inaccurate during auto trim operation.			
	32K_ERR_IEN	If this bit is high, and 32K_ERR_INT is set during auto trim operation, an interrupt will be triggered to notify the 32.768 KHz clock frequency is inaccurate.			
		0 = 32K_ERR_INT status Disabled to trigger an interrupt to CPU.			
		1 = 32K_ERR_INT status Enabled to trigger an interrupt to CPU.			
[1]		Trim Failure Interrupt Enable			
		This bit controls if an interrupt will be triggered while HFIRC trim value update limitation count is reached and HFIRC frequency is still not locked on target frequency set by TRIM_SEL.			
	TRIM_FAIL_IEN	If this bit is high and TRIM_FAIL_INT is set during auto trim operation, an interrupt will be triggered to notify that HFIRC trim value update limitation count is reached.			
		0 = TRIM_FAIL_INT status Disabled to trigger an interrupt to CPU.			
		1 = TRIM_FAIL_INT status Enabled to trigger an interrupt to CPU.			
[0]	-	Reserved			

nuvoTon

HFIRC Trim Interrupt Status Register (IRCTRIMINT)

Register	Offset	R/W	Description	Reset Value
IRCTRIMINT	GCR_BA+0x88	R/W	HIRC Trim Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			32K_ERR_IN T	TRIM_FAIL_I NT	FREQ_LOCK

Bits	Description	
[31:3]	-	Reserved
		32.768 KHz Clock Error Interrupt Status
		This bit indicates that 32.768 KHz clock frequency is inaccuracy. Once this bit is set, the auto trim operation stopped and TRIM_SEL will be cleared to "0" by hardware automatically.
[2]	32K_ERR_INT	If this bit is set and 32K_ERR_IEN is high, an interrupt will be triggered to notify the 32.768 KHz clock frequency is inaccuracy. Write "1" to clear this to zero.
		0 = 32.768 KHz clock frequency is accuracy.
		1 = 32.768 KHz clock frequency is inaccuracy.
		Trim Failure Interrupt Status
		This bit indicates that HFIRC trim value update limitation count reached and HIRC clock frequency still doesn't lock. Once this bit is set, the auto trim operation stopped and TRIM_SEL will be cleared to "0" by hardware automatically.
[1]	TRIM_FAIL_INT	If this bit is set and TRIM_FAIL_IEN is high, an interrupt will be triggered to notify that HFIRC trim value update limitation count was reached. Write "1" to clear this to zero.
		0 = Trim value update limitation count is not reached.
		1 = Trim value update limitation count is reached and HFIRC frequency is still not locked.
		HIRC Frequency Lock Status
[0]	FREQ_LOCK	This bit indicates the HIRC frequency lock.
		This is a status bit and doesn't trigger any interrupt.

nuvoTon

Register Lock Key Address Register (RegLockAddr)

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are locked after the power on reset until user opens the lock. For user who programs these protected registers, an open lock sequence needs to follow. The Open sequence is to continue write the data 0x59, 0x16, 0x88 to the key controller address 0x5000_0100. Any different data value or different sequence or any other write to any other address during these three data program abort the whole sequence.

After the lock is open, user can check the lock bit at address 0x5000_0100 bit 0, where "1" is unlocked, "0" is locked. Then user can update the target register value and then write any data to the address 0x5000_0100 to re-lock the protected registers.

This register is written to open the RegUnLock key and read for the RegUnLock status.

Register	Offset	R/W	Description	Reset Value
RegLockAddr	GCR_BA+0x100	R/W	Register Lock Key Address Register	0x0000_0000

31	30	29	28	27	26	25	24
				=			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	-0
			-				RegUnLock

Bits	Description	tion				
[31:1]	-	Reserved				
[0]	RegUnLock	1 = Protected registers are Unlock. 0 = Protected registers are locked. Any write to the target register is ignored. The Protected registers are: IPRSTC1 - address 0x5000_0008 (IP reset control register 1) BODCR - address 0x5000_0018 (Brown-out detector control register) PORCR - address 0x5000_0024 (Power-On-Reset control register) PWRCON - address 0x5000_0200 (bit[6] is not protected for power wake-up interrupt clear) APBCLK[0] - address 0x5000_0208 (Watchdog clock enable) CLKSEL0 - address 0x5000_0210 (HCLK and CPU STCLK clock source select) CLKSEL1[1:0] - address 0x5000_0214 (Watchdog clock source select) NMI_SEL[8] - address 0x5000_380 (NMI interrupt source enable) ISPCON - address 0x5000_C000 (Flash ISP control register) WTCR - address 0x4000_4000 (Watchdog Timer control register)				

5.4 Clock Controller

5.4.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and a 4-bit clock divider. The chip will not enter Power-down mode until CPU sets the power-down enable bit (PWR_DOWN_EN) and Cortex-M0 core executes the WFI instruction. After that, the chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the external crystal and internal 22.1184 MHz oscillator to reduce the overall system power consumption.

5.4.2 Clock Generator

The clock generator consists of 3 sources which are listed below:

- One external 12 MHz (HXT) or 32 KHz (LXT) crystal
- One internal 22.1184 MHz RC oscillator (HIRC)
- One internal 10 KHz oscillator (LIRC)

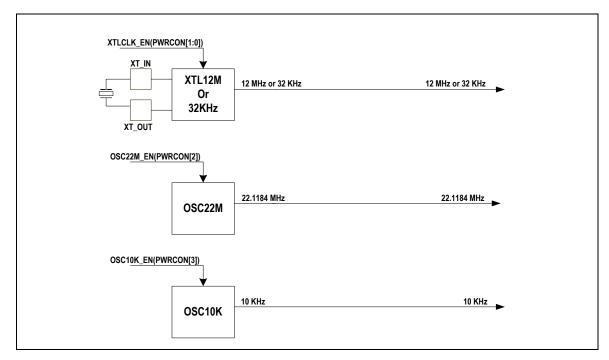


Figure 5.4-1 Clock Generator Block Diagram

5.4.3 System Clock and SysTick Clock

The system clock has 3 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is shown below.

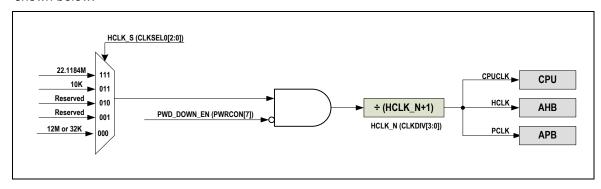


Figure 5.4-2 System Clock Block Diagram

The clock source of SysTick in Cortex-M0 core can use CPU clock or external clock (SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block diagram is shown in Figure 5.4-3.

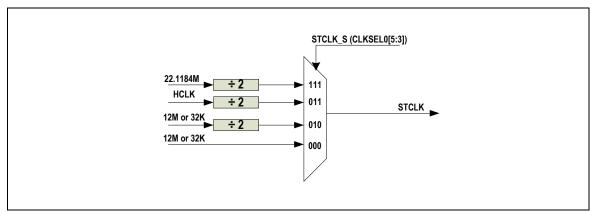


Figure 5.4-3 SysTick Clock Control Block Diagram

5.4.4 AHB Clock Source Selection

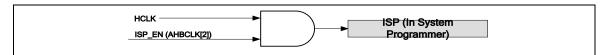


Figure 5.4-4 AHB Clock Source for HCLK

nuvoTon

5.4.5 Peripheral Clock Source Selection

The peripheral clock has different clock source switch settings depending on different peripherals. Please refer to the CLKSEL1 and APBCLK register description in section 5.4.9.

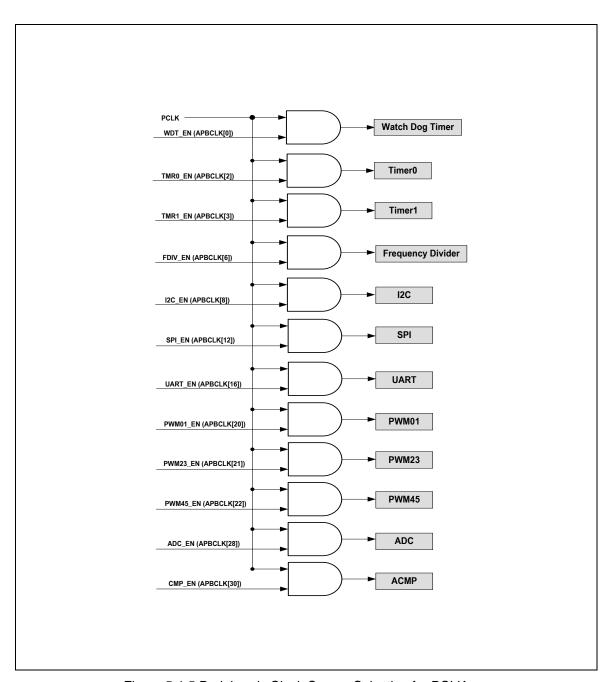


Figure 5.4-5 Peripherals Clock Source Selection for PCLK

	Ext. CLK (12M or 32K)	IRC22.1184M	IRC10K	PCLK
WDT	Yes	No	Yes	Yes

nuvoTon

	Ext. CLK (12M or 32K)	IRC22.1184M	IRC10K	PCLK
Timer0	Yes	Yes	Yes	Yes
Timer1	Yes	Yes	Yes	Yes
I ² C	No	No	No	Yes
SPI	No	No	No	Yes
UART	Yes	Yes	No	No
PWM	No	No	No	Yes
ADC	Yes	Yes	No	Yes
ACMP	No	No	No	Yes

Table 5.4-1 Peripherals Engine Clock Source Selection Table

nuvoTon

5.4.6 Power-down Mode Clock

When entering Power-down mode, some clock sources and peripheral clocks and system clocks will be disabled. Some clock sources and peripheral clocks are still active in Power-down mode.

Clocks that still be kept active are listed below.

- Clock Generator
 - ◆ Internal 10 KHz RC oscillator (LIRC) clock
 - ◆ External 32.768 KHz crystal oscillator (LXT) clock (If PD_32K = "1" and XTLCLK_EN[1:0] = "10")
- Peripherals Clock (When these IP adopt 10 KHz as clock source)
 - Watchdog Clock
 - ◆ Timer 0/1 Clock

5.4.7 Frequency Divider Output

This device is equipped with a power-of-2 frequency divider which is composed of 16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to P3.6. Therefore, there are 16 options of power-of-2 divided clocks with the frequency from Fin/21 to Fin/217 where Fin is input clock frequency to the clock divider.

The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider output frequency and N is the 4-bit value in FREQDIV.FSEL[3:0].

When FREQDIV.FDIV_EN[4] is set to high, the rising transition will reset the chained counter and starts counting. When FREQDIV.FDIV_EN[4] is written with zero, the chained counter continuously runs until the divided clock reaches low state and stays in low state.

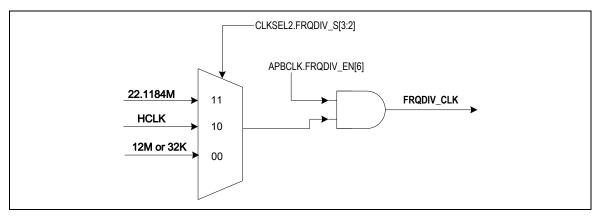


Figure 5.4-6 Clock Source of Frequency Divider

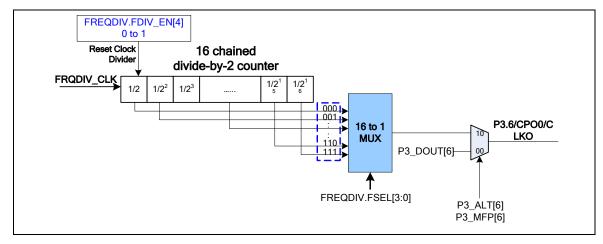


Figure 5.4-7 Block Diagram of Frequency Divider

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

5.4.8 Clock Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
CLK_BA = 0x	5000_0200			
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_001C
AHBCLK	CLK_BA+0x04	R/W	AHB Device Clock Enable Control Register	0x0000_0005
APBCLK	CLK_BA+0x08	R/W	APB Device Clock Enable Control Register	0x0000_0001
CLKSTATUS	CLK_BA+0x0C	R/W	Clock Status Monitor Register	0x0000_0018
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003F
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xAFFF_FFFF
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0x0000_00EF
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000

5.4.9 Clock Control Register

Power-down Control Register (PWRCON)

Except the BIT[6], all the other bits are protected, programming these bits needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock these bits. Refer to the register RegLockAddr at address GCR_BA + 0x100.

Register	Offset	R/W	Description	Reset Value
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_001C

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
						PD_32K	-
7	6	5	4	3	2	1	0
PWR_DOWN	PD_WU_STS	WINT_EN	WU_DLY	OSC10K_EN	OSC22M_EN	XTLCI	_K_EN

Bits	Description				
[31:10]	-	Reserved			
		This bit controls the crystal oscillator active or not in Power-down mode.			
[9]	PD_32K	1 = If XTLCLK_EN[1:0] = 10, 32.768 KHz crystal oscillator (LXT) is still active in Power-down mode.			
		0 = No effect to Power-down mode.			
[8]	-	Reserved			
		System Power-down Active or Enable Bit			
		When chip waked-up from power-down, this bit is automatically cleared, and user needs to set this bit again for the next power-down.			
		In Power-down mode, the LDO, external crystal and the 22.1184 MHz OSC will be disabled, and the 10K enable is not controlled by this bit.			
[7]	PWR_DOWN_EN	Note : If XTLCLK_EN[1:0] = 10 (enable 32 KHz External Crystal Oscillator) and when PWR_DOWN_EN ="1" (system entering Power-down mode), the external crystal oscillator cannot be disabled to ensure system wake-up enabled.			
		When power down, all of the AMBA clocks (HCLKx, CPU clock and the PCLKx) are also disabled, and the clock source selection is ignored. The IP engine clock is not controlled by this bit if the IP clock source is from the 10K clock and the WDT from 10K).			
		1 = Chip entering the Power-down mode instantly or wait CPU Idle command.			
		0 = Chip operated in Normal mode or CPU enters into Idle mode.			

nuvoTon

Bits	Description	
		Power-down Mode Wake-up Interrupt Status
		When set by "power-down wake-up event", it indicates that resume from Power-down mode.
[6]	PD_WU_STS	The flag is set if the GPIO, UART, WDT, ACMP, Timer or BOD wake-up occurred.
		Write "1" to clear the bit to zero.
		Note: This bit is working only if PD_WU_INT_EN (PWRCON[5]) is set to "1".
		Power-down Mode Wake-up Interrupt Enable (Write-protected)
rei	DD 14/11 INT EN	0 = Disabled.
[5]	PD_WU_INT_EN	1 = Enabled. The interrupt will occur when Power-down mode wake up.
		The interrupt will occur when both PD_WU_STS and PD_WU_INT_EN are high.
		Wake-up Delay Counter Enable (Write-protected)
		When the chip wakes up from Power-down mode, the clock control will delay certain clock cycles to wait system clock stable.
[4]	WU_DLY	The delayed clock cycle is 4096 clock cycles when chip work at 12 MHz crystal, 4096 clock cycle for 32.768 KHz crystal, and 16 clock cycles when chip work at 22.1184 MHz oscillator.
		1 = Clock cycles delay Enabled.
		0 = Clock cycles delay Disabled.
		Internal 10 KHz Oscillator (LIRC) Control
[3]	OSC10K_EN	1 = 10 KHz Oscillation Enabled.
		0 = 10 KHz Oscillation Disabled.
		Internal 22.1184 MHz Oscillator (HIRC) Control
[0]	OSC22M EN	1 = 22.1184 MHz Oscillation Enabled.
[2]	OSC22M_EN	0 = 22.1184 MHz Oscillation Disabled.
		Note: The default of OSC22M_EN bit is "1".
		External 12 MHz (HXT) or 32 KHz (LXT) Crystal Oscillator Control
		The default clock source is from internal 22.1184 MHz. These two bits are default set to "00" and the XTAL1 and XTAL2 pins are GPIO.
		00 = XTAL1 and XTAL2 are GPIO, disable both XTL32K and XTAL12M (default).
[1:0]	XTLCLK_EN[1:0]	01 = XTAL12M (HXT) Enabled.
		10 = XTAL32K (LXT) Enabled.
		11 = XTAL1 is external clock input pin, XTAL2 is GPIO.
		Note : To enable external XTAL function, P5_ALT[1:0] and P5_MFP[1:0] bits must also be set in P5_MFP.

Register Instruction Mode	PWR_DOWN_EN	CPU run WFI instruction	Clock Disabled	
Normal Running Mode	0	NO	All clocks are disabled by control register	
IDLE Mode	0	YES	Only CPU clock is disabled	
Power-down Mode	1		Most clocks are disabled except 10K and some WDT/Timer/PWM/ADC peripheral clock are still active.	

Table 5.4-2 Power-down Mode Control Table

When the chip enters Power-down mode, user can wake up this chip by some interrupt sources. User should enable related interrupt sources and NVIC IRQ enable bits (NVIC_ISER) before setting PWR_DOWN_EN bit in PWRCON[7] to ensure the chip can enter power-down and be waked up successfully.

nuvoTon

AHB Devices Clock Enable Control Register (AHBCLK)

These register bits are used to enable/disable clock for AMBA clock, AHB engine and peripheral.

Register	Offset	R/W	Description	Reset Value
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0005

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			,	-			
7	6	5	4	3	2	1	0
		-	•		ISP_EN	-	-

Bits	Description	
[31:3]	-	Reserved
		Flash ISP Controller Clock Enable Control
[2]	ISP_EN	1 = Flash ISP engine clock Enabled.
		0 = Flash ISP engine clock Disabled.
[1]	-	Reserved
[0]	-	Reserved. Must keep this bit "1" always; if set "0" the result is unpredictable.

APB Devices Clock Enable Control Register (APBCLK)

These register bits are used to enable/disable clock for APB engine and peripheral.

Register	Offset	R/W	Description	Reset Value
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_0001

31	30	29	28	27	26	25	24
-	CMP_EN	-	ADC_EN			=	
23	22	21	20	19	18	17	16
-	PWM45_EN	PWM23_EN	PWM01_EN		-		UART_EN
15	14	13	12	11	10	9	8
	-		SPI_EN		-		I2C_EN
7	6	5	4	3	2	1	0
-	FDIV_EN	-		TMR1_EN	TMR0_EN	•	WDT_EN

Bits	Description	ription				
[31]	-	Reserved				
		Comparator Clock Enable				
[30]	CMP_EN	1 = Analog Comparator Clock Enabled.				
		0 = Analog Comparator Clock Disabled.				
[29]	-	Reserved				
		Analog-Digital-Converter (ADC) Clock Enable Control				
[28]	ADC_EN	1 = Both the ADC's APB and the engine clock Enabled.				
		0 = Both the ADC's APB and the engine clock Disabled.				
[27:23]	-	Reserved				
		PWM_45 Clock Enable Control				
[22]	PWM45_EN	1 = Both the PWM45 APB and the engine clock Enabled.				
		0 = Both the PWM45 APB and the engine clock Disabled.				
		PWM_23 Clock Enable Control				
[21]	PWM23_EN	1 = Both the PWM23 APB and the engine clock Enabled.				
		0 = Both the PWM23 APB and the engine clock Disabled.				
		PWM_01 Clock Enable Control				
[20]	PWM01_EN	1 = Both the PWM01 APB and the engine clock Enabled.				
		0 = Both the PWM01 APB and the engine clock Disabled.				
[19:17]	-	Reserved				

nuvoTon

Bits	Description					
		UART Clock Enable Control				
[16]	UART_EN	1 = Both the UART APB and the engine clock Enabled.				
		0 = Both the UART APB and the engine clock Disabled.				
[15:13]	-	Reserved				
		SPI Clock Enable Control				
[12]	SPI_EN	0 = Disabled.				
		1 = Enabled.				
[11:9]	-	Reserved				
		I ² C Clock Enable Control				
[8]	I2C_EN	0 = Disabled.				
		1 = Enabled.				
[7]	-	Reserved				
		Clock Divider Clock Enable Control				
[6]	FDIV_EN	0 = Disabled.				
		1 = Enabled.				
[5:4]	-	Reserved				
		Timer1 Clock Enable Control				
[3]	TMR1_EN	0 = Disabled.				
		1 = Enabled.				
		Timer0 Clock Enable Control				
[2]	TMR0_EN	0 = Disabled.				
		1 = Enabled.				
[1]	-	Reserved				
		Watchdog Clock Enable				
[0]	WDT_EN	This bit is the protected bit; programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.				
		0 = Disabled.				
		1 = Enabled.				

Clock status Register (CLKSTATUS)

These register bits are used to monitor if the chip clock source is stable or not, and if the clock switch is failed.

Register	Offset	R/W	Description	Reset Value
CLKSTATUS	CLK_BA+0x0C	R/W	Clock Status Monitor Register	0x0000_0018

31	30	29	28	27	26	25	24
			-				
23	22	21	20	19	18	17	16
			-				
15	14	13	12	11	10	9	8
			-	_			
7	6	5	4	3	2	1	0
CLK_SW_FAIL		-	OSC22M_STB	OSC10K_STB		-	XTL_STB

Bits	Description	
[31:8]	-	Reserved
		Clock Switch Fail Flag
		1 = Clock switch failed.
[7]	CLK_SW_FAIL	0 = Clock switch success.
		This bit will be set when target switch clock source is not stable.
		Write "1" to clear this bit to zero.
[6:5]	-	Reserved
		OSC22M Clock Source Stable Flag
[4]	OSC22M_STB	1 = OSC22M clock stable.
		0 = OSC22M clock not stable or not enabled.
		OSC10K Clock Source Stable Flag
[3]	OSC10K_STB	1 = OSC10K clock stable.
		0 = OSC10K clock not stable or not enabled.
[2:1]	-	Reserved
		XTL12M or XTL32K Clock Source Stable Flag
[0]	XTL_STB	1 = XTL12M or XTL32K clock stable.
		0 = XTL12M or XTL32K clock not stable or not enabled.

nuvoTon

Clock Source Select Control Register 0 (CLKSEL0)

Register	Offset	R/W	Description	Reset Value
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003F

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		STCLK_S			HCLK_S		

Bits	Description						
[31:6]	-	Reserved					
		Cortex™-M0 CPU SysTick Clock Source Selection					
		If SYST_CSR[2]=0, SysTick uses clock source listed below.					
		These bits are protected bit; programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.					
		000 = Clock source from 12 MHz or 32 KHz crystal clock.					
[5:3]	STCLK_S[2:0]	001 = Reserved.					
		010 = Clock source from 12 MHz or 32 KHz crystal clock/2.					
		011 = Clock source from HCLK/2.					
		111 = Clock source from internal 22.1184 MHz oscillator clock/2.					
		100, 101, 110 = Reserved.					
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.					

Bits	Description	Description				
		HCLK Clock Source Selection				
		Note : Before clock switch the related clock sources (pre-select and new-select) must be turned on.				
		These bits are protected bit; programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.				
	110114 070 03	000 = Clock source from external 12 MHz or 32 KHz crystal clock.				
[2:0]	HCLK_S[2:0]	001 = Reserved.				
		010 = Reserved.				
		011 = Clock source from internal 10 KHz oscillator clock.				
		111 = Clock source from internal 22.1184 MHz oscillator clock.				
		Others = Reserved.				
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.				

nuvoton

Clock Source Select Control Register 1 (CLKSEL1)

Before clock switch the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xAFFF_FFFF

31	30	29	28	27	26	25	24
PWM	23_S	PWM	01_S	-		UART_S	
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
-		TMR1_S		-		TMR0_S	
7	6	5	4	3	2	1	0
	<u>-</u>			ADO	C_S	WD	T_S

Bits	Description	
		PWM2 and PWM3 Clock Source Selection
		PWM2 and PWM3 use the same Engine clock source. They both have the same prescalar.
		00 = Reserved.
[31:30]	PWM23_S[1:0]	01 = Reserved.
		10 = Clock source from HCLK.
		11 = Reserved.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
		PWM0 and PWM1 Clock Source Selection
		PWM0 and PWM1 use the same Engine clock source. They both have the same prescalar.
		00 = Reserved.
[29:28]	PWM01_S[1:0]	01 = Reserved.
		10 = Clock source from HCLK.
		11 = Reserved.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
[27:26]	-	Reserved

Bits	Description	
		UART Clock Source Selection
		00 = Clock source from external 12 MHz or 32 KHz crystal clock.
[05.04]	HART SIA-01	01 = Reserved.
[25:24]	UART_S[1:0]	10 = Clock source from internal 22.1184 MHz oscillator clock.
		11 = Reserved.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
[23:15]	-	Reserved
		TIMER1 Clock Source Selection
		000 = Clock source from external 12 MHz or 32 KHz crystal clock.
		001 = Clock source from internal 10 KHz oscillator clock.
14.101	TMR1_S[2:0]	010 = Clock source from HCLK.
[14:12]		011 = Clock source from external trigger.
		111 = Clock source from internal 22.1184 MHz oscillator clock.
		100, 101, 110 = Reserved.
		Note: To set PWRCON[1:0] to select 12 MHz or 32 KHz crystal clock.
[11]	-	Reserved
		TIMER0 Clock Source Selection
		000 = Clock source from external 12 MHz or 32 KHz crystal clock.
		001 = Clock source from internal 10 KHz oscillator clock.
[10:8]	TMR0_S[2:0]	010 = Clock source from HCLK.
[10.0]	TWIKO_5[2.0]	011 = Clock source from external trigger.
		111 = Clock source from internal 22.1184 MHz oscillator clock.
		100, 101, 110 = Reserved.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
[7:4]	-	Reserved
		ADC Clock Source Selection
		00 = Clock source from external 12 MHz or 32 KHz crystal clock.
[0.0]	ADC 8[1:0]	01 = Reserved.
[3:2]	ADC_S[1:0]	10 = Clock source from HCLK clock.
		11 = Clock source from internal 22.1184 MHz oscillator clock.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.

nuvoTon

Bits	Description	escription				
		WDT CLK Clock Source Selection				
		These bits are protected bit, programming this needs an open lock sequence, write 0x59, 0x16, 0x88 to address 0x5000_0100 to un-lock this bit. Refer to the register RegLockAddr at address GCR_BA + 0x100.				
[1:0]	WDT S[1:0]	00 = Clock source from external 12 MHz or 32 KHz crystal clock.				
[1.0]		01 = Reserved.				
		10 = Clock source from HCLK/2048 clock.				
		11 = Clock source from internal 10 KHz oscillator clock.				
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.				

Clock Source Select Control Register (CLKSEL2)

Before clock switch the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0x0000_00EF

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				•			
15	14	13	12	11	10	9	8
				•			
7	6	5	4	3	2	1	0
	-	PWM	45_S	FRQI	DIV_S		

Bits	Description	
[31:6]	-	Reserved
		PWM4 and PWM5 Clock Source Selection – PWM4 and PWM5 use the same Engine clock source. They both have the same pre-scalar.
		00 = Reserved.
[5:4]	PWM45_S[1:0]	01 = Reserved.
		10 = Clock source from HCLK.
		11 = Reserved.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
		Clock Divider Clock Source Selection
		00 = Clock source from external 12 MHz or 32 KHz crystal clock.
[2.0]	FRQDIV_S[1:0]	01 = Reserved.
[3:2]	FRQDIV_3[1.0]	10 = Clock source from HCLK.
		11 = Clock source from internal 22.1184 MHz oscillator clock.
		Note: To set PWRCON[1:0], select 12 MHz or 32 KHz crystal clock.
[1:0]	-	Reserved

nuvoTon

Clock Divider Register (CLKDIV)

Register	Offset	R/W	Description	Reset Value
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000

31	30	29	28	27	26	25	24			
	-									
23	22	21	20	19	18	17	16			
			ADO	C_N						
15	14	13	12	11	10	9	8			
				UART_N						
7	6	5	4	3	2	1	0			
-				HCLK_N						

Bits	Description	Description					
[31:24]	-	Reserved					
[23:16]	ADC_N[7:0]	ADC Clock Divide Number from ADC Clock Source The ADC clock frequency = (ADC clock source frequency) / (ADC N + 1).					
[15:12]	-	Reserved					
[11:8]	UART_N[3:0]	UART Clock Divide Number from UART Clock Source The UART clock frequency = (UART clock source frequency) / (UART_N + 1).					
[7:4]	-	Reserved					
[3:0]	HCLK_N[3:0]	HCLK Clock Divide Number from HCLK Clock Source The HCLK clock frequency = (HCLK clock source frequency) / (HCLK_N + 1).					

nuvoTon

Frequency Divider Control Register (FRQDIV)

Register	Offset	R/W	Description	Reset Value
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			-	•			
23	22	21	20	19	18	17	16
			-				
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
- DIVIDER_EN				FSEL			

Bits	Description	Description					
[31:5]	-	Reserved					
		Frequency Divider Enable Bit					
[4]	DIVIDER_EN	0 = Frequency Divider Disabled.					
		1 = Frequency Divider Enabled.					
		Divider Output Frequency Selection Bits					
		The formula of output frequency is:					
[3:0]	FSEL[3:0]	$F_{\mathrm{out}} = F_{\mathrm{in}}/2^{(N+1)},$					
[3.0]	F3EL[3.0]	Fin is the input clock frequency.					
		Fout is the frequency of divider output clock.					
		N is the 4-bit value of FSEL[3:0].					

nuvoTon

5.5 Comparator Controller (CMPC)

5.5.1 Overview

The NuMicro Mini51™ Series contains two comparators which can be used in a number of different configurations. The comparator output is a logical one when positive input is greater than negative input; otherwise, the output is zero. Each comparator can be configured to cause an interrupt when the comparator output value changes. The block diagram is shown in Figure 5.5-1.

Note that the analog input port pins must be configured as the input type before Analog Comparator function is enabled.

5.5.2 Features

- Analog input voltage range: 0 ~ 5.0V
- Hysteresis function support
- Two analog comparators with optional internal reference voltage input at negative end
- One comparator interrupt requested by one of the comparators

5.5.3 Block Diagram

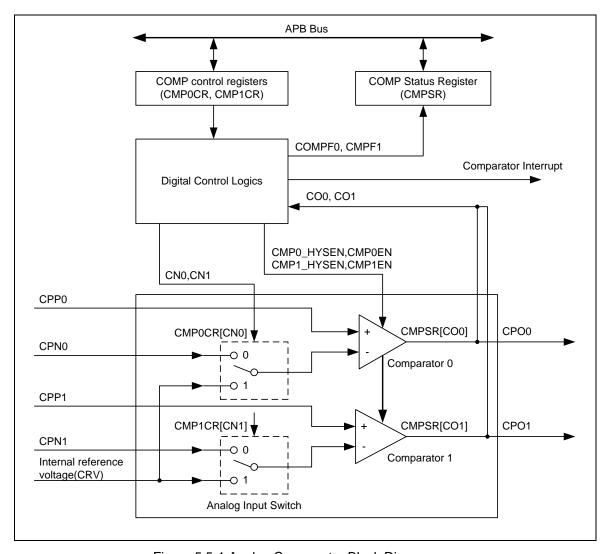


Figure 5.5-1 Analog Comparator Block Diagram

nuvoton

5.5.4 Functional Description

5.5.4.1 Interrupt Sources

The comparator generates an output CO1 (CO2) in CMPSR register which is sampled by PCLK. If CMP0IE (CMP1IE) bit in CMP0CR (CMP1CR) is set then a state change on the comparator output CO0 (CO1) will cause comparator flag CMPF0 (CMPF1) set and the comparator interrupt requested. Software can write a zero to CMP0 and CMPF1 to stop interrupt request.

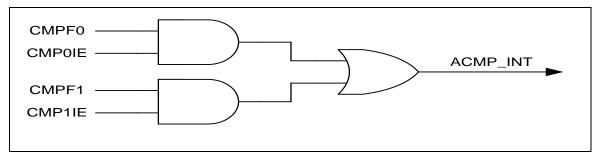


Figure 5.5-2 Comparator Controller Interrupt Sources

5.5.5 Comparator Reference Voltage (CRV)

5.5.5.1 Introduction

The comparator reference voltage (CRV) module is responsible for generating reference voltage for comparators. The CRV module consists of resisters ladder and analog switch, and user can set the CRV output voltage using CRVS[3:0] registers and select the reference voltage to CMP by setting OUL_SEL register.

5.5.5.2 Features:

- User selectable references voltage by setting CRVS[3:0] registers
- Automatic disable resisters ladder for reducing power consumption when setting OUT_SEL=0 (selecting Band-gap 1.35V output)

The block diagram of the CRV module is shown below:

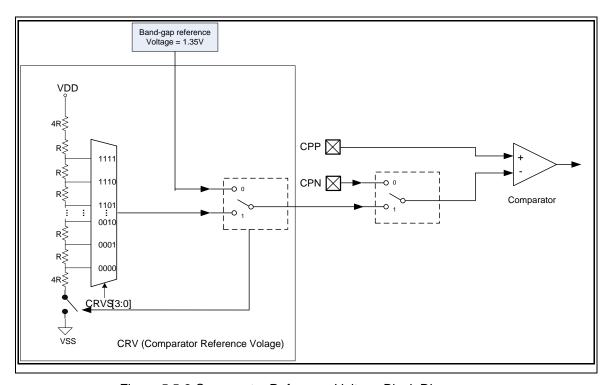


Figure 5.5-3 Comparator Reference Voltage Block Diagram

5.5.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
CMP_BA = 0x400D_0000							
CMP0CR	CMP_BA+0x00	R/W	Comparator0 Control Register	0x0000_0000			
CMP1CR	CMP_BA+0x04	R/W	Comparator1 Control Register	0x0000_0000			
CMPSR	CMP_BA+0x08	R/W	Comparator Status Register	0x0000_0000			
CMPRVCR	CMP_BA+0x0C	R/W	Comparator Reference Voltage Control Register	0x0000_0000			

5.5.7 Register Description

Comparator Control Register (CMP0CR)

Register	Offset	R/W	Description	Reset Value
CMP0CR	CMP_BA+0x00	R/W	Comparator0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	-		CN0	-	CMP0_HYSEN	CMP0IE	CMP0EN

Bits	Description				
[31:5]	-	Reserved			
[4]	CNO	Comparator0 Negative Input Selection 1 = The internal comparator reference voltage (Vref = 1.35V or from CRV setting value) is selected as the negative comparator input. 0 = The comparator reference pin CPN0 is selected as the negative comparator input.			
[3]	-	Reserved			
[2]	CMP0_HYSEN	Comparator Hysteresis Enable 1 = CMP0 Hysteresis function at comparator 0 Enabled that the typical range is 20mV. 0 = CMP0 Hysteresis function Disabled (Default).			
[1]	CMP0IE	Comparator0 Interrupt Enable 1 = CMP0 interrupt function Enabled. 0 = CMP0 interrupt function Disabled. Interrupt is generated if CMP0IE bit is set to "1" after CMP0 conversion finished.			
[0]	CMP0EN	Comparator0 Enable 1 = Enabled. 0 = Disabled. Comparator output needs to wait 10 us stable time after CMP0EN is set.			

nuvoTon

Comparator1 Control Register (CMP1CR)

Register	Offset	R/W	Description	Reset Value
CMP1CR	CMP_BA+0x04	R/W	Comparator1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
					•		
7	6	5	4	3	2	1	0
	-		CN1	-	CMP1_HYSEN	CMP1IE	CMP1EN

Bits	Description					
[31:5]	-	Reserved				
		Comparator1 Negative Input Selection				
[4]	CN1	1 = The internal comparator reference voltage (Vref=1.35V or from CRV set value) is selected as the negative comparator input.				
		0 = The comparator reference pin CPN0 is selected as the negative comparator input.				
[3]	-	Reserved				
		Comparator1 Hysteresis Enable				
[2]	CMP1_HYSEN	1 = CMP0 Hysteresis function at comparator 0 Enabled that the typical range is 20mV.				
		0 = CMP0 Hysteresis function Disabled (Default).				
		Comparator1 Interrupt Enable				
[4]	CMP1IE	1 = CMP1 interrupt function Enabled.				
[1]	CIMIPTIE	0 = CMP1 interrupt function Disabled.				
		Interrupt is generated if CMP1IE bit is set to "1" after CMP1 conversion finished.				
		Comparator1 Enable				
[0]	CMP1EN	1 = Enabled.				
[0]		0 = Disabled.				
		Comparator output needs to wait 10 us stable time after CMP1EN is set.				

nuvoTon

Comparator Status Register (CMPSR)

Register	Offset	R/W	Description	Reset Value
CMPSR	CMP_BA+0x08	R/W	Comparator Status Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
		-		CO1	C00	CMPF1	CMPF0

Bits	Description	
[31:4]	-	Reserved
[3]	CO1	Comparator1 Output Synchronized to the APB clock to allow reading by software. Cleared when the comparator is disabled (CMP1EN = 0).
[2]	COO	Comparator0 Output Synchronized to the APB clock to allow reading by software. Cleared when the comparator is disabled (CMP0EN = 0).
[1]	CMPF1	Comparator1 Flag This bit is set by hardware whenever the comparator1 output changes state. This will cause an interrupt if CMP1IE set. Write "1" to clear this bit to zero.
[0]	CMPF0	Comparator0 Flag This bit is set by hardware whenever the comparator0 output changes state. This will cause an interrupt if CMP0IE is set. Write "1" to clear this bit to zero.

nuvoTon

CMPRV Control Register (CMPRVCR)

Register	Offset	R/W	Description	Reset Value
CMPRVCR	CMP_BA+0x0C	R/W	Comparator Reference Voltage Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
OUT_SEL	-			CRVS			

Bits	Description	Description		
[31:8]	-	Reserved		
[7]	OUT_SEL	CRV Module Output Selection 1= CRVS setting voltage Selected. 0= Band-gap 1.35 V voltage Selected.		
[6:4]	-	Reserved		
[3:0]	CRVS[3:0]	Comparator Reference Voltage Setting CRVS = VDD x (1/6+CRV[3:0]/24)		

5.6 Analog-to-Digital Converter (ADC) Controller

5.6.1 Overview

The NuMicro Mini51™ series contains one 10-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input channels. The A/D converters can be started by software and external STADC/P3.2 pin.

Note that the analog input pins must be configured as input type before ADC function is enabled.

5.6.2 Features

- Analog input voltage range: 0 ~ Vref (Max to 5.0 V)
- 10-bit resolution and 8-bit accuracy is guaranteed
- Up to 8 single-end analog input channels
- Maximum ADC clock frequency is 6 MHz
- Up to 150K SPS conversion rate
- An A/D conversion is performed one time on a specified channel
- An A/D conversion can be started by:
 - ◆ Software write "1" to ADST bit
 - External pin STADC
- Conversion results are held in data register with valid and overrun indicators
- Conversion results can be compared with specified value and user can select whether to generate an interrupt when conversion results are equal to the compare register settings
- Channel 7 supports 2 input sources: External analog voltage and internal fixed bandgap voltage

nuvoTon

5.6.3 Block Diagram

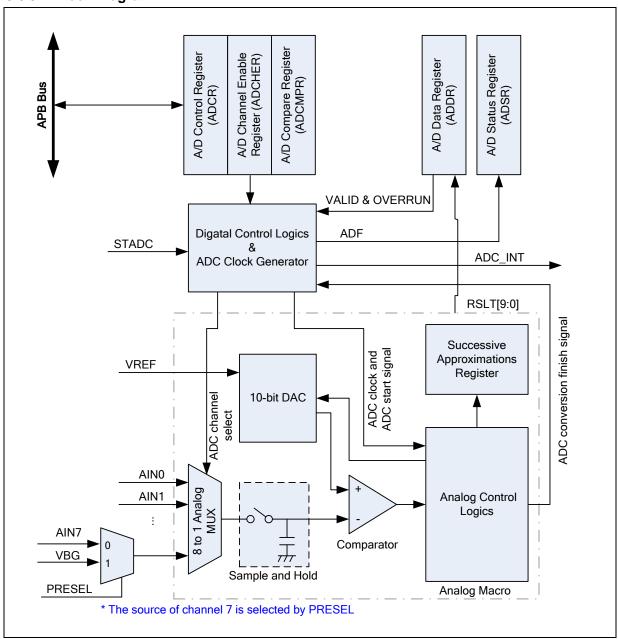


Figure 5.6-1 ADC Controller Block Diagram

5.6.4 ADC Operation Procedure

The A/D converter operates by successive approximation with 10-bit resolution. When changing the analog input channel is enabled, in order to prevent incorrect operation, software must clear ADST bit to "0" in the ADCR register. The A/D converter discards the current conversion immediately and enters idle state while ADST bit is cleared.

nuvoTon

5.6.4.1 ADC Clock Generator

The maximum sampling rate is up to 150 K. The ADC engine has clock source selected by 2-bit ADC_S (CLKSEL1[3:2]), the ADC clock frequency is divided by an 8-bit prescaler with the formula:

The ADC clock frequency = $(ADC clock source frequency) / (ADC_N+1)$; where the 8-bit ADC_N is located in register CLKDIV[23:16].

In general, software can set ADC S and ADC N to get 6 MHz or slightly less.

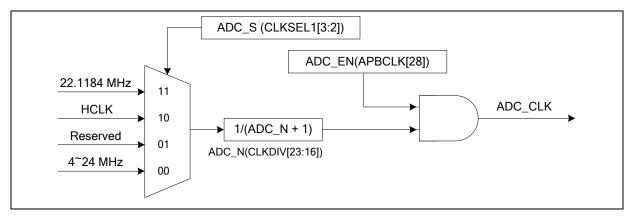


Figure 5.6-2 ADC Clock Control

5.6.4.2 Operation

A/D conversion is performed only once on the specified single channel. The operation is as follows:

- 1. A/D conversion will be started when the ADST bit of ADCR is set to "1" by software or external trigger input.
- 2. When A/D conversion is finished, the result is stored in the A/D data register (ADDR).
- The ADF bit of ADSR register will be set to "1". If the ADIE bit of ADCR register is set to "1", the ADC interrupt will be asserted.
- 4. The ADST bit remains "1" during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to "0" and the A/D converter enters in idle state.

Note: If software enables more than one channel, the channel with the lowest number will be selected and the other enabled channels will be ignored.

5.6.4.3 External Trigger Input Sampling and A/D Conversion Time

A/D conversion can be triggered by external pin request. When the ADCR.TRGEN is set to high, ADC external trigger function is enabled and trigger input source is from the STADC pin. Software can set TRGCOND to select trigger condition is falling or rising edge. An 8-bit sampling counter is used to deglitch. If edge trigger condition is happened, the high and low state must be kept at least 4 PLCKs. Pulse that is shorter than this specification will be ignored.

5.6.4.4 Conversion Result Monitor by Compare Mode Function

The NuMicro Mini51™ series controller provides two sets of compare registers, ADCMPR0 and Feb 9, 2012 Page **109** of **342** Revision V1.03

ADCMPR1 to monitor the maximum two specified channel conversion results from A/D conversion module (refer to Figure 5.6-3). Software can select which channel to be monitored by setting CMPCH (ADCMPRx[5:0]) and CMPCOND bit is used to check if conversion results are less than the specified value or greater than (or equal to) the value specified in CMPD[9:0]. When the conversion of the channel specified by CMPCH is completed, the comparing action will be triggered one time automatically. When the compare result meets the setting, compare match counter will increase 1; otherwise, the compare match counter will be cleared to "0". When counter value reaches the setting of (CMPMATCNT+1) the CMPF bit will be set to "1". If CMPIE bit is set then an ADC_INT interrupt request is generated. The detailed logics diagram is shown in Figure 5.6-3.

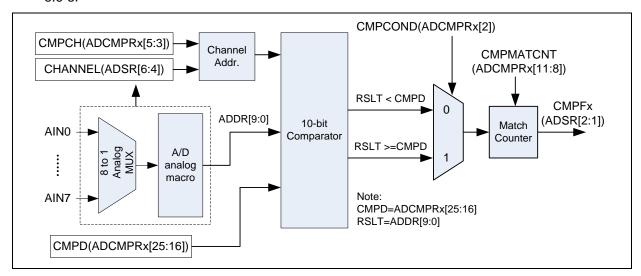


Figure 5.6-3 A/D Conversion Result Monitor Logics Diagram

5.6.4.5 Interrupt Sources

There are three interrupt sources of ADC interrupt. When an ADC operation mode finishes its conversion, the A/D conversion end flag, ADF, will be set to "1". The CMPF0 and CMPF1 are the compare flags of compare function. When the conversion result meets the settings of ADCMPR0/1, the corresponding flag will be set to "1". When one of the flags, ADF, CMPF0 and CMPF1, is set to "1" and the corresponding interrupt enable bit, ADIE of ADCR and CMPIE of ADCMPR0/1, is set to "1", the ADC interrupt will be asserted. Software can clear the flag to revoke the interrupt request.

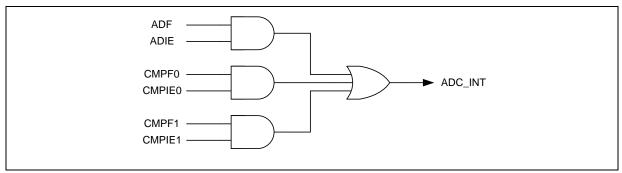


Figure 5.6-4 A/D Controller Interrupt

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUA

NuMicroTM Mini51 Technical Reference Manual

5.6.5 ADC Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
ADC_BA = 0x4	ADC_BA = 0x400E_0000						
ADDR	ADC_BA+0x00	R	A/D Data Register	0x0000_0000			
ADCR	ADC_BA+0x20	R/W	A/D Control Register	0x0000_0000			
ADCHER	ADC_BA+0x24	R/W	A/D Channel Enable Register	0x0000_0000			
ADCMPR0	ADC_BA+0x28	R/W	A/D Compare Register 0	0x0000_0000			
ADCMPR1	ADC_BA+0x2C	R/W	A/D Compare Register 1	0x0000_0000			
ADSR	ADC_BA+0x30	R/W	A/D Status Register	0x0000_0000			

nuvoTon

5.6.6 ADC Register

A/D Data Registers (ADDR)

Register	Offset	R/W	Description	Reset Value
ADDR	ADC_BA+0x00	R	A/D Data Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			VALID	OVERRUN
15	14	13	12	11	10	9	8
			-			RS	STL
7	6	5	4	3	2	1	0
	RSTL						

Bits	Description	
[31:18]	-	Reserved
		Valid Flag
		1 = Data in RSLT[9:0] bits valid.
[17]	VALID	0 = Data in RSLT[9:0] bits not valid.
		This bit is set to "1" when ADC conversion is completed and cleared by hardware after the ADDR register is read.
	OVERRUN	Over Run Flag
		1 = Data in RSLT[9:0] overwritten.
[16]		0 = Data in RSLT[9:0] is the recent conversion result.
		If converted data in RSLT[9:0] has not been read before the new conversion result is loaded to this register, OVERRUN is set to "1". It is cleared by hardware after the ADDR register is read.
[15:10]	-	Reserved
[9:0]	RSLT[9:0]	A/D Conversion Result This field contains the conversion result of ADC.

nuvoTon

A/D Control Register (ADCR)

Register	Offset	R/W	Description	Reset Value
ADCR	ADC_BA+0x20	R/W	ADC Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-			ADST	-		TRGEN
7	6	5	4	3	2	1	0
	TRGCOND			-		ADIE	ADEN

Bits	Description	
[31:12]	-	Reserved
		A/D Conversion Start
		1 = Conversion started.
[11]	ADST	0 = Conversion stopped and A/D converter entered idle state.
		ADST bit can be set to "1" from two sources: software and external pin STADC. ADST will be cleared to "0" by hardware automatically.
[10:9]	-	Reserved
		External Trigger Enable
[8]	TRGEN	Enable or disable triggering of A/D conversion by external STADC pin.
[O]	INGEN	1 = Enabled.
		0 = Disabled.
[7]	-	Reserved
		External Trigger Condition
[6]	TRGCOND	This bit decides whether the external pin STADC trigger event is falling or raising edge. The signal must be kept in stable state at least 4 PCLKs at high and low state for edge trigger.
		0 = Falling edge.
		1 = Raising edge.
[5:2]	-	Reserved
		A/D Interrupt Enable
[1]	ADIE	1 = A/D interrupt function Enabled.
ניו	ADIE	0 = A/D interrupt function Disabled.
		A/D conversion end interrupt request is generated if the ADIE bit is set to "1".

Bits	Description	Description			
		A/D Converter Enable			
		1 = Enabled.			
[0]	ADEN	0 = Disabled.			
		Before starting the A/D conversion function, this bit should be set to "1". Clear it to "0" to disable A/D converter analog circuit power consumption.			

A/D Channel Enable Register (ADCHER)

Register	Offset	R/W	Description	Reset Value
ADCHER	ADC_BA+0x24	R/W	A/D Channel Enable	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			-				PRESEL
7	6	5	4	3	2	1	0
CHEN7	CHEN6	CHEN5	CHEN4	CHEN3	CHEN2	CHEN1	CHEN0

Bits	Description	
[31:9]	-	Reserved
		Analog Input Channel 7 Selection
		0 = Analog Input Channel 7.
[8]	PRESEL	1 = Band-gap (VBG) Analog Input.
		Note : When software selects the band-gap voltage as the analog input source of ADC channel 7, the ADC clock rate needs to be limited to lower than 300 KHz.
		Analog Input Channel 7 Enable
[7]	CHEN7	1 = Enabled.
		0 = Disabled.
		Analog Input Channel 6 Enable
[6]	CHEN6	1 = Enabled.
		0 = Disabled.
		Analog Input Channel 5 Enable
[5]	CHEN5	1 = Enabled.
		0 = Disabled.
		Analog Input Channel 4 Enable
[4]	CHEN4	1 = Enabled.
		0 = Disabled.
		Analog Input Channel 3 Enable
[3]	CHEN3	1 = Enabled.
		0 = Disabled.
[2]	CHEN2	Analog Input Channel 2 Enable

Bits	Description	
		1 = Enabled.
		0 = Disabled.
		Analog Input Channel 1 Enable
[1]	CHEN1	1 = Enabled.
		0 = Disabled.
	CHEN0	Analog Input Channel 0 Enable
		1 = Enabled.
[0]		0 = Disabled.
r~1		Note: If software enables more than one channel, the channel with the lowest number will be selected and the other enabled channels will be ignored. That means channel 0 is the highest priority.

nuvoTon

A/D Compare Register 0/1 (ADCMPR0/1)

Register	Offset	R/W	Description	Reset Value
ADCMPR0	ADC_BA+0x28	R/W	A/D Compare Register 0	0x0000_0000
ADCMPR1	ADC_BA+0x2C	R/W	A/D Compare Register 1	0x0000_0000

31	30	29	28	27	26	25	24
-						CI	MPD
23	22	21	20	19	18	17	16
			CI	MPD			
15	14	13	12	11	10	9	8
	-				CMPMA	TCNT	
7	6	5	4	3	2	1	0
- СМРСН				CMPCOND	CMPIE	CPMEN	

Bits	Description							
[31:26]	-	Reserved	eserved					
[25:16]	CMPD[9:0]	Comparison Dat	а					
[20.10]	omi Dioloi	The 10-bit data is	used to compare with conversion result of specified channel.					
[15:12]	-	Reserved	eserved					
		Compare Match	Count					
[11:8]	CMPMATCNT [3:0]	defined by CMP	en the specified A/D channel analog conversion result matches the compare condition ned by CMPCOND[2], the internal match counter will increase 1. When the internal inter reaches the value to (CMPMATCNT +1), the CMPFx bit will be set.					
[7:6]	-	Reserved						
		Compare Channel Selection						
		CMPCH[2:0]	Compare Channel Selection					
		000	Channel 0 conversion result is selected to be compared.					
		001	Channel 1 conversion result is selected to be compared.					
[5:3]	CMPCH[2:0]	010	Channel 2 conversion result is selected to be compared.					
[၁.၁]	CMFCH[2.0]	011	Channel 3 conversion result is selected to be compared.					
		100	Channel 4 conversion result is selected to be compared.					
		101	Channel 5 conversion result is selected to be compared.					
		110	Channel 6 conversion result is selected to be compared.					
		111	Channel 7 conversion result is selected to be compared.					

Bits	Description	
[2]	CMPCOND	Compare Condition 1 = Set the compare condition as that when a 10-bit A/D conversion result is greater or equal to the 10-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase one.
	Cimi COND	 0 = Set the compare condition as that when a 10-bit A/D conversion result is less than the 10-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase one. Note: When the internal counter reaches the value to (CMPMATCNT +1), the CMPFx bit will be set.
[1]	СМРІЕ	Compare Interrupt Enable 1 = Compare function interrupt Enabled. 0 = Compare function interrupt Disabled. If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMATCNT, CMPFx bit will be asserted, in the meanwhile, if CMPIE is set to "1", a compare interrupt request is generated.
[0]	CMPEN	Compare Enable 1 = Compare function Enabled. 0 = Compare function Disabled. Set this bit to "1" to enable comparing CMPD[9:0] with specified channel conversion results when converted data is loaded into the ADDR register.

nuvoTon

A/D Status Register (ADSR)

Register	Offset	R/W	Description	Reset Value
ADSR	ADC_BA+0x30	R/W	ADC Status Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				OVERRUN
15	14	13	12	11	10	9	8
			-				VALID
7	6	5	4	3	2	1	0
-		CHANNEL		BUSY	CMPF1	CMPF0	ADF

Bits	Description	
[31:17]	-	Reserved
[16]	OVERRUN	Over Run Flag
[16]	OVERRON	It is a mirror to OVERRUN bit in ADDR.
[15:9]	-	Reserved
[0]	VALID	Data Valid Flag
[8]	VALID	It is a mirror of VALID bit in ADDR.
[7]	-	Reserved
		Current Conversion Channel
[6:4]	CHANNEL [2:0]	This field reflects the current conversion channel when BUSY=1. When BUSY=0, it shows the number of the next converted channel.
		It is read only.
		BUSY/IDLE
		1 = A/D converter is busy at conversion.
[3]	BUSY	0 = A/D converter is in idle state.
		This bit is mirror of as ADST bit in ADCR.
		It is read only.
		Compare Flag #1
[2]	CMPF1	When the selected channel A/D conversion result meets the setting condition in ADCMPR1 this bit is set to "1". Then it is cleared by writing "1" to itself.
		1 = Conversion result in ADDR meets the ADCMPR1 setting.
		0 = Conversion result in ADDR does not meet the ADCMPR1 setting.
[1]	CMPF0	Compare Flag #0

Bits	Description	
		When the selected channel A/D conversion result meets the setting condition in ADCMPR0, this bit is set to "1". Then it is cleared by writing "1" to itself.
		1 = Conversion result in ADDR meets the ADCMPR0 setting.
		0 = Conversion result in ADDR does not meet the ADCMPR0 setting.
		A/D Conversion End Flag
[0]	ADF	A status flag that indicates the end of A/D conversion.
[O]		ADF is set to "1" when A/D conversion ends.
		This flag can be cleared by writing "1" to itself.

5.7 Flash Memory Controller (FMC)

5.7.1 Overview

The NuMicro Mini51[™] series is equipped with 4K/8K/16K bytes on chip embedded Flash EPROM for application program memory (APROM) that can be updated through ISP procedure. In System Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip powered on Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, the NuMicro Mini51[™] series also provides DATA Flash Region, where the data flash is shared with original program memory and its start address is configurable and defined by user in Config1. The data flash size is defined by user depending on the application request.

5.7.2 Features

- Compatible with AHB interface
- Running up to 24 MHz with zero wait state for discontinuous address read access
- 4K/8K/16KB application program memory (APROM)
- 2KB in system programming (ISP) loader program memory (LDROM)
- Programmable data flash start address and memory size with 512 bytes page erase unit
- In System Program (ISP) to update on chip Flash EPROM

5.7.3 Block Diagram

The flash memory controller consists of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown in the following figure.

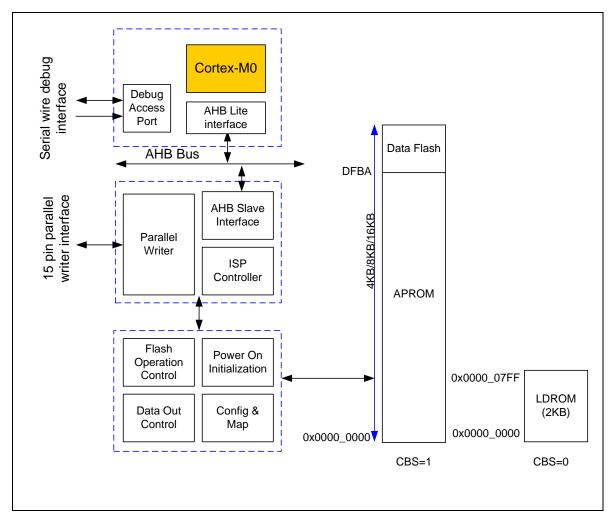


Figure 5.7-1 Flash Memory Control Block Diagram

5.7.4 Functional Description

5.7.4.1 Flash Memory Organization

The NuMicro Mini51[™] flash memory consists of program memory (4K/8K/16KB), data flash, ISP loader program memory, and user configuration. User configuration block provides several bytes to control system logic, such as flash security lock, boot selection, Brown-out voltage level, data flash base address, and so on. It works like a fuse for power on settings. It is loaded from flash memory to its corresponding control registers during chip power on. User can set these bits according to applications requested by writer before chip is mounted on PCB. The data flash start address and its size can be defined by user depending on applications.

Table 5.7-1 Memory Address Map

Block Name	Size	Start Address	End Address
AP-ROM	(4-0.5*N)KB /	0x0000_0000	DFBA-1 (if DFEN=0)
	(8-0.5*N)KB /		
	(16-0.5*N)KB		
Data Flash	0.5*N KB	DFBA	0x0000_0FFF /
			0x0000_1FFF /
			0x0000_3FFF
Reserved for future use		0x0000_4000	0x000F_FFFF
LD-ROM	2 KB	0x0010_0000	0x0010_07FF
User Configuration	2 words	0x0030_0000	0x0030_0004

nuvoTon

The Flash memory organization is shown below:

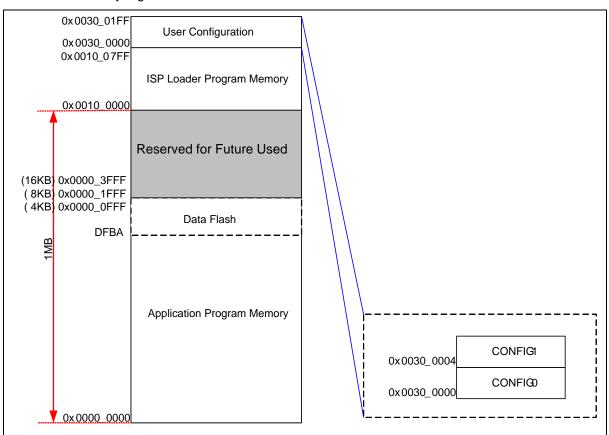


Figure 5.7-2 Flash Memory Organization

nuvoTon

5.7.4.2 Boot Selection

The NuMicro Mini51TM provides in system programming (ISP) feature for user to update program memory when chip is mounted on PCB. A dedicated 2KB program memory is used to store ISP firmware. User can select to start program fetch from APROM or LDROM by (CBS) in Config0. There are two kinds of mapping for booting selection.

Table 5.7-2 Boot Selection Table

CBS	Boot Selection
1	CPU booting from APROM, flash access range including APROM and Data Flash; LDROM cannot be accessed directly, except through ISP. APROM is write-protected in this mode.
0	CPU booting from LDROM, flash access range only LDROM 2KB; APROM cannot be accessed directly, except through ISP. APROM can be updated in this mode.

5.7.4.3 Data Flash

The NuMicro Mini51TM provides data flash for user to store data which is read/written through the ISP procedure. The size of each erase unit is 512 bytes. When a word will be changed, all 128 words need to be copied to another page or SRAM in advance. The data flash base address is defined by DFBA if DFEN bit in Config0 is enabled. For example, for 4K/2K/1K/0KB data flash, the DFBA setting value is listed in the following table.

Table 5.7-3 Data Flash Table

Data Flack	4KB	2KB	1KB	0KB
Data Flash	(DFEN=0)	(DFEN=0)	(DFEN=0)	(DFEN=1)
16K Flash	DFBA=0x0000_3000	DFBA=0x0000_3800	DFBA=0x0000_3C00	DFEN=1
8K Flash	DFBA=0x0000_1000	DFBA=0x0000_1800	DFBA=0x0000_1C00	DFEN=1
4K Flash	Forbidden	DFBA=0x0000_0800	DFBA=0x0000_0C00	DFEN=1

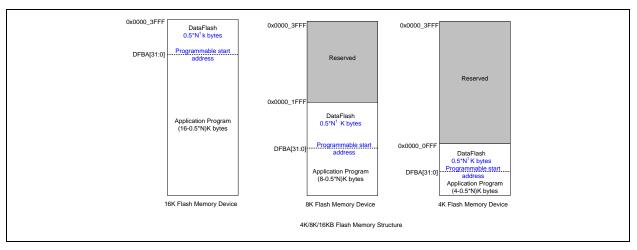


Figure 5.7-3 Flash Memory Structure

nuvoTon

5.7.4.4 User Configuration

Config0 (Address = 0x0030 0000)

31	30	29	28	27	26	25	24
	-		CKF		-		
23	22	21	20	19	18	17	16
-	СВОУ		CBORST	-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
CBS			-			LOCK	DFEN

Bits	Description							
[31:29]	-	Reserved	Reserved					
		HXT/LXT Clock I	Filter Enable					
[28]	CKF	0 = HXT/LXT cloc	k filter Disabled.					
		1 = HXT/LXT cloc	k filter Enabled.					
[27:23]	-	Reserved						
		Brown-out Volta	ge Selection					
		CBOV[1]	CBOV[0]	Brown-out voltage				
		1	1	Disable 2.7V/3.8V				
[22:21]	CBOV[1:0]	1	0	3.8V				
		0	1	2.7V				
		0	0	2.7V				
		Note: Enabling LVR2V or not when Power-down depends on CBOD2VEN bit.						
		Brown-out Rese	t Enable					
[20]	CBORST	0 = Brown-out reset Enabled after power on.						
		1 = Brown-out res	set Disabled after	power on.				
[19:8]	-	Reserved						
		Configured Boo	t Selection					
		CBS		Boot Selection				
		1		rom APROM, flash access range				
[7]	CBS			cannot be accessed directly, exe- e-protected in this mode.	ccept through 15P.			
		_		·				
		0		rom LDROM, flash access range essed directly, except through IS				
			APROM can be	e updated in this mode.				

Bits	Description	
[6:2]	-	Reserved
		Security Lock
		0 = Flash data locked.
[1]	1] LOCK	1 = Flash data unlocked.
1.1		When flash data is locked, only device ID, unique ID, Config0 and Config1 can be read by writer and ICP through serial debug interface. Other data is locked as 0xFFFFFFF. ISP can read data anywhere regardless of the LOCK bit value.
		Data Flash Enable
[0]	DFEN	0 = Data flash Enabled.
		1 = Data flash Disabled.

Config1 (Address = $0x0030_0004$)

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
	-						FBA	
15	14	13	12	11	10	9	8	
	DFBA							
7	6	5	4	3	2	1	0	
DFBA								

Bits	Description	escription					
[31:18]	-	Reserved					
[17:0]	DFBA[17:0]	Data Flash Base Address The data flash base address is defined by user. Since on chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as "0".					

Example:

Table 5.7-4 Data Flash Configuration Example

Data Floor	4KB	2KB	1KB	0KB
Data Flash	(DFEN=0)	(DFEN=0)	(DFEN=0)	(DFEN=1)
16K Flash	DFBA=0x0000_3000	DFBA=0x0000_3800	DFBA=0x0000_3C00	DFEN=1
8K Flash	DFBA=0x0000_1000	DFBA=0x0000_1800	DFBA=0x0000_1C00	DFEN=1
4K Flash	Forbidden	DFBA=0x0000_0800	DFBA=0x0000_0C00	DFEN=1

nuvoTon

5.7.4.5 In System Program (ISP)

The program memory and data flash supports both in hardware programming and in system programming (ISP). Hardware programming mode uses gang-writers to reduce programming costs and time to market while the products enter into the mass production state. However, if the product is just under development or the end product needs firmware updating in the hand of an end user, the hardware programming mode will make repeated programming difficult and inconvenient. ISP method makes it easy and possible. The NuMicro Mini51TM supports ISP mode which allows a device to be reprogrammed under software control. Furthermore, the capability to update the application firmware makes a wide range of applications possible.

ISP is performed without removing the microcontroller from the system. Various interfaces enable LDROM firmware to get new program code easily. The most common method to perform ISP is via UART along with the firmware in LDROM. General speaking, PC transfers the new APROM code through serial port. Then LDROM firmware receives it and re-programs into APROM through ISP commands. Nuvoton provides ISP firmware and PC application program for NuMicro Mini51TM. It is quite easy to perform ISP through Nuvoton ISP tool.

ISP Procedure

The NuMicro Mini51TM supports booting from APROM or LDROM initially defined by user configuration bit (CBS). To update application program in APROM, write BS=1 and start software reset to make chip boot from LDROM. The first step to start ISP function is write ISPEN bit to "1". Software is required to write RegLockAddr register in Global Control Register (GCR, 0x5000_0100) with 0x59, 0x16 and 0x88 before writing ISPCON register. This procedure is used to protect flash memory from destroying owing to unintended write during power on/off duration.

Several error conditions are checked after software writes ISPGO bit. If error condition occurs, ISP operation is not been started and ISP fail flag will be set instead. ISPFF flag is cleared by software, and it will not be overwritten in next ISP operation. The next ISP procedure can be started even ISPFF bit keeps as "1". It is recommended that software checks ISPFF bit and clears it after each ISP operation if it is set to "1".

When ISPGO bit is set, CPU will wait for ISP operation finish during this period; peripheral still keeps working as usual. If an interrupt request occurs, CPU will not service it until ISP operation finishes.

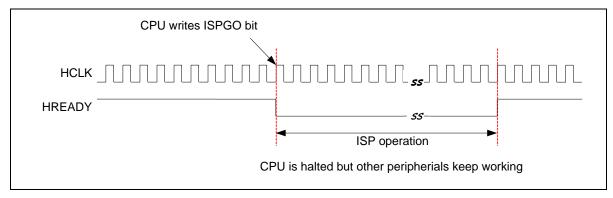


Figure 5.7-4 ISP Procedure

Note: The NuMicro Mini51TM allows user to update CONFIG value by ISP.

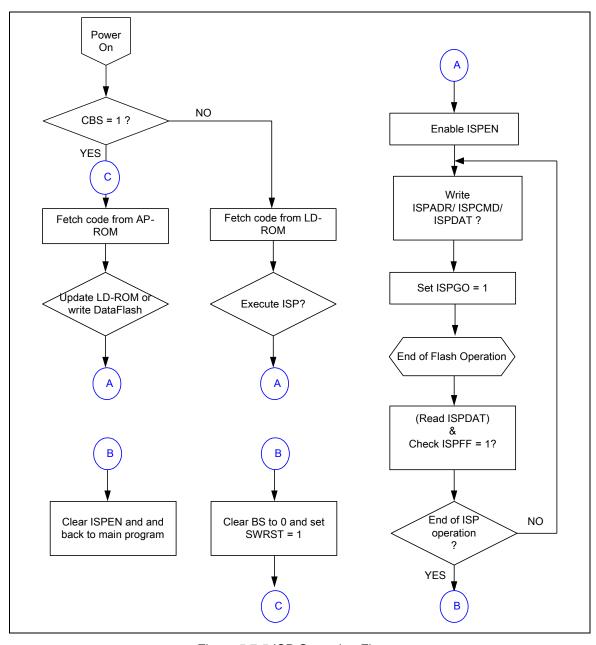


Figure 5.7-5 ISP Operation Flow

Table 5.7-5 ISP Command Table

	ISPCMD			ISPADR			ISPDAT
ISP Mode	FOEN	FCEN	FCTRL[3:0]	A21	A20	A[19:0]	D[31:0]
Standby	1	1	х	х	х	х	х
Read Company ID	0	0	1011	х	х	х	Data out D[31:0] = 0x0000_00DA
Read Device ID	0	0	1100	x	х	Address in A[19:0] = 0x00000	Data out D[31:0] = Device ID
Read Unique ID	0	0	0100	х	х	Address in A[19:0] = 0x00000 0x00004 0x00008	Data out D[31:0] = Unique ID
FLASH Page Erase	1	0	0010	0	A20	Address in A[19:0]	х
FLASH Program	1	0	0001	0	A20	Address in A[19:0]	Data in D[31:0]
FLASH Read	0	0	0000	0	A20	Address in A[19:0]	Data out D[31:0]
CONFIG Page Erase	1	0	0010	1	1	Address in A[19:0]	х
CONFIG Program	1	0	0001	1	1	Address in A[19:0]	Data in D[31:0]
CONFIG Read	0	0	0000	1	1	Address in A[19:0]	Data out D[31:0]

5.7.5 Flash Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
FMC_BA = 0x	FMC_BA = 0x5000_C000							
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000				
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000				
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000				
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000				
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Register	0x0000_0000				
DFBA	FMC_BA+0x14	R	Data Flash Start Address	0x0000_3800				

nuvoTon

5.7.6 Flash Control Register

ISP Control Register (ISPCON)

Register	Offset	R/W	Description	Reset Value
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
-		ET		-		PT	
7	6	5	4	3	2	1	0
SWRST	ISPFF	LDUEN	CFGUEN			BS	ISPEN

Bits	Description						
[31:15]	-	Reserved					
		Flash Eras	e Time				
		ET[2]	ET[1]	ET[0]	Erase Time (ms)		
		0	0	0	20 (default)		
	ET[2:0]	0	0	1	25		
[14:12]		0	1	0	30		
[17.12]		0	1	1	35		
		1	0	0	3		
		1	0	1	5		
		1	1	0	10		
		1	1	1	15		
[11]	-	Reserved					

Bits	Description	otion							
		Flash Prog	Flash Program Time						
		PT[2]	PT[1]	PT[0]	Program Time (us)				
		0	0	0	40				
		0	0	1	45	_			
140.01	DTIO 01	0	1	0	50				
[10:8]	PT[2:0]	0	1	1	55				
		1	0	0	20				
		1	0	1	25				
		1	1	0	30				
		1	1	1	35				
		Software R	eset	1					
[7]	SWRST	Writing "1" t	o this bit to	start softwa	re reset.				
		It is cleared	It is cleared by hardware after reset is finished.						
		ISP Fail Flag							
	ISPFF	This bit is conditions:	This bit is set by hardware when a triggered ISP meets any of the following conditions:						
		(1) APROM writes to itself.							
[6]		(2) LDROM writes to itself.							
		(3) CONFIG is erased/programmed when the MCU is running in APROM.							
		(4) Destination address is illegal, such as over an available range.							
		Write "1" to	clear.						
		LDROM Up	LDROM Update Enable						
[5]	LDUEN				the MCU runs in APROM.				
		0 = LDROM	I cannot be	updated.					
		Enable Co	nfig-bits Up	odate by IS	P				
[4]	CFGUEN		1 = Enable ISP can update config-bits.						
		0 = Disable	ISP can up	date config-	-bits.				
[3:2]	-	Reserved							
		Boot Selec	Boot Selection						
[1]	BS	also function booted from	Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit also functions as MCU booting status flag, which can be used to check where MCU booted from. This bit is initiated with the inversed value of CBS in Config0 after power-on reset; It keeps the same value at other reset.						
		1 = Boot fro	m LDROM						
		0 = Boot fro	m APROM						

Bits	Description	
		ISP Enable
[0]	ISPEN	ISP function enable bit. Set this bit to enable ISP function.
[0]		1 = ISP function Enabled.
		0 = ISP function Disabled.

ISP Address (ISPADR)

Register	Offset	R/W	Description	Reset Value
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	ISPADR								
23	22	21	20	19	18	17	16		
	ISPADR								
15	14	13	12	11	10	9	8		
	ISPADR								
7	6	5	4	3	2	1	0		
	ISPADR								

Bits	Description	escription					
[31:0]	ISPADR[31:0]	ISP Address The NuMicro Mini51 [™] series supports word program only. ISPADR[1:0] must be kept 00 for ISP operation.					

nuvoTon

ISPDAT (ISP Data Register)

Register	Offset	R/W	Description	Reset Value
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	ISPDAT								
23	22	21	20	19	18	17	16		
	ISPDAT								
15	14	13	12	11	10	9	8		
			ISP	DAT					
7	6	5	4	3	2	1	0		
	ISPDAT								

Bits	Description	escription					
		ISP Data					
[31:0]	ISPDAT[31:0]	Write data to this register before ISP program operation.					
		Read data from this register after ISP read operation.					

nuvoTon

ISP Command (ISPCMD)

Register	Offset	R/W	Description	Reset Value
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				•			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	-	FOEN	FCEN	FCTRL			

Bits	Description									
[31:6]	-	Reserved	Reserved							
		ISP Command ISP command is the same a	as writer mode	except who	le chip e	erase is		oorted.		
		Read	0	0	0	0	0	0		
[5:0]	FOEN, FCEN, FCTRL[3:0]	Program	1	0	0	0	0	1		
		Page Erase	1	0	0	0	1	0		
		Read CID	0	0	1	0	1	1		
		Read DID	0	0	1	1	0	0		
	Read UID	0	0	0	1	0	0			
		_	•	•			•			

nuvoTon

ISP Trigger Control Register (ISPTRG)

Register	Offset	R/W	Description	Reset Value
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-				ISPGO

Bits	Description					
[31:1]	-	Reserved				
[0]	ISPGO	ISP Start Trigger Write "1" to start ISP operation; this bit will be cleared to "0" by hardware automatically when ISP operation is finished. 1 = ISP on going. 0 = ISP operation finished.				

Data Flash Base Address Register (DFBA)

Register	Offset	R/W	Description	Reset Value
DFBA	FMC_BA+0x14	R	Data flash Base Address	0x0000_3800

31	30	29	28	27	26	25	24
DFBA							
23	22	21	20	19	18	17	16
DFBA							
15	14	13	12	11	10	9	8
DFBA							
7	6	5	4	3	2	1	0
DFBA							

Bits	Description		
[31:0]	DFBA[31:0]	Data Flash Base Address	
		This register indicates data flash start address. It is a read only register.	
		The data flash start address is defined by user. Since on chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as "0".	

Example:

Data Flash	4KB (DFEN=0)	2KB (DFEN=0)	1KB (DFEN=0)	0KB (DFEN=1)
16K Flash	DFBA=0x0000_3000	DFBA=0x0000_3800	DFBA=0x0000_3C00	DFEN=1
8K Flash	DFBA=0x0000_1000	DFBA=0x0000_1800	DFBA=0x0000_1C00	DFEN=1
4K Flash	Forbidden	DFBA=0x0000_0800	DFBA=0x0000_0C00	DFEN=1

nuvoTon

5.8 General Purpose I/O

5.8.1 Overview

There are 30 General Purpose I/O pins shared with special feature functions in this MCU. The 30 pins are arranged in 6 ports named P0, P1, P2, P3, P4 and P5. Each of the 30 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each I/O pin can be independently software configured as input, output, opendrain, or Quasi-bidirectional mode. After reset, the I/O type of all pins stay in input mode and port data register Px_DOUT[n] resets to "1". For Quasi-bidirectional mode, each I/O pin is equipped with a very weak individual pull-up resistor about $110 \text{K}\Omega \sim 300 \text{K}\Omega$ for VDD from 5.0V to 2.5V.

5.8.2 Features

- Four I/O modes:
 - Quasi bi-direction
 - Push-Pull output
 - Open-Drain output
 - ◆ Input-only with high impendence
- TTL/Schmitt trigger input selectable
- I/O pin can be configured as interrupt source with edge/level setting
- High driver and high sink IO mode support

5.8.3 Functional Description

5.8.3.1 Input Mode

When Px_PMD (PMDn[1:0]) is set to 00, the Px[n] pin is in Input mode and the I/O pin is in tri-state (high impedance) without output drive capability. The Px_PIN value reflects the status of the corresponding port pins.

5.8.3.2 Output Mode

When Px_PMD (PMDn[1:0]) is set to 01, the Px[n] pin is in Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding bit [n] of Px_DOUT is driven on the pin.

nuvoton

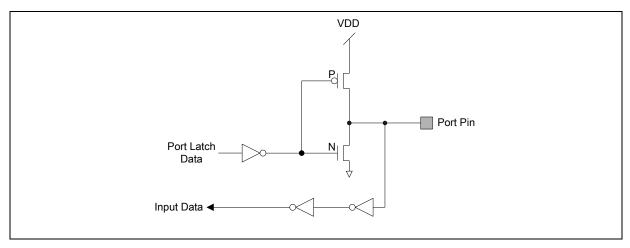


Figure 5.8-1 Push-Pull Output

5.8.3.3 Open-drain Mode

When Px_PMD (PMDn[1:0]) is set to 10, the Px[n] pin is in Open-Drain mode and the digital output function of I/O pin supports only sink current capability, and an additional pull-up register is needed for driving high state. If the bit value in the corresponding bit [n] of Px_DOUT is "0", the pin drives a "low" output on the pin. If the bit value in the corresponding bit [n] of Px_DOUT is "1", the pin output drives high that is controlled by the internal pull-up resistor or the external pull high resistor.

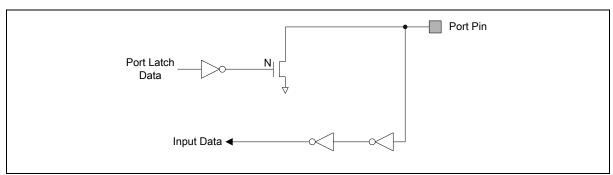


Figure 5.8-2 Open-Drain Output

5.8.3.4 Quasi-bidirectional Mode

When Px_PMD (PMDn[1:0]) is set to "11", the Px[n] pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds uA. Before the digital input function is performed the corresponding bit in Px_DOUT must be set to "1". The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding bit [n] of Px_DOUT is "0", the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of Px_DOUT is "1", the pin will check the pin value. If pin value is high, no action takes. If pin state is low, then pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive and then the pin status is controlled by internal pull-up resistor. Note that the source current capability in Quasi-bidirectional mode is only about 200uA to 30uA for VDD is from 5.0V to 2.5V.

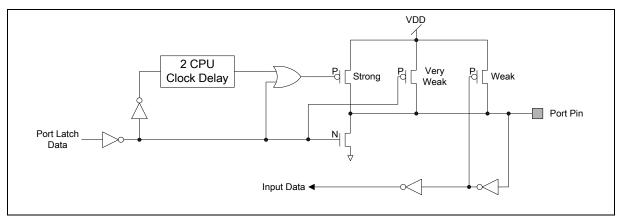


Figure 5.8-3 Quasi-bidirectional I/O Mode

5.8.4 Port 0-5 Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GP_BA = 0x50	00_4000	<u>'</u>		
P0_PMD	GP_BA+0x000	R/W	P0 Pin I/O Mode Control	0x0000_0000
P0_OFFD	GP_BA+0x004	R/W	P0 Pin OFF Digital Enable	0x0000_0000
P0_DOUT	GP_BA+0x008	R/W	P0 Data Output Value	0x0000_00F3
P0_DMASK	GP_BA+0x00C	R/W	P0 Data Output Write Mask	0x0000_0000
P0_PIN	GP_BA+0x010	R	P0 Pin Value	0x0000_00XX
P0_DBEN	GP_BA+0x014	R/W	P0 De-bounce Enable	0x0000_0000
P0_IMD	GP_BA+0x018	R/W	P0 Interrupt Mode Control	0x0000_0000
P0_IEN	GP_BA+0x01C	R/W	P0 Interrupt Enable	0x0000_0000
P0_ISRC	GP_BA+0x020	R/W	P0 Interrupt Trigger Source Indicator	0x0000_0000
P1_PMD	GP_BA+0x040	R/W	P1 Pin Mode Enable	0x0000_0000
P1_OFFD	GP_BA+0x044	R/W	P1 Pin OFF Digital Enable	0x0000_0000
P1_DOUT	GP_BA+0x048	R/W	P1 Data Output Value	0x0000_003D
P1_DMASK	GP_BA+0x04C	R/W	P1 Data Output Write Mask	0x0000_0000
P1_PIN	GP_BA+0x050	R	P1 Pin Value	0x0000_00XX
P1_DBEN	GP_BA+0x054	R/W	P1 De-bounce Enable	0x0000_0000
P1_IMD	GP_BA+0x058	R/W	P1 Interrupt Mode Control	0x0000_0000
P1_IEN	GP_BA+0x05C	R/W	P1 Interrupt Enable	0x0000_0000
P1_ISRC	GP_BA+0x060	R/WC	P1 Interrupt Source Flag	0x0000_0000
P2_PMD	GP_BA+0x080	R/W	P2 Pin Mode Enable	0x0000_0000
P2_OFFD	GP_BA+0x084	R/W	P2 Pin OFF Digital Enable	0x0000_0000
P2_DOUT	GP_BA+0x088	R/W	P2 Data Output Value	0x0000_007C
P2_DMASK	GP_BA+0x08C	R/W	P2 Data Output Write Mask	0x0000_0000
P2_PIN	GP_BA+0x090	R	P2 Pin Value	0x0000_00XX
P2_DBEN	GP_BA+0x094	R/W	P2 De-bounce Enable	0x0000_0000
P2_IMD	GP_BA+0x098	R/W	P2 Interrupt Mode Control	0x0000_0000
P2_IEN	GP_BA+0x09C	R/W	P2 Interrupt Enable	0x0000_0000

nuvoTon

Register	Offset	R/W	Description	Reset Value
GP_BA = 0x50	00_4000			
P2_ISRC	GP_BA+0x0A0	R/W	P2 Interrupt Trigger Source Indicator	0x0000_0000
P3_PMD	GP_BA+0x0C0	R/W	P3 Pin Mode Enable	0x0000_0000
P3_OFFD	GP_BA+0x0C4	R/W	P3 Pin OFF Digital Enable	0x0000_0000
P3_DOUT	GP_BA+0x0C8	R/W	P3 Data Output Value	0x0000_0077
P3_DMASK	GP_BA+0x0CC	R/W	P3 Data Output Write Mask	0x0000_0000
P3_PIN	GP_BA+0x0D0	R	P3 Pin Value	0x0000_00XX
P3_DBEN	GP_BA+0x0D4	R/W	P3 De-bounce Enable	0x0000_0000
P3_IMD	GP_BA+0x0D8	R/W	P3 Interrupt Mode Control	0x0000_0000
P3_IEN	GP_BA+0x0DC	R/W	P3 Interrupt Enable	0x0000_0000
P3_ISRC	GP_BA+0x0E0	R/W	P3 Interrupt Trigger Source Indicator	0x0000_0000
P4_PMD	GP_BA+0x100	R/W	P4 Pin Mode Enable	0x0000_0000
P4_OFFD	GP_BA+0x104	R/W	P4 Pin OFF Digital Enable	0x0000_0000
P4_DOUT	GP_BA+0x108	R/W	P4 Data Output Value	0x0000_00C0
P4_DMASK	GP_BA+0x10C	R/W	P4 Data Output Write Mask	0x0000_0000
P4_PIN	GP_BA+0x110	R	P4 Pin Value	0x0000_00XX
P4_DBEN	GP_BA+0x114	R/W	P4 De-bounce Enable	0x0000_0000
P4_IMD	GP_BA+0x118	R/W	P4 Interrupt Mode Control	0x0000_0000
P4_IEN	GP_BA+0x11C	R/W	P4 Interrupt Enable	0x0000_0000
P4_ISRC	GP_BA+0x120	R/W	P4 Interrupt Trigger Source Indicator	0x0000_0000
P5_PMD	GP_BA+0x140	R/W	P5 Pin Mode Control	0x0000_0000
P5_OFFD	GP_BA+0x144	R/W	P5 Pin OFF Digital Enable	0x0000_0000
P5_DOUT	GP_BA+0x148	R/W	P5 Data Output Value	0x0000_003F
P5_DMASK	GP_BA+0x14C	R/W	P5 Data Output Write Mask	0x0000_0000
P5_PIN	GP_BA+0x150	R	P5 Pin Value	0x0000_00XX
P5_DBEN	GP_BA+0x154	R/W	P5 De-bounce Enable	0x0000_0000
P5_IMD	GP_BA+0x158	R/W	P5 Interrupt Mode Control	0x0000_0000
P5_IEN	GP_BA+0x15C	R/W	P5 Interrupt Enable	0x0000_0000
P5_ISRC	GP_BA+0x160	R/W	P5 Interrupt Trigger Source Indicator	0x0000_0000
DBNCECON	GP_BA+0x180	R/W	Interrupt De-bounce Cycle Control	0x0000_0020

Register	Offset	R/W	Description	Reset Value
GP_BA = 0x50	000_4000	<u>'</u>		
P00_DOUT	GP_BA+0x200	R/W	P0.0 Data Output Value	0x0000_0001
P01_DOUT	GP_BA+0x204	R/W	P0.1 Data Output Value	0x0000_0001
P04_DOUT	GP_BA+0x210	R/W	P0.4 Data Output Value	0x0000_0001
P05_DOUT	GP_BA+0x214	R/W	P0.5 Data Output Value	0x0000_0001
P06_DOUT	GP_BA+0x218	R/W	P0.6 Data Output Value	0x0000_0001
P07_DOUT	GP_BA+0x21C	R/W	P0.7 Data Output Value	0x0000_0001
P10_DOUT	GP_BA+0x220	R/W	P1.0 Data Output Value	0x0000_0001
P12_DOUT	GP_BA+0x228	R/W	P1.2 Data Output Value	0x0000_0001
P13_DOUT	GP_BA+0x22C	R/W	P1.3 Data Output Value	0x0000_0001
P14_DOUT	GP_BA+0x230	R/W	P1.4 Data Output Value	0x0000_0001
P15_DOUT	GP_BA+0x234	R/W	P1.5 Data Output Value	0x0000_0001
P22_DOUT	GP_BA+0x248	R/W	P2.2 Data Output Value	0x0000_0001
P23_DOUT	GP_BA+0x24C	R/W	P2.3 Data Output Value	0x0000_0001
P24_DOUT	GP_BA+0x250	R/W	P2.4 Data Output Value	0x0000_0001
P25_DOUT	GP_BA+0x254	R/W	P2.5 Data Output Value	0x0000_0001
P26_DOUT	GP_BA+0x258	R/W	P2.6 Data Output Value	0x0000_0001
P30_DOUT	GP_BA+0x260	R/W	P3.0 Data Output Value	0x0000_0001
P31_DOUT	GP_BA+0x264	R/W	P3.1 Data Output Value	0x0000_0001
P32_DOUT	GP_BA+0x268	R/W	P3.2 Data Output Value	0x0000_0001
P34_DOUT	GP_BA+0x270	R/W	P3.4 Data Output Value	0x0000_0001
P35_DOUT	GP_BA+0x274	R/W	P3.5 Data Output Value	0x0000_0001
P36_DOUT	GP_BA+0x278	R/W	P3.6 Data Output Value	0x0000_0001
P46_DOUT	GP_BA+0x298	R/W	P4.6 Data Output Value	0x0000_0001
P47_DOUT	GP_BA+0x29C	R/W	P4.7 Data Output Value	0x0000_0001
P50_DOUT	GP_BA+0x2A0	R/W	P5.0 Data Output Value	0x0000_0001
P51_DOUT	GP_BA+0x2A4	R/W	P5.1 Data Output Value	0x0000_0001
P52_DOUT	GP_BA+0x2A8	R/W	P5.2 Data Output Value	0x0000_0001
P53_DOUT	GP_BA+0x2AC	R/W	P5.3 Data Output Value	0x0000_0001

Register	Offset	R/W	Description	Reset Value			
GP_BA = 0x5000_4000							
P54_DOUT	GP_BA+0x2B0	R/W	P5.4 Data Output Value	0x0000_0001			
P55_DOUT	GP_BA+0x2B4	R/W	P5.5 Data Output Value	0x0000_0001			

Note: Software must set the un-bonding out pin P5.5 to output mode when using QFN-33 package IC to minimize the power-down consumption.

5.8.5 Port 0-5 Control Register

Port 0-5 Pin I/O Mode Control (Px_PMD)

Register	Offset	R/W	Description	Reset Value
P0_PMD	GP_BA+0x000	R/W	P0 Pin I/O Mode Control	0x0000_0000
P1_PMD	GP_BA+0x040	R/W	P1 Pin I/O Mode Control	0x0000_0000
P2_PMD	GP_BA+0x080	R/W	P2 Pin I/O Mode Control	0x0000_0000
P3_PMD	GP_BA+0x0C0	R/W	P3 Pin I/O Mode Control	0x0000_0000
P4_PMD	GP_BA+0x100	R/W	P4 Pin I/O Mode Control	0x0000_0000
P5_PMD	GP_BA+0x140	R/W	P5 Pin I/O Mode Control	0x0000_0000

31	30	29	28	27	26	25	24	
				-				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
PM	ID7	PM	PMD6		PMD5		PMD4	
7	6	5	4	3	2	1	0	
PM	PMD3		ID2	PN	ID1	PM	ID0	

Bits	Description					
[31:16]	-	Reserved				
		Px Pin[n] I/O Mode Control Determine each I/O type of Px pin[n].				
		PMDn[1:0] Pin I/O Mode (x = 0~5, n = 0~7)	Pin I/O Mode (x = 0~5, n = 0~7)			
[2n+1:2n]	PMDn	00	Px pin[n] is in INPUT mode.			
		01	Px pin[n] is in OUTPUT mode.			
		10	Px pin[n] is in Open-Drain mode.			
		11	Px pin[n] is in Quasi-bidirectional mode.			

Note:

P0_PMD[7:4] are reserved.

P1_PMD[15:12], [3:2] are reserved.

P2_PMD[15:14], [3:0] are reserved.

P3_PMD[15:14], [7:6] are reserved.

Bits	Description			
P4_PMD[11:0] are reserved.				
P5_PMD[15:12	2] are reserved.			

nuvoTon

Port 0-5 Pin OFF Digital Enable (Px_OFFD)

Register	Offset	R/W	Description	Reset Value
P0_OFFD	GP_BA+0x004	R/W	P0 Pin OFF Digital Enable	0x0000_0000
P1_OFFD	GP_BA+0x044	R/W	P1 Pin OFF Digital Enable	0x0000_0000
P2_OFFD	GP_BA+0x084	R/W	P2 Pin OFF Digital Enable	0x0000_0000
P3_OFFD	GP_BA+0x0C4	R/W	P3 Pin OFF Digital Enable	0x0000_0000
P4_OFFD	GP_BA+0x104	R/W	P4 Pin OFF Digital Enable	0x0000_0000
P5_OFFD	GP_BA+0x144	R/W	P5 Pin OFF Digital Enable	0x0000_0000

31	30	29	28	27	26	25	24		
	-								
23	22	21	20	19	18	17	16		
			OF	FD					
15	14	13	12	11	10	9	8		
				-					
7	6	5	4	3	2	1	0		
				-					

Bits	Description	Description		
[31:24]	-	Reserved		
		OFFD: Px Pin[n] OFF Digital Input Path Enable		
[23:16]	OFFD[n]	1 = IO digital input path Disabled (digital input tied to low).		
[23.10]		0 = IO digital input path Enabled.		
		x = 0~5, n = 0~7		
[15:0]	-	Reserved		
	•			

Note:

P0_OFFD[19:18] are reserved.

P1_OFFD[23:22], [17] are reserved.

P2_OFFD[23], [17:16] are reserved.

P3_OFFD[23], [19] are reserved.

P4_OFFD[21:16] are reserved.

P5_OFFD[23:22] are reserved.

nuvoton

Port 0-5 Data Output Value (Px_DOUT)

Register	Offset	R/W	Description	Reset Value
P0_DOUT	GP_BA+0x008	R/W	P0 Data Output Value	0x0000_00F3
P1_DOUT	GP_BA+0x048	R/W	P1 Data Output Value	0x0000_003D
P2_DOUT	GP_BA+0x088	R/W	P2 Data Output Value	0x0000_007C
P3_DOUT	GP_BA+0x0C8	R/W	P3 Data Output Value	0x0000_0077
P4_DOUT	GP_BA+0x108	R/W	P4 Data Output Value	0x0000_00C0
P5_DOUT	GP_BA+0x148	R/W	P5 Data Output Value	0x0000_003F

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	DOUT						

Bits	Description	
[31:8]	-	Reserved
	n] DOUT[n]	Px Pin[n] Output Value
		Each of these bits controls the status of a Px pin when the Px pin is configured as output, open-drain and quasi-mode.
[n]		1 = Px pin[n] will drive High if the corresponding output mode enabling bit is set.
		0 = Px pin[n] will drive Low if the corresponding output mode enabling bit is set.
		x = 0-5, n = 0-7

Note:

P0_DOUT[3:2] are reserved.

P1_DOUT [7:6], [1] are reserved.

P2_DOUT [7], [1:0] are reserved.

P3_DOUT [7], [3] are reserved.

P4_DOUT [5:0] are reserved.

P5_DOUT [7:6] are reserved.

nuvoTon

Port 0-5 Data Output Write Mask (Px_DMASK)

Register	Offset	R/W	Description	Reset Value
P0_DMASK	GP_BA+0x00C	R/W	P0 Data Output Write Mask	0x0000_0000
P1_DMASK	GP_BA+0x04C	R/W	P1 Data Output Write Mask	0x0000_0000
P2_DMASK	GP_BA+0x08C	R/W	P2 Data Output Write Mask	0x0000_0000
P3_DMASK	GP_BA+0x0CC	R/W	P3 Data Output Write Mask	0x0000_0000
P4_DMASK	GP_BA+0x10C	R/W	P4 Data Output Write Mask	0x0000_0000
P5_DMASK	GP_BA+0x14C	R/W	P5 Data Output Write Mask	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	DMASK						

Bits	Description	
[31:8]	-	Reserved
		Px Data Output Write Mask
[n]	DMASK[n]	These bits are used to protect the corresponding register of Px_DOUT pin[n]. When the DMASK bit[n] is set to "1", the corresponding DOUTn pin is protected. The write signal is masked, and writing data to the protect pin is ignored.
[[]		0 = The corresponding Px_DOUT[n] bit can be updated.
		1 = The corresponding Px_DOUT[n] bit is protected.
		x = 0-5, n = 0-7

Note:

P0_DMASK[3:2] are reserved.

P1_DMASK [7:6], [1] are reserved.

P2_DMASK [7], [1:0] are reserved.

P3_DMASK [7], [3] are reserved.

P4_DMASK [5:0] are reserved.

P5_DMASK [7:6] are reserved.

nuvoTon

Port 0-5 Pin Value (Px_PIN)

Register	Offset	R/W	Description	Reset Value
P0_PIN	GP_BA+0x010	R	P0 Pin Value	0x0000_00XX
P1_PIN	GP_BA+0x050	R	P1 Pin Value	0x0000_00XX
P2_PIN	GP_BA+0x090	R	P2 Pin Value	0x0000_00XX
P3_PIN	GP_BA+0x0D0	R	P3 Pin Value	0x0000_00XX
P4_PIN	GP_BA+0x110	R	P4 Pin Value	0x0000_00XX
P5_PIN	GP_BA+0x150	R	P5 Pin Value	0x0000_00XX

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	PIN						

Bits	Description		
[31:8]	-	Reserved	
[n]	PIN[n]	Px Pin[n] Value The value read from each of these bit reflects the actual status of the respective Px pin[n]. $(x = 0 \sim 5, n = 0 \sim 7)$	

Note:

P0_PIN[3:2] are reserved.

P1_PIN [7:6], [1] are reserved.

P2_PIN [7], [1:0] are reserved.

P3_PIN [7], [3] are reserved.

P4_PIN [5:0] are reserved.

P5_PIN [7:6] are reserved.

nuvoTon

Port 0-5 De-bounce Enable (Px_DBEN)

Register	Offset	R/W	Description	Reset Value
P0_DBEN	GP_BA+0x014	R/W	P0 De-bounce Enable	0x0000_0000
P1_DBEN	GP_BA+0x054	R/W	P1 De-bounce Enable	0x0000_0000
P2_DBEN	GP_BA+0x094	R/W	P2 De-bounce Enable	0x0000_0000
P3_DBEN	GP_BA+0x0D4	R/W	P3 De-bounce Enable	0x0000_0000
P4_DBEN	GP_BA+0x114	R/W	P4 De-bounce Enable	0x0000_0000
P5_DBEN	GP_BA+0x154	R/W	P5 De-bounce Enable	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
DBEN							

Bits	Description	
[31:8]	-	Reserved
[n]	DBEN[n]	Px Input Signal De-bounce Enable DBEN[n] is used to enable the de-bounce function for each corresponding bit. If the input signal pulse width can't be sampled by continuous two de-bounce sample cycle, the input signal transition is regarded as the signal bounce and will not trigger the interrupt. The DBEN[n] is used for "edge-trigger" interrupt only, and is ignored for "level trigger" interrupt. 0 = The pin[n] de-bounce function disabled. 1 = The pin[n] de-bounce function enabled.
		The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored. $x=0{\sim}5,n=0{\sim}7$

Bits	Description	
Note:		
P0_DBEN[3:2]	are reserved.	
P1_DBEN [7:6], [1] are reserved.	
P2_DBEN [7],	[1:0] are reserved.	
P3_DBEN [7],	[3] are reserved.	
P4_DBEN [5:0] are reserved.		
P5_DBEN [7:6	P5_DBEN [7:6] are reserved.	

nuvoTon

Port 0-5 Interrupt Mode Control (Px_IMD)

Register	Offset	R/W	Description	Reset Value
P0_IMD	GP_BA+0x018	R/W	P0 Interrupt Mode Control	0x0000_0000
P1_IMD	GP_BA+0x058	R/W	P1 Interrupt Mode Control	0x0000_0000
P2_IMD	GP_BA+0x098	R/W	P2 Interrupt Mode Control	0x0000_0000
P3_IMD	GP_BA+0x0D8	R/W	P3 Interrupt Mode Control	0x0000_0000
P4_IMD	GP_BA+0x118	R/W	P4 Interrupt Mode Control	0x0000_0000
P5_IMD	GP_BA+0x158	R/W	P5 Interrupt Mode Control	0x0000_0000

31	30	29	28	27	26	25	24
			•	-			
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	IMD						

Bits	Description	
[31:8]	-	Reserved
[n]	IMD[n]	Port 0-5 Interrupt Mode Control IMD[n] is used to control the interrupt by level trigger or edge trigger. If the interrupt is by edge trigger, the trigger source is control de-bounced. If the interrupt is by level trigger, the input source is sampled by one clock and then generates the interrupt. 0 = Edge trigger interrupt. 1 = Level trigger interrupt. If pin is set as the level trigger interrupt, then only one level can be set on the registers Px_IEN. If both the level is set to trigger interrupt, the setting is ignored and no interrupt will occur. The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is
	level triggered, the de-bounce enable bit is ignored. $x = 0~5, n = 0~7$	

Bits	Description			
Note:				
P0_IMD[3:2] a	re reserved.			
P1_IMD [7:6],	[1] are reserved.			
P2_IMD [7], [1	:0] are reserved.			
P3_IMD [7], [3]	P3_IMD [7], [3] are reserved.			
P4_IMD [5:0] a	are reserved.			
P5_IMD [7:6] a	are reserved.			

nuvoTon

Port 0-5 Interrupt Enable (Px_IEN)

Register	Offset	R/W	Description	Reset Value
P0_IEN	GP_BA+0x01C	R/W	P0 Interrupt Enable	0x0000_0000
P1_IEN	GP_BA+0x05C	R/W	P1 Interrupt Enable	0x0000_0000
P2_IEN	GP_BA+0x09C	R/W	P2 Interrupt Enable	0x0000_0000
P3_IEN	GP_BA+0x0DC	R/W	P3 Interrupt Enable	0x0000_0000
P4_IEN	GP_BA+0x11C	R/W	P4 Interrupt Enable	0x0000_0000
P5_IEN	GP_BA+0x15C	R/W	P5 Interrupt Enable	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			IR_	EN			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
IF_EN							

Bits	Description	
[31:24]	-	Reserved
		Port 0-5 Interrupt Enable by Input Rising Edge or Input Level High
		IR_EN[n] is used to enable the interrupt for each of the corresponding input Px[n]. Setting bit to "1" also enables the pin wake-up function.
		When the IR_EN[n] bit is set to "1":
[n+16]	IR_EN[n]	If the interrupt is level mode trigger, the input Px[n] state at level "high" will generate the interrupt.
		If the interrupt is edge mode trigger, the input Px[n] state changed from "low-to-high" will generate the interrupt.
		1 = The Px[n] level-high or low-to-high interrupt Enabled.
		0 = The Px[n] level-high or low-to-high interrupt Disabled.
	x = 0~5, n = 0~7	
[15:8]	-	Reserved

nuvoTon

Bits	Description	
		Port 0-5 Interrupt Enable by Input Falling Edge or Input Level Low
[n] IF_EN[n]		IF_EN[n] used to enable the interrupt for each of the corresponding input Px[n]. Setting bit "1" also enables the pin wake-up function.
		When the IF_EB[n] bit is set to "1":
	IF_EN[n]	If the interrupt is level mode trigger, the input Px[n] state at level "low" will generate the interrupt.
		If the interrupt is edge mode trigger, the input Px[n] state change from "high-to-low" will generate the interrupt.
		1 = The Px[n] state low-level or high-to-low change interrupt Enabled.
		0 = The Px[n] state low-level or high-to-low change interrupt Disabled.
		x = 0~5, n = 0~7

Note:

P0_IEN[19:18], [3:2] are reserved.

P1_IEN [23:22], [17], [7:6], [1] are reserved.

P2_IEN [23], [17:16], [7], [1:0] are reserved.

P3_IEN [23], [19], [7], [3] are reserved.

P4_IEN [21:16], [5:0] are reserved.

P5_IEN [23:22], [7:6] are reserved.

nuvoTon

Port 0-5 Interrupt Trigger Source Indicator (Px_ISRC)

Register	Offset	R/W	Description	Reset Value
P0_ISRC	GP_BA+0x020	R/W	P0 Interrupt Trigger Source Indicator	0x0000_0000
P1_ISRC	GP_BA+0x060	R/W	P1 Interrupt Trigger Source Indicator	0x0000_0000
P2_ISRC	GP_BA+0x0A0	R/W	P2 Interrupt Trigger Source Indicator	0x0000_0000
P3_ISRC	GP_BA+0x0E0	R/W	P3 Interrupt Trigger Source Indicator	0x0000_0000
P4_ISRC	GP_BA+0x120	R/W	P4 Interrupt Trigger Source Indicator	0x0000_0000
P5_ISRC	GP_BA+0x160	R/W	P5 Interrupt Trigger Source Indicator	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
ISRC							

Bits	Description				
[31:8]	-	- Reserved			
		Port 0-5 Interrupt Trigger Source Indicator			
		Read:			
	ISRC[n]	1 = Indicates Px[n] generate an interrupt.			
[n]		0 = No interrupt at Px[n].			
[11]		Write:			
		1 = Clear the corresponding pending interrupt.			
		0 = No action.			
		x = 0~5, n = 0~7			

Bits	Description			
Note:				
P0_ISRC [3:2] a	are reserved.			
P1_ISRC [7:6],	[1] are reserved.			
P2_ISRC [7], [1	:0] are reserved.			
P3_ISRC [7], [3]	P3_ISRC [7], [3] are reserved.			
P4_ISRC [5:0] are reserved.				
P5_ISRC [7:6] a	are reserved.			

nuvoTon

Interrupt De-bounce Cycle Control (DBNCECON)

Register	Offset	R/W	Description	Reset Value
DBNCECON	GP_BA+0x180	R/W	External Interrupt De-bounce Control	0x0000_0020

31	30	29	28	27	26	25	24
			-				
23	22	21	20	19	18	17	16
			-				
15	14	13	12	11	10	9	8
			-				
7	6	5	4	3	2	1	0
		ICLK_ON	DBCLKSRC		DBCI	KSEL	

Bits	Description	Description		
[31:6]	-	- Reserved		
		Interrupt Clock On Mode		
		Setting this bit to "0" will disable the interrupt generate circuit clock if the pin[n] interrupt is disabled.		
[5]	ICLK_ON	0 = The clock Disabled if the P0/1/2/3/4[n] interrupt is disabled.		
		1 = Interrupt generated circuit clock always Enabled.		
		n = 0~7		
		De-bounce Counter Clock Source Selection		
[4]	DBCLKSRC	1 = De-bounce counter clock source is the internal 10 KHz clock.		
		0 = De-bounce counter clock source is the HCLK.		

nuvoTon

Bits	Description				
		De-bounce Sampli	ing Cycle Selection		
		DBCLKSEL	Description		
		0	Sample interrupt input once per 1 clock		
		1	Sample interrupt input once per 2 clocks		
		2	Sample interrupt input once per 4 clocks		
		3	Sample interrupt input once per 8 clocks		
		4	Sample interrupt input once per 16 clocks		
		5	Sample interrupt input once per 32 clocks		
[3:0]	DBCLKSEL	6	Sample interrupt input once per 64 clocks		
[0.0]	[3:0]	7	Sample interrupt input once per 128 clocks		
		8	Sample interrupt input once per 256 clocks		
		9	Sample interrupt input once per 2x256 clocks		
		10	Sample interrupt input once per 4x256 clocks		
		11	Sample interrupt input once per 8x256 clocks		
		12	Sample interrupt input once per 16x256 clocks		
		13	Sample interrupt input once per 32x256 clocks		
		14	Sample interrupt input once per 64x256 clocks		
		15	Sample interrupt input once per 128x256 clocks		

GPIO Port [P0/P1/P2/P3/P4/P5] I/O Bit Output Control (P[x][n]_DOUT)

 $P[x][n]_DOUT: x = 0~5, n = 0~7$

Register	Offset	R/W	Description	Reset Value
P0[n]_DOUT	GP_BA+0x200 - GP_BA+0x21C	R/W	P0 Pin I/O Bit Output/Input Control. For P0, n = 0, 1, 4, 5, 6, 7	0x0000_0001
P1[n]_DOUT	GP_BA+0x220 - GP_BA+0x23C	R/W	P1 Pin I/O Bit Output/Input Control. For P1, n = 0, 2, 3, 4, 5	0x0000_0001
P2[n]_DOUT	GP_BA+0x240 - GP_BA+0x25C	R/W	P2 Pin I/O Bit Output/Input Control. For P2, n = 2, 3, 4, 5, 6	0x0000_0001
P3[n]_DOUT	GP_BA+0x260 - GP_BA+0x27C	R/W	P3 Pin I/O Bit Output/Input Control. For P3, n = 0, 1, 2, 4, 5, 6	0x0000_0001
P4[n]_DOUT	GP_BA+0x280 - GP_BA+0x29C	R/W	P4 Pin I/O Bit Output/Input Control. For P4, n = 6, 7	0x0000_0001
P5[n]_DOUT	GP_BA+0x2A0 - GP_BA+0x2B4	R/W	P5 Pin I/O Bit Output/Input Control. For P5, n = 0, 1, 2, 3, 4, 5	0x0000_0001

31	30	29	28	27	26	25	24
			-				
23	22	21	20	19	18	17	16
			-				
15	14	13	12	11	10	9	8
			-				
7	6	5	4	3	2	1	0
			-				Pxx_DOUT

nuvoTon

Bits	Description	
[31:1]	-	Reserved
		P[x][n] I/O Pin Bit Output/Input Control
		Writing this bit can control one GPIO pin output value.
		1 = The corresponding GPIO pin set to high.
		0 = The corresponding GPIO pin set to low.
[0]	P[x][n]_DOUT	Read this register to get IO pin status.
		1 = Corresponding GPIO pin status is high.
		0 = Corresponding GPIO pin status is low.
		For example: Writing P01_DOUT[0] will reflect the written value to pin P0.1, reading P01_DOUT[0] will return the value of pin P0.1.
		x = 0~5, n = 0~7

5.9 I²C Serial Interface Controller (Master/Slave)

5.9.1 Overview

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I²C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously. Serial 8-bit oriented bi-directional data transfers can be made up 1.0 Mbps.

Data is transferred between a master and a slave synchronously to SCL on the SDA line on a byte-by-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the following figure for more detailed I²C BUS Timing.

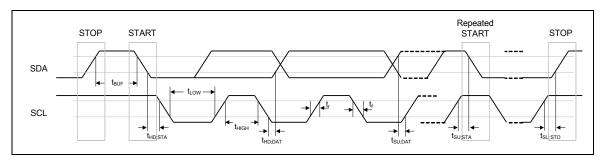


Figure 5.9-1 Bus Timing

The device's on-chip I^2C logic provides the serial interface that meets the I^2C bus standard mode specification. The I^2C port handles byte transfers autonomously. To enable this port, the bit ENSI in I2CON should be set to "1". The I^2C hardware interfaces to the I^2C bus via two pins: SDA (P3.4, serial data line) and SCL (P3.5, serial clock line). Since the pull-up resistor is needed for Pin P3.4 and P3.5 for I^2C operation as these are open-drain pins. When the I/O pins are used as I^2C port, user must set the pins function to I^2C in advance.

5.9.2 Features

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Supports Master/Slave mode
- Bi-directional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allowing devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Built-in 14-bit time-out counter that requests the I²C interrupt if the I²C bus hangs up

nuvoton

and timer-out counter overflows

- External pull-up needed for higher output pull-up speed
- Programmable clocks allowing for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address registers with mask option)

5.9.3 I²C Protocol

Normally, a standard communication consists of four parts:

- 1) START or Repeated START signal generation
- 2) Slave address and R/W bit transfer
- 3) Data transfer
- 4) STOP signal generation

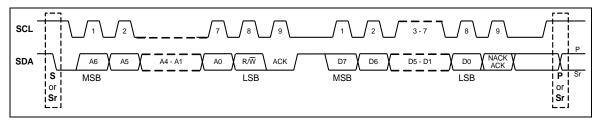


Figure 5.9-2 I²C Protocol

5.9.3.1 Data transfer on the I²C bus

A master-transmitter addresses a slave receiver with a 7-bit address.

The transfer direction is not changed.

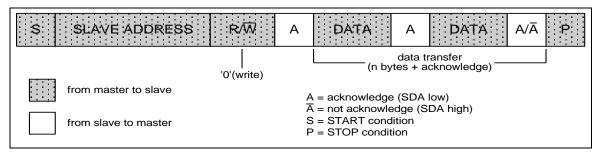


Figure 5.9-3 Master Transmits Data to Slave

A master reading a slave immediately changes the transfer direction after sending the first byte (address).

The transfer direction is changed.

nuvoton

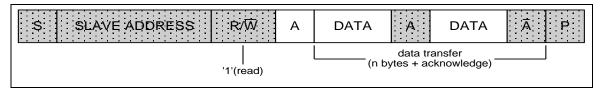


Figure 5.9-4 Master Reads Data from Slave

5.9.3.2 START or Repeated START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred as the S-bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transfer.

A Repeated START (Sr) is not STOP signal between two START signals. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

5.9.3.3 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the P-bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

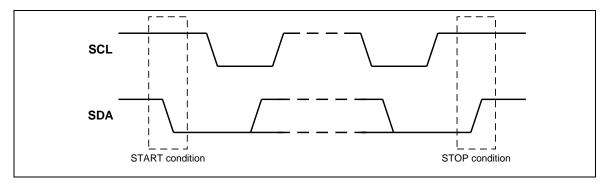


Figure 5.9-5 START and STOP Condition

5.9.3.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bit calling address followed by a RW bit. The RW bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

5.9.3.5 Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-bybyte basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

nuvoTon

If the master, as the receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

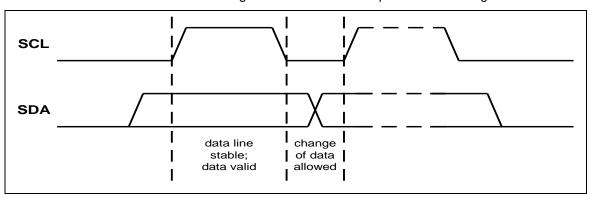


Figure 5.9-6 Bit Transfer on the I²C Bus

nuvoTon

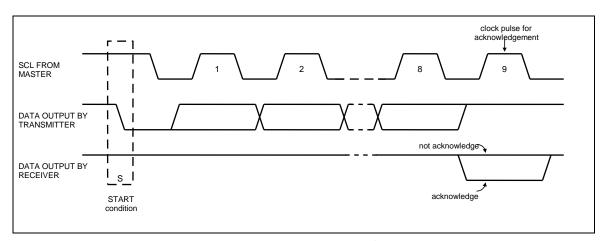


Figure 5.9-7 Acknowledge on the I²C Bus

5.9.4 I²C Protocol Registers

The CPU interfaces to the I^2 C port through the following thirteen special function registers: I2CON (control register), I2CSTATUS (status register), I2CDAT (data register), I2CADDRn (address registers, n=0~3), I2CADMn (address mask registers, n=0~3), I2CLK (clock rate register) and I2CTOC (time-out counter register). All bit 31 ~ bit 8 of these I^2 C special function registers are reserved. These bits do not have any functions and are all zero if read back.

When the I^2C port is enabled by setting ENSI (I2CON[6]) to high, the internal states will be controlled by I2CON and I^2C logic hardware. Once a new status code is generated and stored in I2CSTATUS, the I^2C Interrupt Flag bit SI (I2CON[3]) will be set automatically. If the Enable Interrupt bit EI (I2CON[7]) is set high at this time, the I^2C interrupt will be generated. The bit field I2CSTATUS[7:3] stores the internal state code, the lowest 3 bits of I2CSTATUS are always zero and the content keeps stable until SI is cleared by software. The base address of I^2C is $0x4002_0000$.

5.9.4.1 Address Registers (I2CADDR)

The I^2C port is equipped with four slave address registers I2CADDRn (n=0~3). The contents of the register are irrelevant when I^2C is in Master mode. In Slave mode, the bit field I2CADDRn[7:1] must be loaded with the MCU's own slave address. The I^2C hardware will react if the contents of I2CADDR are matched with the received slave address.

The I²C ports support the "General Call" function. If the GC bit (I2CADDRn[0]) is set, the I²C port hardware will respond to General Call address (0x00). Clearing GC bit will disable the general call function.

When GC bit is set and the I²C is in Slave mode, it can receive the general call address by 0x00 after the Master sends general call address to I²C bus, and then it will follow status of GC mode.

The I^2C -bus controllers support multiple address recognition with four address mask registers I2CADMn (n=0~3). When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exactly the same as address register.

nuvoTon

5.9.4.2 Data Register (I2CDAT)

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can read from or write to this 8-bit (I2CDAT[7:0]) directly while it is not in the process of shifting a byte. When I²C is in a defined state and the serial interrupt flag (SI) is set, data in I2CDAT[7:0] remains stable as long as SI bit is set. While data is being shifted out, data on the bus is simultaneously being shifted in; I2CDAT[7:0] always contains the last data byte present on the bus. Thus, in the event of arbitration lost, the transition from master transmitter to slave receiver is made with the correct data in I2CDAT[7:0].

I2CDAT[7:0] and the acknowledge bit form a 9-bit shift register, the acknowledge bit is controlled by the I²C hardware and cannot be accessed by the CPU. Serial data is shifted through the acknowledge bit into I2CDAT[7:0] on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2CDAT[7:0], the serial data is available in I2CDAT[7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2CDAT[7:0] on the falling edges of SCL clock pulses, and is shifted into I2CDAT[7:0] on the rising edges of SCL clock pulses.

Figure 5.9-8 I²C Data Shifting Direction

5.9.4.3 Control Register (I2CON)

The CPU can read from and write to this 8-bit field of I2CON[7:0] directly. Two bits are affected by hardware: the SI bit is set when the I²C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENSI = "0".

- El Enable Interrupt.
- ENSI Set to enable I²C serial function block. When ENSI=1 the I²C serial function enables. The multi-function pin function of SDA and SCL must be set to I²C function first.
- STA I²C START Control Bit. Setting STA to logic "1" to enter Master mode, the I²C hardware sends a START or repeat START condition to bus when the bus is free.
- STO I²C STOP Control Bit. In Master mode, setting STO to transmit a STOP condition to bus then I²C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In Slave mode, setting STO resets I²C hardware to the defined "not addressed" Slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
- SI I²C Interrupt Flag. When a new I²C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON[7]) is set, the I²C interrupt is requested. SI must be cleared by software. Clear SI is by writing "1" to this bit. All states are listed in section 5.9.12.
- AA Assert Acknowledge Control Bit. When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.

nuvoTon

5.9.4.4 Status Register (I2CSTATUS)

I2CSTATUS[7:0] is an 8-bit read-only register. The three least significant bits are always "0". The bit field I2CSTATUS[7:3] contain the status code. There are 27 possible status code. All states are listed in section 5.9.12. When I2CSTATUS[7:0] contains 0xF8, no serial interrupt is requested. All other I2CSTATUS[7:3] values correspond to defined I²C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS[7:3] one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software.

In addition, the state "0x00" stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I²C from bus error, STO should be set and SI should be clear to enter not addressed slave mode. Then clear STO to release bus and to wait new communication. I²C bus cannot recognize stop condition during this action when bus error occurs.

5.9.4.5 I²C Clock Baud Rate Bits (I2CLK)

The data baud rate of I²C is determined by I2CLK[7:0] register when I²C is in Master mode. It is not important when I²C is in Slave mode. In Slave mode, I²C will automatically synchronize with any clock frequency up to 1 MHz from master I²C device.

The data baud rate of I^2C setting is Data Baud Rate of I2C = PCLK / (4x (I2CLK[7:0] +1)). If PCLK=12 MHz, the I2CLK[7:0] = 9 (0x09), so data baud rate of I2C = 12 MHz / (4x (9 +1)) = 300K bits/sec. The block diagram is as the following figure.

5.9.4.6 The I²C Time-out Counter Register (I2CTOC)

There is a 14-bit time-out counter which can be used to deal with the I²C bus hang-up. If the time-out counter is enabled, the counter starts up counting until it overflows (TIF=1) and generates I²C interrupt to CPU or stops counting by clearing ENTI to "0". When time-out counter is enabled, setting flag SI to high will reset counter and re-start up counting after SI is cleared. If I²C bus hangs up, it causes the I2CSTATUS and flag SI are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the I²C interrupt. Refer to the following figure for the 14-bit time-out counter. User may clear TIF by writing "1" to this bit.

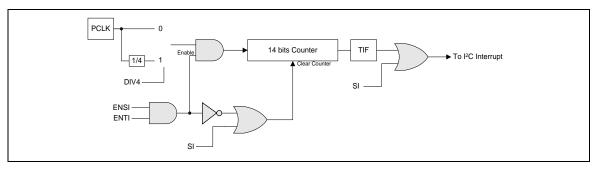


Figure 5.9-9 I²C Time-out Count Block Diagram

nuvoTon

5.9.5 Register Mapping

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
I2C_BA = 0x4	002_0000			<u>.</u>
I2CON	I2C_BA+0x00	R/W	I ² C Control Register	0x0000_0000
I2CADRR0	I2C_BA+0x04	R/W	I ² C Slave Address Register 0	0x0000_0000
I2CDAT	I2C_BA+0x08	R/W	I ² C DATA Register	0x0000_0000
I2CSTATUS	I2C_BA+0x0C	R	I ² C Status Register	0x0000_00F8
I2CLK	I2C_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000
I2CTOC	I2C_BA+0x14	R/W	I ² C Time-Out Counter Register	0x0000_0000
I2CADDR1	I2C_BA+0x18	R/W	I ² C Slave Address Register 1	0x0000_0000
I2CADDR2	I2C_BA+0x1C	R/W	I ² C Slave Address Register 2	0x0000_0000
I2CADDR3	I2C_BA+0x20	R/W	I ² C Slave Address Register 3	0x0000_0000
I2CADM0	I2C_BA+0x24	R/W	I ² C Slave Address Mask Register 0	0x0000_0000
I2CADM1	I2C_BA+0x28	R/W	I ² C Slave Address Mask Register 1	0x0000_0000
I2CADM2	I2C_BA+0x2C	R/W	I ² C Slave Address Mask Register 2	0x0000_0000
I2CADM3	I2C_BA+0x30	R/W	I ² C Slave Address Mask Register 3	0x0000_0000

5.9.6 Register Description

|²C CONTROL REGISTER (I2CON)

Register	Offset	R/W	Description	Reset Value
I2CON	I2C_BA+0x00	R/W	I ² C Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
EI	ENSI	STA	STO	SI	AA		-

Bits	Description	
[31:8]	-	Reserved
		Enable Interrupt
[7]	EI	$1 = I^2C$ interrupt Enabled.
		$0 = I^2C$ interrupt Disabled.
		I ² C Controller Enable Bit
		1 = Enabled.
[6]	ENSI	0 = Disabled.
		Set to enable the I^2C serial function block. When ENSI=1 the I^2C serial function is enabled. The multi-function pin function of SDA and SCL must be set to I^2C function first.
		I ² C START Control Bit
[5]	STA	Setting STA to logic "1" will enter Master mode. I ² C hardware sends a START or repeats the START condition to bus when the bus is free.
		I ² C STOP Control Bit
[4]	sто	In Master mode, setting STO to transmit a STOP condition to bus then I ² C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In Slave mode, setting STO resets I ² C hardware to the defined "not addressed" Slave mode. This means it is NO LONGER in the Slave receiver mode to receive data from the master transmit device.
		I ² C Interrupt Flag
[3]	SI	When a new I ² C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON[7]) is set, the I ² C interrupt is requested. SI must be cleared by software. Clear SI is by writing "1" to this bit.

Bits	Description	
		Assert Acknowledge Control Bit
[2]	AA	When AA=1 is prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.
[1:0]	-	Reserved

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

I²C DATA REGISTER (I2CDAT)

Register	Offset	R/W	Description	Reset Value
I2CDAT	I2C_BA+0x08	R/W	I ² C DATA Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				•			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	I2CDAT						

Bits	Description				
[31:8]	-	Reserved			
[7:0]	12CDAT[7:01	I ² C Data Register Bit [7:0] is located with the 8-bit transferred data of the I ² C serial port.			

nuvoTon

I²C STATUS REGISTER (I2CSTATUS)

Register	Offset	R/W	Description	Reset Value
12CSTATUS	I2C_BA+0x0C	R	I ² C STATUS Register	0x0000_00F8

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	I2CSTATUS						

Bits	Description	Description			
[31:8]	-	Reserved			
[7:0]	I2CSTATUS[7:0]	I ² C Status Register The status register of I ² C controller: The three least significant bits are always "0". The five most significant bits contain the status code. There are 27 possible status code. When I2CSTATUS contains 0xF8, no serial interrupt is requested. All the other I2CSTATUS values correspond to the defined I ² C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software. In addition, the state 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Examples of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit.			

STATUS	Description	STATUS	Description
80x0	Start	0xA0	Slave Transmit Repeat Start or Stop
0x10	Master Repeat Start	0xA8	Slave Transmit Address ACK
0x18	Master Transmit Address ACK	0xB0	Slave Transmit Arbitration Lost
0x20	Master Transmit Address NACK	0xB8	Slave Transmit Data ACK
0x28	Master Transmit Data ACK	0xC0	Slave Transmit Data NACK
0x30	Master Transmit Data NACK	0xC8	Slave Transmit Last Data ACK
0xF8	Stop	0x60	Slave Receive Address ACK
0x38	Master Arbitration Lost	0x68	Slave Receive Arbitration Lost
0x40	Master Receive ACK	0x80	Slave Receive Data ACK
0x48	Master Receive NACK	0x88	Slave Receive Data NACK
0x50	Master Receive ACK	0x70	GC mode Address ACK
0x58	Master Receive NACK	0x78	GC mode Arbitration Lost
0x00	Bus Error	0x90	GC mode Data ACK
		0x98	GC mode Data NACK

The detail information about the status is described in section 5.9.12.

nuvoTon

I²C BAUD RATE CONTROL REGISTER (I2CLK)

Register	Offset	R/W	Description	Reset Value
I2CLK	I2C_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	I2CLK						

Bits	Description				
[31:8]	-	Reserved			
[7:0]	I2CLK[7:0]	I ² C clock divided Register The I ² C clock rate bits: Data Baud Rate of I2C = PCLK / (4x (I2CLK+1)).			

nuvoTon

I²C TIME-OUT COUNTER REGISTER (I2CTOC)

Register	Offset	R/W	Description	Reset Value
12CTOC	I2C_BA+0x14	R/W	I ² C Time-out Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
		-			ENTI	DIV4	TIF

Bits	Description	
[31:3]	-	Reserved
		Time-out CounterEenable
		1 = Enabled.
[2]	ENTI	0 = Disabled.
		When enabled, the 14-bit time-out counter will start counting when SI is clear. Setting flag SI to high will reset counter and re-start up counting after SI is cleared.
		Time-out Counter Input Clock Divided by 4
[1]	DIV4	1 = Enabled.
ניו		0 = Disabled.
		When enabled, the time-out period is prolong 4 times.
		Time-out Flag
[0]	TIF	1 = Time-out flag is set by hardware. It can interrupt CPU.
		0 = Software can clear the flag by writing "1" to this flag when TIF is set.

nuvoTon

I²C SLAVE ADDRESS REGISTER (I2CADDRx)

Register	Offset	R/W	Description	Reset Value
I2CADDR0	I2C_BA+0x04	R/W	I ² C Slave Address Register 0	0x0000_0000
I2CADDR1	I2C_BA+0x18	R/W	I ² C Slave Address Register 1	0x0000_0000
I2CADDR2	I2C_BA+0x1C	R/W	I ² C Slave Address Register 2	0x0000_0000
I2CADDR3	I2C_BA+0x20	R/W	I ² C Slave Address Register 3	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
I2CADDR							GC

Bits	Description	Description				
[31:8]	-	Reserved				
[7:1]	I2CADDR[6:0]	I ² C Address Register The content of this register is irrelevant when I ² C is in Master mode. In Slave mode, the seven most significant bits must be loaded with the MCU's own address. The I ² C hardware will react if either of the address is matched.				
[0]	GC	General Call Function 0 = General Call Function Disabled. 1 = General Call Function Enabled.				

nuvoTon

I²C SLAVE ADDRESS REGISTER (I2CADDRx)

Register	Offset	R/W	Description	Reset Value
I2CADM0	I2C_BA+0x24	R/W	I ² C Slave Address Mask Register 0	0x0000_0000
I2CADM1	I2C_BA+0x28	R/W	I ² C Slave Address Mask Register 1	0x0000_0000
I2CADM2	I2C_BA+0x2C	R/W	I ² C Slave Address Mask Register 2	0x0000_0000
I2CADM3	I2C_BA+0x30	R/W	I ² C Slave Address Mask Register 3	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
I2CADMx							-

Bits	Description	Description			
[31:8]	-	Reserved			
		I ² C Address Mask Register			
		1 = Mask Enabled (the received corresponding address bit is don't care).			
[7:1]	I2CADMx[6:0]	0 = Mask Disabled (the received corresponding register bit should be exactly the same as address register).			
		I ² C bus controller supports multiple address recognition with four address mask registers. When the bit in the address mask register is set to "1", the received corresponding address bit is don't-care. If the bit is set to "0", the received corresponding register bit should be exactly the same as address register.			
[0]	-	Reserved			

nuvoTon

5.9.7 Operation Modes

The on-chip I²C port supports five operation modes: Master transmitter, Master receiver, Slave transmitter, Slave receiver, and GC call.

In a given application, I²C port may operate as a master or as a slave. In Slave mode, the I²C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master (by setting the AA bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, the hardware waits until the bus is free before the Master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

5.9.8 Master Transmitter Mode

Serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic "0", and it is represented by "W" in the flow diagrams. Thus the first byte transmitted is SLA+W. Serial data transmits 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. The START and STOP conditions are output to indicate the beginning and end of a serial transfer.

5.9.9 Master Receiver Mode

In this case the data direction bit (R/W) will be logic "1", and it is represented by "R" in the flow diagrams. Thus the first byte transmitted is SLA+R. Serial data is received via SDA while SCL outputs the serial clock. Serial data receives 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. The START and STOP conditions are output to indicate the beginning and end of a serial transfer.

5.9.10 Slave Receiver Mode

Serial data and serial clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.

5.9.11 Slave Transmitter Mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

5.9.12 Data Transfer Flow in Five Operation Modes

The five operation modes are: Master transmitter, Master receiver, Slave transmitter, Slave receiver, and GC Call. Bits STA, STO and AA in I2CON register will determine the next state of the I²C hardware after SI flag is cleared. Upon completion of the new action, a new status code will be updated and the SI flag will be set. If the I²C interrupt control bit EI (I2CON[7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

Data transfers in each mode are shown in the following figures.

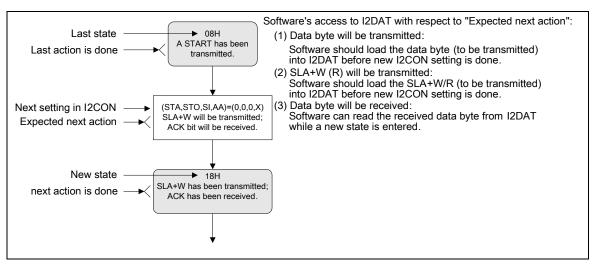


Figure 5.9-10 Legend for the Following Five Figures

nuvoTon



Figure 5.9-11 Master Transmitter Mode

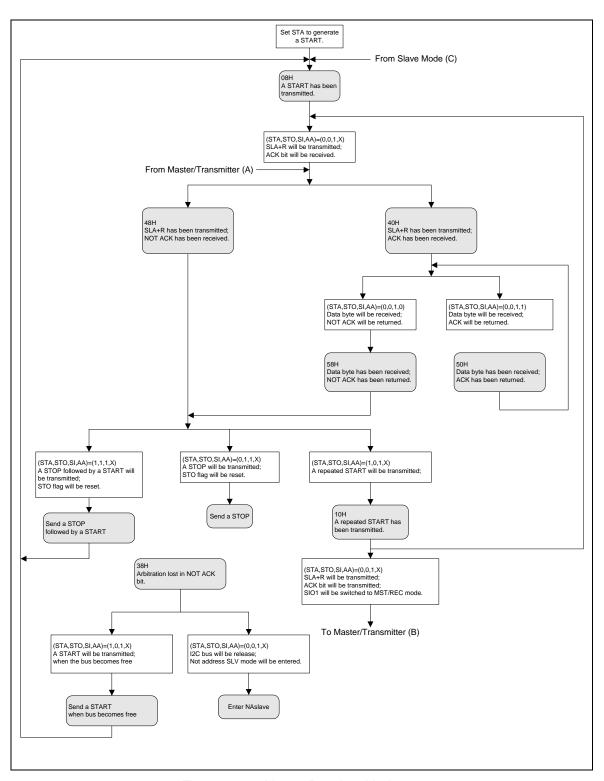


Figure 5.9-12 Master Receiver Mode

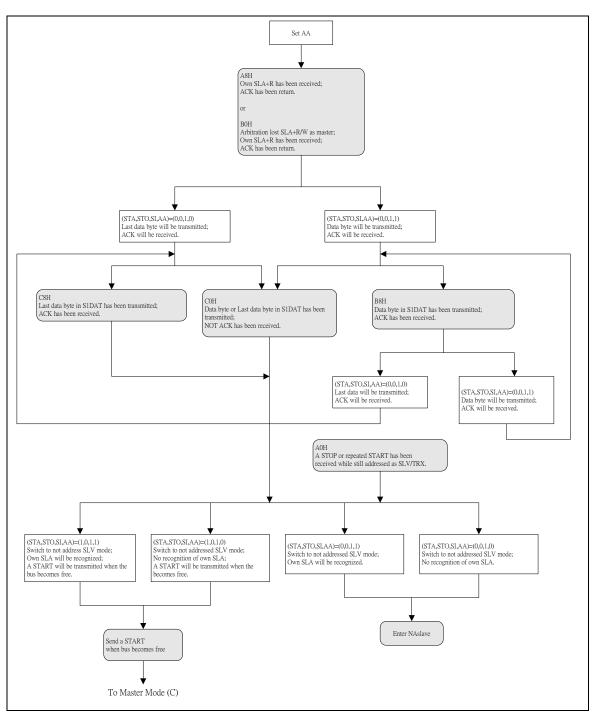


Figure 5.9-13 Slave Transmitter Mode

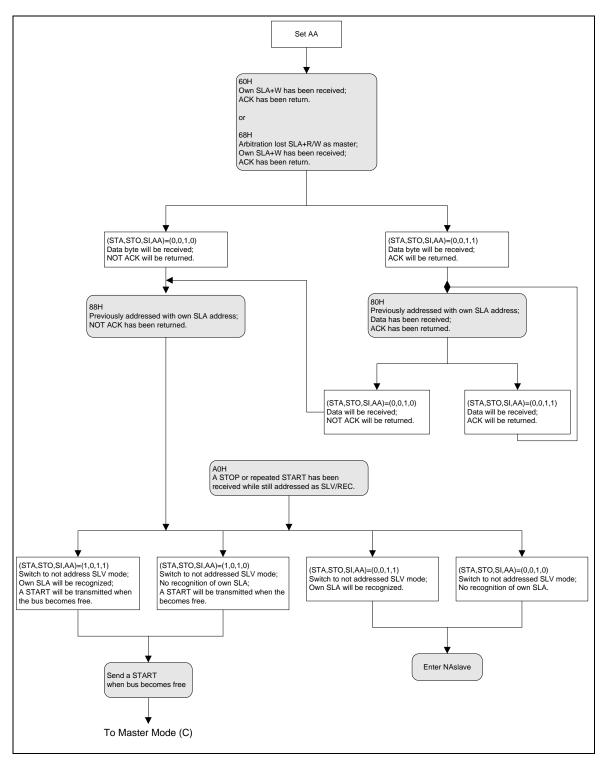


Figure 5.9-14 Slave Receiver Mode

nuvoTon

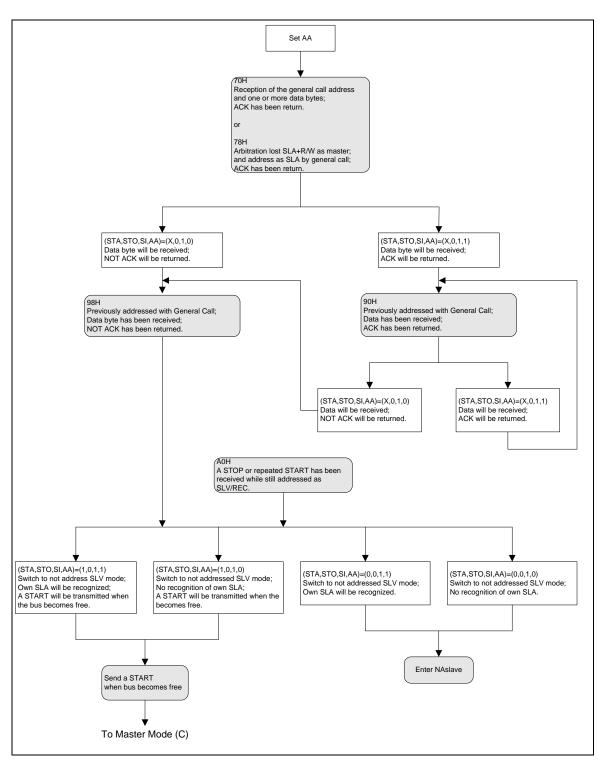


Figure 5.9-15 GC Mode

5.10 Enhanced PWM Generator

5.10.1 Overview

The NuMicro Mini51™ series has built one PWM unit which is specially designed for motor driving control applications. The PWM unit supports 6 PWM generators which can be configured as 6 independent PWM outputs, PWM0~PWM5, or as 3 complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5) with 3 programmable dead-zone generators.

Each PWM generator shares the 8-bit prescaler, clock divider providing 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16). Each PWM output has independent 16-bit counter for PWM period control, and 16-bit comparators for PWM duty control. The 6 PWM generators provide six independent PWM interrupt flags which are set by hardware when the corresponding PWM period counter comparison matched. Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or Auto-reload mode to output PWM waveform continuously.

5.10.2 Features

The PWM unit supports the following features:

- Six independent 16-bit PWM duty control units with maximum 6 port pins:
 - ♦ 6 independent PWM outputs PWM0, PWM1, PWM2, PWM3, PWM4, and PWM5
 - ◆ 3 complementary PWM pairs, with each pin in a pair mutually complement to each other and capable of programmable dead-zone insertion (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)
 - ◆ 3 synchronous PWM pairs, with each pin in a pair in-phase (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)
- Group control bit PWM2 and PWM4 are synchronized with PWM0
- One-shot (only support edge alignment mode) or Auto-reload mode PWM
- Up to 16-bit resolution
- Supports Edge-aligned and Center-aligned mode
- Programmable dead-zone insertion between complementary paired PWMs
- Each pin of PWM0 to PWM5 has independent polarity setting control
- Hardware fault brake protections
 - Two Interrupt source types:
 - Synchronously requested at PWM frequency when down counter comparison matched (edge- and center-aligned mode) or underflow (edge-aligned mode)
 - Requested when external fault brake asserted
 - ◆ BKP0: EINT0
 - ♦ BKP1: EINT1 or CPO0
- The PWM signals before polarity control stage are defined in view of positive logic. Whether the PWM ports are active high or active low is controlled by the polarity control register.

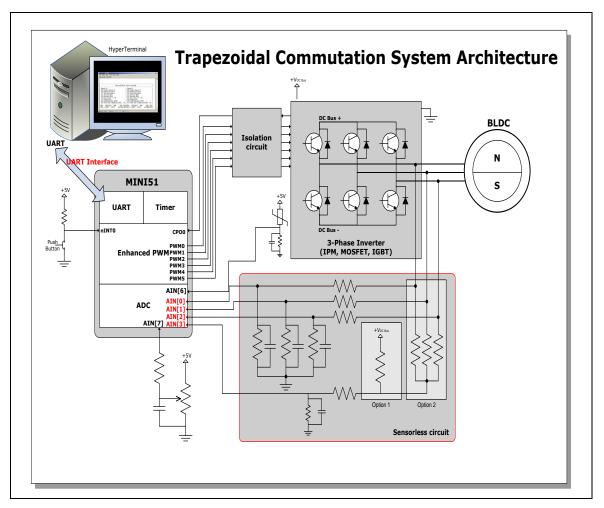


Figure 5.10-1 Application Circuit Diagram

nuvoTon

5.10.3 PWM Block Diagram

Figure 5.10-2 PWM Block Diagram

Following figures illustrate the architecture of PWM in pair (PWM 0&1 are in one pair and PWM 2&3 are in another one, and so on).

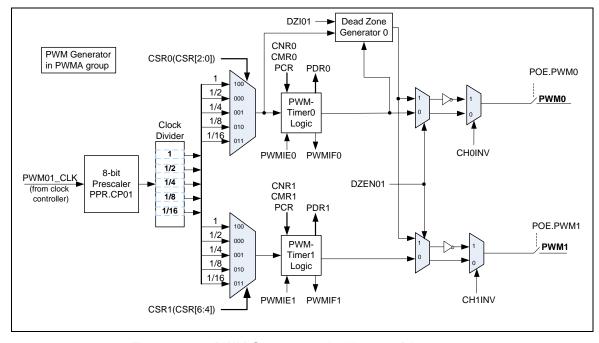


Figure 5.10-3 PWM Generator 0 Architecture Diagram

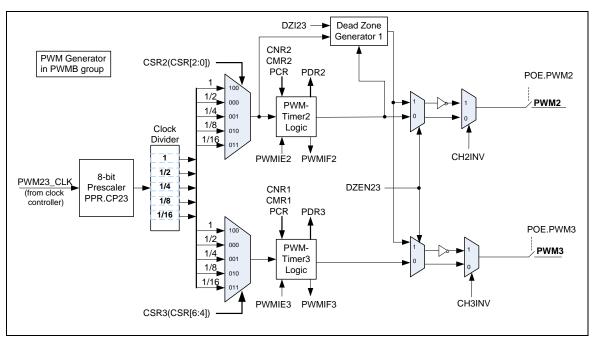


Figure 5.10-4 PWM Generator 2 Architecture Diagram

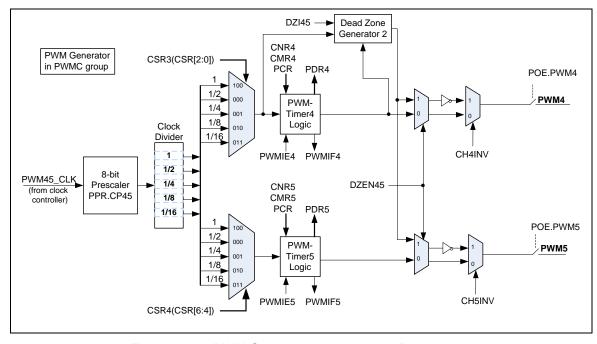


Figure 5.10-5 PWM Generator 4 Architecture Diagram

5.10.4 PWM Function

5.10.4.1 PWM-Timer Operation

This device supports two operation modes: Edge-aligned and Center-aligned mode.

Following equations show the formula for period and duty for each PWM operation mode:

Edge aligned (Down counter)

Duty ratio = (CMR+1) / (CNR+1)

Duty = $(CMR+1) \times (clock period)$ Period = $(CNR+1) \times (clock period)$

Center aligned (Up and Down Counter):

Duty ratio = (CNR - CMR) / (CNR+1)

Duty = (CNR - CMR) x 2 x (clock period)
Period = (CNR+1) x 2 x (clock period)

Edge aligned PWM (Down-counter)

In Edge-aligned PWM Output mode, the 16-bit PWM counter will start counting-down from CNRn to match with the value of the duty cycle CMRn (old); when this happens it will toggle the PWMn generator output to high. The counter will continue counting-down to zero; at this moment, it toggles the PWMn generator output to low and CMRn (new) and CNRn (new) are updated with CHnMODE=1, and requests the PWM interrupt if PWM interrupt is enabled (PIER.n=1).

Figure 5.10-6 and Figure 5.10-7 describe the Edge-aligned PWM timing and operation flow.

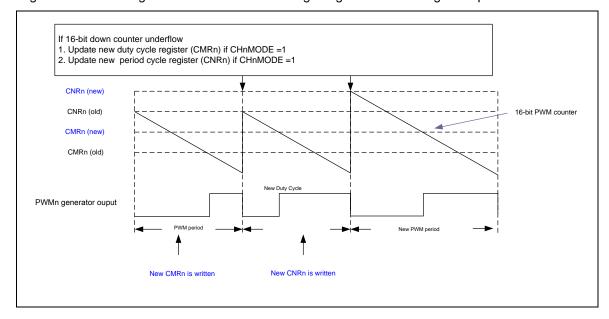


Figure 5.10-6 Edge-aligned PWM

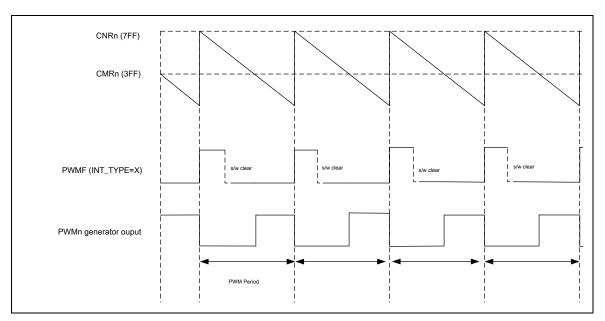


Figure 5.10-7 PWM Edge-aligned Waveform Output

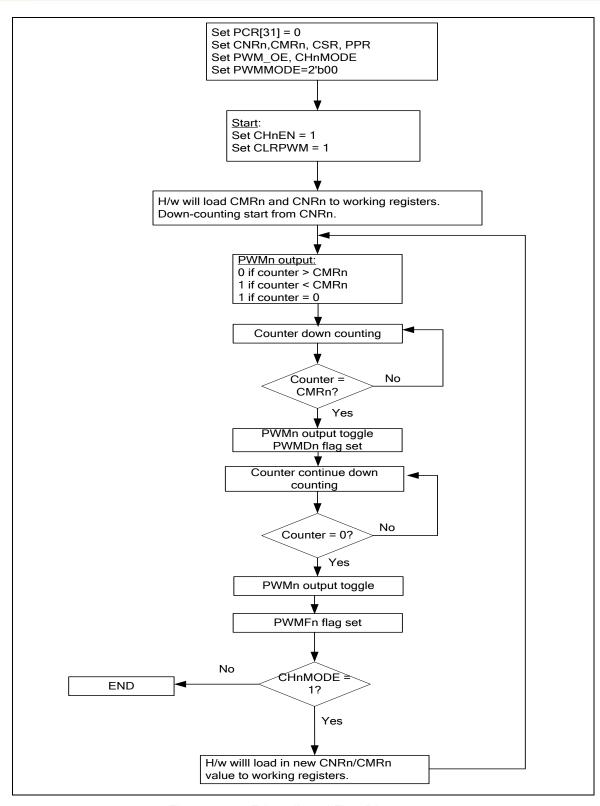


Figure 5.10-8 Edge-aligned Flow Diagram

nuvoTon

The PWM period and duty control are decided by PWM down-counter register (CNRn) and PWM comparator register (CMRn). The PWM-Timer timing operation is shown in Figure 5.10-10. The pulse width modulation follows the formula below and the legend of PWM-Timer Comparator is shown in Figure 5.10-9. Note that the corresponding GPIO pins must be configured as PWM function (enable PWMPOE) for the corresponding PWM channel.

PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider)/(CNR+1)); where xy, could be 01, 23 or 45 depending on the selected PWM channel

Duty ratio = (CMR+1)/(CNR+1)

CMR >= CNR: PWM output is always high

CMR < CNR: PWM low width= (CNR-CMR) unit[1]; PWM high width = (CMR+1) unit

CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit

Note: Unit = one PWM clock cycle.

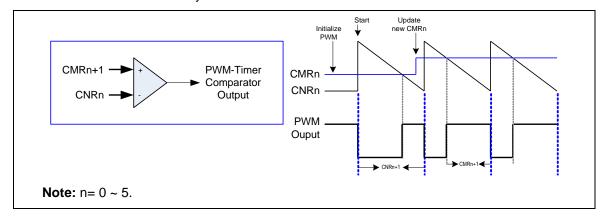


Figure 5.10-9 Legend of Internal Comparator Output of PWM-Timer

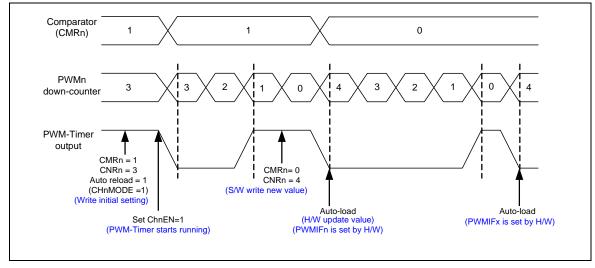


Figure 5.10-10 PWM Timer Operation Timing

Center-Aligned PWM (up/down counter)

The center-aligned PWM signals are produced by the module when the PWM time base is configured in an Up/Down Counting mode. The PWM counter will start counting-up from 0 to match the value of CMRn (old); this will cause the toggling of the PWMn generator output to high. The counter will continue counting to match with the CNRn (old). Upon reaching this states counter is configured automatically to down counting, when PWM counter matches the CMRn (old) value again the PWMn generator output toggles to low. Once the PWM counter underflows it will update the PWM period register CNRn (new) and duty cycle register CMRn (new) with CHnMODE = 1.

In Center-aligned mode, the PWM period interrupt is requested at down-counter underflow if INT_TYPE (PIER[17]) =0, i.e. at start (end) of each PWM cycle or at up-counter matching with CNRn if INT_TYPE (PIER[17]) =1, i.e. at center point of PWM cycle.

Figure 5.10-11, Figure 5.10-12 and Figure 5.10-13 describe the Center-aligned PWM timing and operation flow.

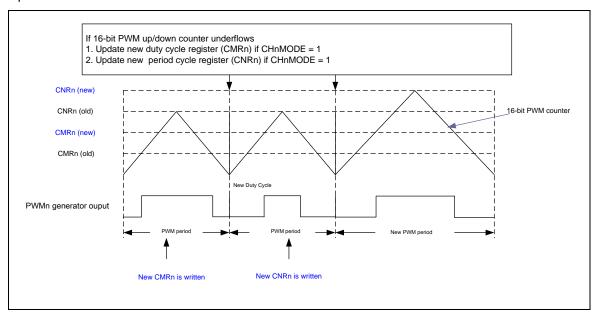


Figure 5.10-11 Center-aligned Mode

nuvoTon

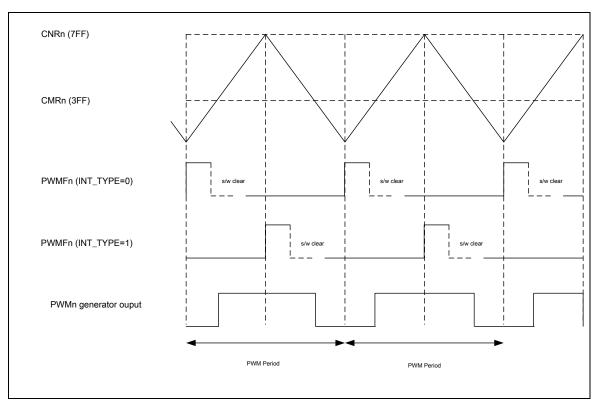


Figure 5.10-12 PWM Center-aligned Waveform Output

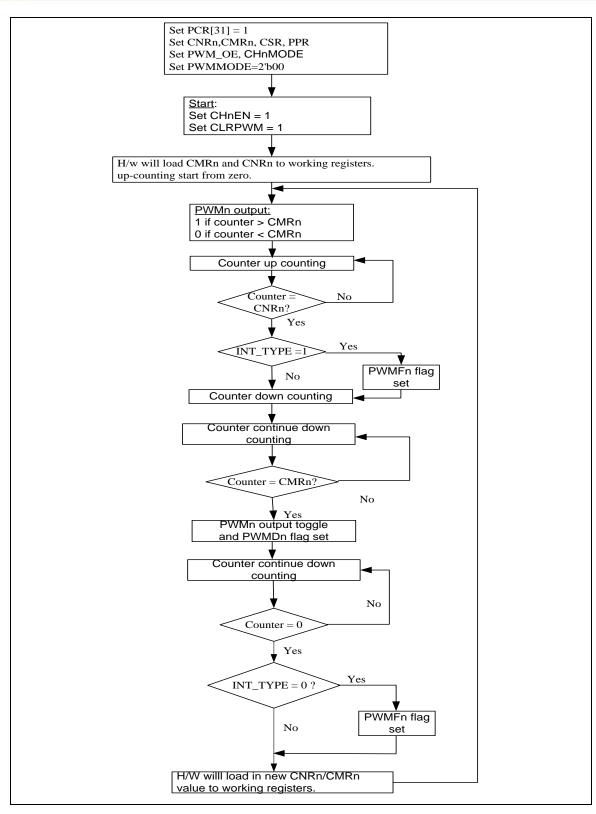


Figure 5.10-13 Center-aligned Flow Diagram (INT_TYPE = 0)

nuvoTon

5.10.4.2 PWM Double Buffering, Auto-reload and One-shot Operation

The NuMicro Mini51™ series PWM Timers have double buffering function the reload value is updated at the start of next period without affecting current timer operation. The PWM counter value can be written into CNRn.

The bit CHnMOD in PWM Control Register (PCR) defines PWMn operation in auto-reload or one-shot mode If CHnMOD is set to "1"; the auto-reload operation loads CNRn to PWM counter when PWM counter reaches zero. If CNRn is set to zero, the PWM counter will be halted when the PWM counter counts to zero. If CHnMOD is set as "0", the counter will be stopped immediately. PWM0~PWM5 performs the same function as PWMn.

Note: One-shot operation only support edge alignment mode.

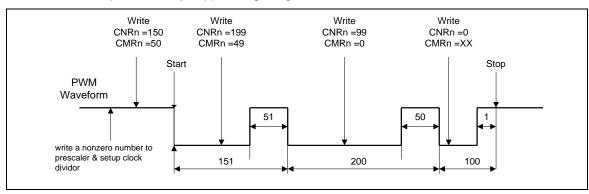


Figure 5.10-14 PWM Double Buffering Illustration

5.10.4.3 Modulate Duty Ratio

The double buffering function allows CMRn to be written at any point in current cycle. The loaded value will take effect from next cycle.

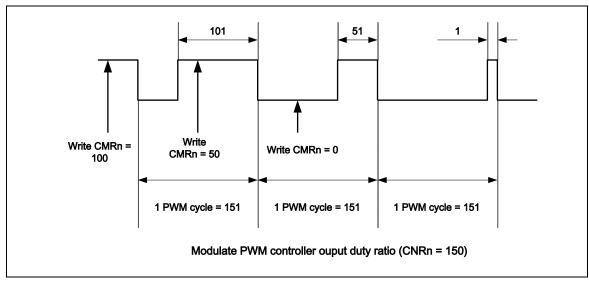


Figure 5.10-15 PWM Controller Output Duty Ratio

nuvoton

5.10.5 PWM Operation Modes

This powerful PWM unit supports independent mode which may be applied to DC or BLDC motor system, Complementary mode with dead-zone insertion which may be used in the application of AC induction motor and synchronous motor, and Synchronous mode that makes both pins of each pair are in phase. Besides, the Group mode, which forces the PWM0, PWM2 and PWM4 synchronous with PWM0 generator, may simplify updating duty control in DC and BLDC motor applications.

5.10.5.1 Independent mode

Independent mode is enabled when PWMMOD[1:0] = 00.

By default, the PWM is operated in independent mode with six PWM channels outputs. Each channel is running off its own duty-cycle generator module.

Note: Only even channels (PWM0, PWM2 and PWM4) can be set as inverter bit (CHnINV, n = 0, 2, 4) in independent mode.

5.10.5.2 Complementary mode

Complementary mode is enabled when PWMMOD[1:0] = 01.

In this module there are three duty-cycle generators utilized for complementary mode, with total of three PWM output pair pins in this module. The total six PWM outputs are grouped into output pairs of even and odd numbered outputs. In complimentary modes, the internal odd PWM signal PGn, must always be the complement of the corresponding even PWM signal. For example, PG1 will be the complement of PG0. PG3 will be the complement of PG2 and PG5 will be the complement of PG4. The time base for the PWM module is provided by its own 16-bit timer, which also incorporates selectable pre-scalar options.

5.10.5.3 Dead-zone insertion

The dead-zone generator inserts an "off" period called "dead-zone" between the turnings off of one pin to the turning on of the complementary pin of the paired pins. This is to prevent damage to the power switching devices that will be connected to the PWM output pins. The complementary output pair mode has an 8-bit down counter used to produce the dead-zone insertion. The complementary outputs are delayed until the timer counts down to zero.

The dead-zone can be calculated from the following formula:

dead-zone = PWM_CLK * (DZIxy[7:0]+1). where xy, could be 01, 23, 45

The timing diagram below indicates the dead-zone insertion for one pair of PWM signals.

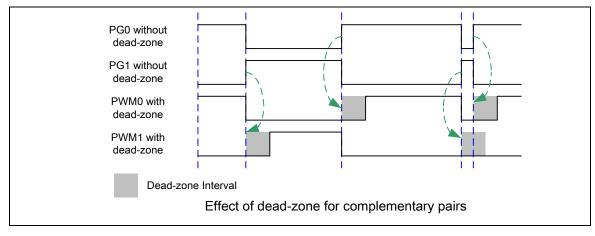


Figure 5.10-16 Dead-zone Insertion

nuvoTon

In Power inverter applications, a dead-zone insertion avoids the upper and lower switches of the half bridge from being active at the same time. Hence the dead-zone control is crucial to proper operation of a system. Some amount of time must be provided between turning off of one PWM output in a complementary pair and turning on the other transistor as the power output devices cannot switch instantaneously.

5.10.5.4 Synchronous mode

Synchronous mode is enabled when PWMMOD[1:0] = 10.

In the synchronization mode the PWM pair signals from PWM Generator are in-phase.

PG1=PG0, PG3=PG2 and PG5=PG4.

5.10.5.5 Group mode

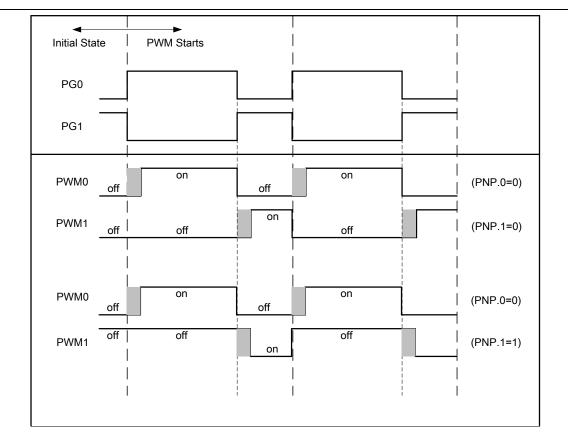
Group mode is enabled when GRP (PCR[30]) = 1.

This device support Group mode control. This control allows all even PWM channels output to be duty controllable by PWM0 duty register.

If GRP = 1, both (PG2, PG3) and (PG4, PG5) pairs will follow (PG0, PG1), which imply;

PG4 = PG2 = PG0;

PG5 = PG3 = PG1 = invert (PG0) if Complementary mode is enabled (PWMMOD[1:0] = 01)


For Application, Please do not use Group and Synchronous mode simultaneously because the Synchronous mode will be inactive.

5.10.6 Polarity Control

Each PWM port of PWM0 ~ PWM5 has independent polarity control to configure the polarity of active state of PWM output. By default, the PWM output is active high.

The following diagram shows the initial state before PWM starts with different polarity settings.

NPx: Negative Polarity control bits; It controls the PWM output initial state and polarity Dead-zone insertion; It is only effective in complementary mode

Note: Only Odd channels can be set inverter bit when dead-zone insertion and polarity control.

PWM output with dead-zone insertion and polarity control

Figure 5.10-17 Initial State and Polarity Control with Rising Edge Dead-zone Insertion

nuvoTon

5.10.7 PWM for Motor Control Interrupt Architecture

There are 4 interrupt sources for a PWM unit, which are PWM period flag (PWMPIF), PWM duty interrupt(PWMDIF), Brake0 flag (BKF0) and Brake1 flag (BKF1). The bit BRKIE (PIER[16]) controls the brake interrupt enable; the bit PWMPIEn (PIER[0] ~ PIER[5]) controls the PWM periodic interrupt enable; and the bit PWMDIEn (PIER[8] ~ PIER[13]) controls the PWM duty interrupt enable. Note that all the interrupt flags are set by hardware and must be cleared by software.

Figure 5.10-18 demonstrates the architecture of Motor Control PWM interrupts.

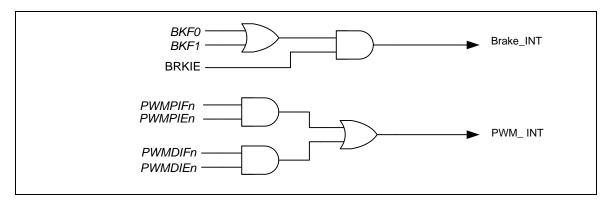


Figure 5.10-18 Motor Control PWM Architecture

5.10.8 PWM Brake Function

This device supports two external brake pins: BKP0 and BKP1 pins. The Brake function is controlled by the contents of the PFBCON registers.

Since the both brake conditions being asserted will automatically rise the BKF flag, user program can poll these brake flag bits or enable PWM's brake interrupt to determine which condition causes a brake to occur.

Note: When a brake happens, the PWM0 ~ PWM5 enable bits will be disabled by hardware.

User program must write the PWM enable bits again to release PWM Brake state.

5.10.9 PWM Controller Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
PWM_BA =	0x4004_0000	<u>'</u>		•
PPR	PWM_BA+0x00	R/W	PWM Pre-scale Register	0x0000_0000
CSR	PWM_BA+0x04	R/W	PWM Clock Select Register	0x0000_0000
PCR	PWM_BA+0x08	R/W	PWM Control Register	0x0000_0000
CNR0	PWM_BA+0x0C	R/W	PWM Counter Register 0	0x0000_0000
CNR1	PWM_BA+0x10	R/W	PWM Counter Register 1	0x0000_0000
CNR2	PWM_BA+0x14	R/W	PWM Counter Register 2	0x0000_0000
CNR3	PWM_BA+0x18	R/W	PWM Counter Register 3	0x0000_0000
CNR4	PWM_BA+0x1C	R/W	PWM Counter Register 4	0x0000_0000
CNR5	PWM_BA+0x20	R/W	PWM Counter Register 5	0x0000_0000
CMR0	PWM_BA+0x24	R/W	PWM Comparator Register 0	0x0000_0000
CMR1	PWM_BA+0x28	R/W	PWM Comparator Register 1	0x0000_0000
CMR2	PWM_BA+0x2C	R/W	PWM Comparator Register 2	0x0000_0000
CMR3	PWM_BA+0x30	R/W	PWM Comparator Register 3	0x0000_0000
CMR4	PWM_BA+0x34	R/W	PWM Comparator Register 4	0x0000_0000
CMR5	PWM_BA+0x38	R/W	PWM Comparator Register 5	0x0000_0000
PIER	PWM_BA+0x54	R/W	PWM Interrupt Enable Register	0x0000_0000
PIIR	PWM_BA+0x58	R/W	PWM Interrupt Indication Register	0x0000_0000
PWMPOE	PWM_BA+0x5C	R/W	PWM Output Enable for channel 0~5	0x0000_0000
PFBCON	PWM_BA+0x60	R/W	PWM Fault Brake Control Register	0x0000_0000
PDZIR	PWM_BA+0x64	R/W	PWM dead-zone Interval Register	0x0000_0000

nuvoTon

5.10.10 PWM Controller Register

PWM Pre-Scale Register (PPR)

Register	Offset	R/W	Description	Reset Value
PPR	PWM_BA+0x00	R/W	PWM Pre-scale Register	0x0000_0000

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
			CF	245					
15	14	13	12	11	10	9	8		
	CP23								
7	6	5	4	3	2	1	0		
	CP01								

Bits	Description	
[31:24]	-	Reserved
		Clock Prescaler 4 (PWM Counter 4 and 5 for group)
[23:16]	CP45[7:0]	Clock input is divided by (CP45 + 1) before it is fed to the corresponding PWM counter.
		If CP45 = 0, the clock prescaler 4 output clock will be stopped. So the corresponding PWM counter will also be stopped.
		Clock Prescaler 2 (PWM Counter 2 and 3 for group)
[15:8]	CP23[7:0]	Clock input is divided by (CP23 + 1) before it is fed to the corresponding PWM counter.
		If CP23 = 0, the clock prescaler 2 output clock will be stopped. So the corresponding PWM counter will also be stopped.
		Clock Prescaler 0 (PWM Counter 0 and 1 for group)
[7:0]	CP01[7:0]	Clock input is divided by (CP01 + 1) before it is fed to the corresponding PWM counter
[1.0]	0.01[7.0]	If $CP01 = 0$, the clock prescaler 0 output clock will be stopped. So the corresponding PWM counter will also be stopped.

nuvoTon

PWM Clock Selector Register (CSR)

Register	Offset	R/W	Description	Reset Value
CSR	PWM_BA+0x04	R/W	PWM Clock Select Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
-	CSR5			-	CSR4		
15	14	13	12	11	10	9	8
-	CSR3			-		CSR2	
7	6	5	4	3	2	1	0
-	CSR1			-		CSR0	

Bits	Description					
[31:23]	-	Reserved				
		Timer 5 Clock So	ource Selection			
		Select clock input	for PWM timer.			
		CSR5 [2:0]	Input clock divided by			
		100	1			
[22:20]	CSR5[2:0]	011	16			
		010	8			
		001	4			
		000	2			
		101, 110, 111	Reserved			
[19]	-	Reserved				
		Timer 4 Clock So	ource Selection			
[18:16]	CSR4[2:0]	Select clock input	for PWM timer.			
		(Table is the same	e as CSR5.)			
[15]	-	Reserved				
		Timer 3 Clock Source Selection				
[14:12]	CSR3[2:0]	Select clock input	for PWM timer.			
		(Table is the same	e as CSR5.)			
[11]	-	Reserved				

nuvoTon

Bits	Description	
		Timer 2 Clock Source Selection
[10:8]	CSR2[2:0]	Select clock input for PWM timer.
		(Table is the same as CSR5.)
[7]	-	Reserved
		Timer 1 Clock Source Selection
[6:4]	CSR1[2:0]	Select clock input for PWM timer.
		(Table is the same as CSR5.)
[3]	-	Reserved
		Timer 0 Clock Source Selection
[2:0]	CSR0[2:0]	Select clock input for PWM timer.
		(Table is the same as CSR5.)

nuvoTon

PWM Control Register (PCR)

Register	Offset	R/W	Description	Reset Value
PCR	PWM_BA+0x08	R/W	PWM Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PWMTYPE	GRP	PWM	IMOD	CLRPWM	DZEN45	DZEN23	DZEN01
23	22	21	20	19	18	17	16
CH5MOD	CH5INV	-	CH5EN	CH4MOD	CH4INV	-	CH4EN
15	14	13	12	11	10	9	8
CH3MOD	CH3INV	-	CH3EN	CH2MOD	CH2INV	-	CH2EN
7	6	5	4	3	2	1	0
CH1MOD	CH1INV	-	CH1EN	CH0MOD	CH0INV	DB_MODE	CH0EN

Bits	Description					
		PWM Aligned Typ	e Selection Bit			
[31]	PWMTYPE	0 = Edge-aligned type.				
		1 = Center-aligned	type.			
		Group bit				
[30]	GRP	1 = Unify the signa controlled by P	Is timing of PWM0, PWM2 and PWM4 in the same phase which is WM0.			
		0 = The signals time	ing of PWM0, PWM2 and PWM4 are independent.			
		PWM Operation M	ode Selection			
		PWMMOD[1:0]	Mode			
[00.00]	DIAMANA O DIA - OI	00	Independent mode			
[29:28]	PWMMOD[1:0]	01	Complementary mode			
		10	Synchronized mode			
		11	Reserved			
		Clear PWM Count	er Control Bit			
[27]	CLRPWM	1 = 16-bit PWM counter cleared to 0x000.				
[27]	CLRPVIVI	0 = Do not clear PV	VM counter.			
		Note: It is automati	cally cleared by hardware.			
		Dead-zone 4 Gene	erator Enable/Disable (PWM4 and PWM5 pair for PWM group)			
		1 = Enabled.				
[26]	DZEN45	0 = Disabled.				
			dead-zone generator is enabled, the pair of PWM4 and PWM5 mentary pair for PWM group.			

nuvoTon

Bits	Description	
		Dead-zone 2 Generator Enable/Disable (PWM2 and PWM3 pair for PWM group)
		1 = Enabled.
[25]	DZEN23	0 = Disabled.
		Note: When the dead-zone generator is enabled, the pair of PWM2 and PWM3 becomes a complementary pair for PWM group.
		Dead-zone 0 Generator Enable/Disable (PWM0 and PWM1 pair for PWM group)
		1 = Enabled.
[24]	DZEN01	0 = Disabled.
		Note: When the dead-zone generator is enabled, the pair of PWM0 and PWM1 becomes a complementary pair for PWM group.
		PWM-Timer 5 Auto-reload/One-Shot Mode
[00]	CHEMOD	1 = Auto-reload mode.
[23]	CH5MOD	0 = One-shot mode.
		Note: If there is a rising transition at this bit, it will cause CNR5 and CMR5 cleared.
		PWM-Timer 5 Output Inverter ON/OFF
		1 = Inverter ON.
[22]	CH5INV	0 = Inverter OFF.
		Note: Only even channels (PWM0, PWM2 and PWM4) can be set as inverter bit in independent mode
[21]	-	Reserved
		PWM-Timer 5 Enable/Disable Start Run
[20]	CH5EN	1 = Corresponding PWM-timer start run Enabled.
		0 = Corresponding PWM-timer running Stopped.
		PWM-Timer 4 Auto-reload/One-Shot Mode
[40]	CH4MOD	1 = Auto-reload mode.
[19]	CH4WOD	0 = One-shot mode.
		Note: If there is a rising transition at this bit, it will cause CNR4 and CMR4 cleared.
		PWM-Timer 4 Output Inverter ON/OFF
[18]	CH4INV	1 = Inverter ON.
		0 = Inverter OFF.
[17]	-	Reserved
		PWM-Timer 4 Enable/Disable Start Run
[16]	CH4EN	1 = Corresponding PWM-timer start run Enabled.
		0 = Corresponding PWM-timer running Stopped.
		PWM-Timer 3 Auto-reload/One-Shot Mode
[45]	CH3MOD	1 = Auto-reload mode.
[15]	СНЗМОД	0 = One-shot mode.

Bits	Description	
		PWM-Timer 3 Output Inverter ON/OFF
		1 = Inverter ON.
[14]	CH3INV	0 = Inverter OFF.
		Note: Only even channels (PWM0, PWM2 and PWM4) can be set as inverter bit in independent mode.
[13]	-	Reserved
		PWM-Timer 3 Enable/Disable Start Run
[12]	CH3EN	1 = Corresponding PWM-timer start run Enabled.
		0 = Corresponding PWM-timer running Stopped.
		PWM-Timer 2 Auto-reload/One-Shot Mode
	01101100	1 = Auto-reload mode.
[11]	CH2MOD	0 = One-shot mode.
		Note: If there is a rising transition at this bit, it will cause CNR2 and CMR2 cleared.
		PWM-Timer 2 Output Inverter ON/OFF
[10]	CH2INV	1 = Inverter ON.
		0 = Inverter OFF.
[9]	-	Reserved
		PWM-Timer 2 Enable/Disable Start Run
[8]	CH2EN	1 = Corresponding PWM-timer start run Enabled.
		0 = Corresponding PWM-timer running Stopped.
		PWM-Timer 1 Auto-reload/One-Shot Mode
[7]	CH1MOD	1 = Auto-reload mode.
[7]	CHIMOD	0 = One-shot mode.
		Note: If there is a rising transition at this bit, it will cause CNR1 and CMR1 cleared.
		PWM-Timer 1 Output Inverter ON/OFF
		1 = Inverter ON.
[6]	CH1INV	0 = Inverter OFF.
		Note: Only even channels (PWM0, PWM2 and PWM4) can be set as inverter bit in independent mode
[5]	-	Reserved
		PWM-Timer 1 Enable/Disable Start Run
[4]	CH1EN	1 = Corresponding PWM-timer start run Enabled.
		0 = Corresponding PWM-timer running Stopped.
		PWM-Timer 0 Auto-reload/One-Shot Mode
101	CHOMOD	1 = Auto-reload mode.
[3]	CH0MOD	0 = One-shot mode.
		Note: If there is a rising transition at this bit, it will cause CNR0 and CMR0 cleared.

Bits	Description			
		PWM-Timer 0 Output Inverter ON/OFF		
[2]	CH0INV	1 = Inverter ON.		
		0 = Inverter OFF.		
		PWM Debug Mode Configuration Bit (Available in DEBUG mode only)		
[1]	DB_MODE	1 = Normal mode: The timer continues to operate normally May be dangerous in some cases since a constant duty cycle is applied to the inverter (no more interrupts serviced).		
		0 = Safe mode: The timer is frozen and PWM outputs are shut down Safe state for the inverter. The timer can still be re-started from where it stops.		
		PWM-Timer 0 Enable/Disable Start Run		
[0]	CH0EN	1 = Corresponding PWM-timer start run Enabled.		
		0 = Corresponding PWM-timer running Stopped.		

nuvoTon

PWM Counter Register 0-5 (CNR0-5)

Register	Offset	R/W	Description	Reset Value
CNR0	PWM_BA+0x0C	R/W	PWM Counter Register 0	0x0000_0000
CNR1	PWM_BA+0x10	R/W	PWM Counter Register 1	0x0000_0000
CNR2	PWM_BA+0x14	R/W	PWM Counter Register 2	0x0000_0000
CNR3	PWM_BA+0x18	R/W	PWM Counter Register 3	0x0000_0000
CNR4	PWM_BA+0x1C	R/W	PWM Counter Register 4	0x0000_0000
CNR5	PWM_BA+0x20	R/W	PWM Counter Register 5	0x0000_0000

31	30	29	28	27	26	25	24	
			•	-				
23	22	21	20	19	18	17	16	
-								
15	14	13	12	11	10	9	8	
CNRn								
7	6	5	4	3	2	1	0	
CNRn								

Bits	Description	Description			
[31:16]	-	Reserved			
		PWM Counter/Timer Loaded Value			
		CNRn determines the PWM period.			
[15:0]		Edge-aligned mode:			
		PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider))/(CNRn+1); where xy, could be 01, 23, 45 depending on the selected PWM channel.			
		Duty ratio = $(CMRn+1)/(CNRn+1)$.			
		CMRn >= CNRn: PWM output is always high.			
	CNRn n = 0 - 5	CMRn < CNRn: PWM low width = (CNRn-CMRn) unit; PWM high width = (CMR+1) unit.			
	11 = 0 - 5	CMRn = 0: PWM low width = (CNRn) unit; PWM high width = 1 unit.			
		Center-aligned mode:			
		PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider))/ (2*CNRn+1); where xy, could be 01, 23, 45 depending on the selected PWM channel.			
		Duty ratio = (CNRn - CMRn)/(CNRn+1).			
		CMRn >= CNRn: PWM output is always low.			
		CMRn < CNRn: PWM low width = (CMRn + 1) x 2 unit; PWM high width = (CNRn - CMRn) x 2 unit.			

Bits	Description	
		CMRn = 0: PWM low width = 2 unit; PWM high width = (CNRn) x 2 unit.
		(Unit = one PWM clock cycle)
		Note: Any write to CNRn will take effect in next PWM cycle.

nuvoTon

PWM Comparator Register 0-5 (CMR0-5)

Register	Offset	R/W	Description	Reset Value
CMR0	PWM_BA+0x24	R/W	PWM Comparator Register 0	0x0000_0000
CMR1	PWM_BA+0x28	R/W	PWM Comparator Register 1	0x0000_0000
CMR2	PWM_BA+0x2C	R/W	PWM Comparator Register 2	0x0000_0000
CMR3	PWM_BA+0x30	R/W	PWM Comparator Register 3	0x0000_0000
CMR4	PWM_BA+0x34	R/W	PWM Comparator Register 4	0x0000_0000
CMR5	PWM_BA+0x38	R/W	PWM Comparator Register 5	0x0000_0000

31	30	29	28	27	26	25	24
			•	-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
			CM	Rn			
7	6	5	4	3	2	1	0
	CMRn						

Bits	Description	
[31:16]	-	Reserved
[31:16]	- CMRn n = 0 - 5	PWM Comparator Register CMR determines the PWM duty. Edge-aligned mode: PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider))/(CNRn+1); where xy, could be 01, 23, 45 depending on the selected PWM channel. Duty ratio = (CMRn+1)/(CNRn+1). CMRn >= CNRn: PWM output is always high. CMRn < CNRn: PWM low width = (CNRn-CMRn) unit; PWM high width = (CMR+1) unit. CMRn = 0: PWM low width = (CNRn) unit; PWM high width = 1 unit Center-aligned mode: PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider)) /(2*CNRn+1); where xy, could be 01, 23, 45 depending on the selected PWM channel. Duty ratio = (CNRn - CMRn)/(CNRn+1). CMRn >= CNRn: PWM output is always low.
[15:0]		unit. CMRn = 0: PWM low width = (CNRn) unit; PWM high width = 1 unit Center-aligned mode: PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider)) /(2*CNRn+1); could be 01, 23, 45 depending on the selected PWM channel. Duty ratio = (CNRn - CMRn)/(CNRn+1).

Bits	Description	
		CMRn = 0: PWM low width = 2 unit; PWM high width = (CNRn) x 2 unit
		(Unit = One PWM clock cycle) Note: Any write to CNRn will take effect in the next PWM cycle.

nuvoTon

PWM Interrupt Enable Register (PIER)

Register	Offset	R/W	Description	Reset Value
PIER	PWM_BA+0x54	R/W	PWM Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			INT_TYPE	BRKIE
15	14	13	12	11	10	9	8
	-	PWMDIE5	PWMDIE4	PWMDIE3	PWMDIE2	PWMDIE1	PWMDIE0
7	6	5	4	3	2	1	0
	-	PWMPIE5	PWMPIE4	PWMPIE3	PWMPIE2	PWMPIE1	PWMPIE0

Bits	Description	
[31:18]	-	Reserved
		PWM Interrupt Type Selection Bit
[17]	INT TYPE	1 = PWMPIFn will be set if PWM counter matches CNRn register.
[17]	INI_ITE	0 = PWMPIFn will be set if PWM counter underflows.
		Note: This bit is effective when PWM in central align mode only.
		Enable Fault Brake0 and 1 interrupt
[16]	BRKIE	1 = Enabling flags BKF0 and BKF1 can trigger PWM interrupt.
		0 = Disabling flags BKF0 and BKF1 to trigger PWM interrupt.
[15:14]	-	Reserved
		PWM Channel 5 Duty Interrupt Enable
[13]	PWMDIE5	1 = Enabled.
		0 = Disabled.
		PWM Channel 4 Duty Interrupt Enable
[12]	PWMDIE4	1 = Enabled.
		0 = Disabled.
		PWM Channel 3 Duty Interrupt Enable
[11]	PWMDIE3	1 = Enabled.
		0 = Disabled.
		PWM Channel 2 Duty Interrupt Enable
[10]	PWMDIE2	1 = Enabled.
		0 = Disabled.

nuvoTon

Bits	Description	
		PWM Channel 1 Duty Interrupt Enable
[9]	PWMDIE1	1 = Enabled.
		0 = Disabled.
		PWM Channel 0 Duty Interrupt Enable
[8]	PWMDIE0	1 = Enabled.
		0 = Disabled.
[7:6]	-	Reserved
		PWM Channel 5 Period Interrupt Enable
[5]	PWMPIE5	1 = Enabled.
		0 = Disabled.
		PWM Channel 4 Period Interrupt Enable
[4]	PWMPIE4	1 = Enabled.
		0 = Disabled.
		PWM Channel 3 Period Interrupt Enable
[3]	PWMPIE3	1 = Enabled.
		0 = Disabled.
		PWM Channel 2 Period Interrupt Enable
[2]	PWMPIE2	1 = Enabled.
		0 = Disabled.
		PWM Channel 1 Period Interrupt Enable
[1]	PWMPIE1	1 = Enabled.
		0 = Disabled.
		PWM Channel 0 Period Interrupt Enable
[0]	PWMPIE0	1 = Enabled.
		0 = Disabled.

PWM Interrupt Indication Register (PIIR)

Register	Offset	R/W	Description	Reset Value
PIIR	PWM_BA+0x58	R/W	PWM Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-			BKF1	BKF0
15	14	13	12	11	10	9	8
	-	PWMDIF5	PWMDIF4	PWMDIF3	PWMDIF2	PWMDIF1	PWMDIF0
7	6	5	4	3	2	1	0
	-	PWMPIF5	PWMPIF4	PWMPIF3	PWMPIF2	PWMPIF1	PWMPIF0

Bits	Description	
[31:18]	-	Reserved
		PWM Brake1 Flag
[17]	BKF1	1 = When PWM Brake detects a falling signal at pin BKP1, this flag will be set to high.
[17]	BREI	0 = PWM Brake does not recognize a falling signal at BKP1.
		Note: This bit must be cleared by software by writing "1" to itself.
		PWM Brake0 Flag
[16]	BKF0	1 = When PWM Brake detects a falling signal at pin BKP0, this flag will be set to high.
[10]	BKFU	0 = PWM Brake does not recognize a falling signal at BKP0.
		Note: This bit must be cleared by software by writing "1" to itself.
[15:14]	-	Reserved
	PWMDIF5	PWM Channel 5 Duty Interrupt Flag
[13]		Flag is set by hardware when a channel 5 PWM counter reaches CMR5. Software can clear this bit by writing "1" to it.
		PWM Channel 4 Duty Interrupt Flag
[12]	PWMDIF4	Flag is set by hardware when a channel 4 PWM counter reaches CMR4. Software can clear this bit by writing "1" to it.
		PWM Channel 3 Duty Interrupt Flag
[11]	PWMDIF3	Flag is set by hardware when a channel 3 PWM counter reaches CMR3. Software can clear this bit by writing "1" to it.
		PWM Channel 2 Duty Interrupt Flag
[10]	PWMDIF2	Flag is set by hardware when a channel 2 PWM counter reaches CMR2. Software can clear this bit by writing "1" to it.

nuvoTon

Bits	Description	
		PWM Channel 1 Duty Interrupt Flag
[9]	PWMDIF1	Flag is set by hardware when a channel 1 PWM counter reaches CMR1. Software can clear this bit by writing "1" to it.
		PWM Channel 0 Duty Interrupt Flag
[8]	PWMDIF0	Flag is set by hardware when a channel 0 PWM counter reaches CMR0. Software can clear this bit by writing "1" to it.
[7:6]	-	Reserved
		PWM Channel 5 Period Interrupt Flag
[5]	PWMPIF5	Flag is set by hardware when CNR5 down counter reaches zero. Software can clear this bit by writing "1" to it.
		PWM Channel 4 Period Interrupt Flag
[4]	PWMPIF4	Flag is set by hardware when CNR4 down counter reaches zero. Software can clear this bit by writing "1" to it.
		PWM Channel 3 Period Interrupt Flag
[3]	PWMPIF3	Flag is set by hardware when CNR3 down counter reaches zero. Software can clear this bit by writing "1" to it.
		PWM Channel 2 Period Interrupt Flag
[2]	PWMPIF2	Flag is set by hardware when CNR2 down counter reaches zero. Software can clear this bit by writing "1" to it.
		PWM Channel 1 Period Interrupt Flag
[1]	PWMPIF1	Flag is set by hardware when CNR1 down counter reaches zero. Software can clear this bit by writing "1" to it.
		PWM Channel 0 Period Interrupt Flag
[0]	PWMPIF0	Flag is set by hardware when CNR0 down counter reaches zero. Software can clear this bit by writing "1" to it.

Note: User can clear each interrupt flag by writing "1" to the corresponding bit in PIIR.

nuvoTon

PWM Output Control Register (PWMPOE)

Register	Offset	R/W	Description	Reset Value
PWMPOE	PWM_BA+0x5C	R/W	PWM Output Control Register for Channel 0~5	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
		PWM5	PWM4	PWM3	PWM2	PWM1	PWM0

Bits	Description	
[31:6]	-	Reserved
		PWM Channel 5 Output Enable Register
[6]	PWM5	1 = PWM channel 5 output to pin Enabled.
[5]	FVVIVIS	0 = PWM channel 5 output to pin Disabled.
		Note: The corresponding GPIO pin also must be switched to PWM function.
		PWM Channel 4 Output Enable Register
[4]	PWM4	1 = PWM channel 4 output to pin Enabled.
[4]	PVVIVI4	0 = PWM channel 4 output to pin Disabled.
		Note: The corresponding GPIO pin also must be switched to PWM function.
		PWM Channel 3 Output Enable Register
[0]	PWM3	1 = PWM channel 3 output to pin Enabled.
[3]	PVVIVIS	0 = PWM channel 3 output to pin Disabled.
		Note: The corresponding GPIO pin must also be switched to PWM function.
		PWM Channel 2 Output Enable Register
[0]	PWM2	1 = PWM channel 2 output to pin Enabled.
[2]	P VV IVIZ	0 = PWM channel 2 output to pin Disabled.
		Note: The corresponding GPIO pin must also be switched to PWM function.
		PWM Channel 1 Output Enable Register
[4]	PWM1	1 = PWM channel 1 output to pin Enabled.
[1]	PVVIVI	0 = PWM channel 1 output to pin Disabled.
		Note: The corresponding GPIO pin must also be switched to PWM function.

Bits	Description					
		PWM Channel 0 Output Enable Register				
[0]	PWM0	1 = PWM channel 0 output to pin Enabled.				
[0]		0 = PWM channel 0 output to pin Disabled.				
		Note: The corresponding GPIO pin must also be switched to PWM function.				

nuvoTon

PWM Fault Brake Control Register (PFBCON)

Register	Offset	R/W	Description	Reset Value
PFBCON	PWM_BA+0x60	R/W	PWM Fault Brake Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	•	PWMBKO5	PWMBKO4	PWMBK03	PWMBKO2	PWMBK01	PWMBKO0
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
BKF			-		CPO0BKEN	BKEN1	BKEN0

Bits	Description	
[31:30]	-	Reserved
		PWM Channel 5 Brake Output Select Register
[29]	PWMBKO5	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
		PWM Channel 4 Brake Output Select Register
[28]	PWMBKO4	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
		PWM Channel 3 Brake Output Select Register
[27]	PWMBK03	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
		PWM Channel 2 Brake Output Select Register
[26]	PWMBKO2	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
		PWM Channel 1 Brake Output Select Register
[25]	PWMBK01	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
		PWM Channel 0 Brake Output Select Register
[24]	PWMBKO0	1 = PWM output high when fault brake conditions asserted.
		0 = PWM output low when fault brake conditions asserted.
[23:8]	-	Reserved

nuvoTon

Bits	Description	
		PWM Fault Brake Event Flag (write "1" clear)
[7]	вкғ	1 = PWM output fault brake state when fault brake conditions asserted.
		0 = PWM output initial state when fault brake conditions asserted.
[6:3]	-	Reserved
		BKP1 Fault Brake Function Source Selection
[2]	CPO0BKEN	1 = CPO0 as one brake source in BKP1.
		0 = EINT1 as one brake source in BKP1.
		Enable BKP1 Pin Trigger Fault Brake Function 1
[1]	BKEN1	0 = Disabling BKP1 pin can trigger brake function 1 (EINT1 or CPO0).
		1 = Enabling a falling at BKP1 pin can trigger brake function 1.
		Enable BKP0 Pin Trigger Fault Brake Function 0
[0]	BKEN0	0 = Disabling BKP0 pin can trigger brake function 0 (EINT0)
		1 = Enabling a falling at BKP0 pin can trigger brake function 0.

nuvoTon

PWM Dead-Zone Interval Register (PDZIR)

Register	Offset	R/W	Description	Reset Value
PDZIR	PWM_BA+0x64	R/W	PWM Dead-zone Interval Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			DZ	145			
15	14	13	12	11	10	9	8
			DZ	123			•
7	6	5	4	3	2	1	0
	DZI01						

Bits	Description	
[31:24]	-	Reserved
		Dead-zone Interval Register for Pair of channel4 and channel5 (PWM4 and PWM5 pair).
[23:16]	DZI45[7:0]	These 8 bits determine the dead-zone length.
		The unit time of dead-zone length is received from corresponding CSR bits.
		Dead-zone Interval Register for Pair of channel2 and channel3 (PWM2 and PWM3 pair).
[15:8]	DZI23[7:0]	These 8 bits determine the dead-zone length.
		The unit time of dead-zone length is received from corresponding CSR bits.
		Dead-zone Interval Register for Pair of channel0 and channel1 (PWM0 and PWM1 pair).
[7:0]	DZI01[7:0]	These 8 bits determine the dead-zone length.
		The unit time of dead-zone length is received from corresponding CSR bits.

nuvoTon

5.11 Serial Peripheral Interface (SPI) Controller

5.11.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which operates in full duplex mode. Devices communicate in Master/Slave mode with 4-wire bi-direction interface. NuMicro Mini51™ series contain one set of SPI controller performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. SPI controller can be set as a master; it also can be set as a slave controlled by an off-chip master device.

5.11.2 Features

- Supports Master or Slave mode operation
- MSB or LSB first transfer
- Byte or word Suspend mode
- Variable output serial clock frequency in Master mode
- Supports two programmable serial clock frequencies in Master mode

5.11.3 SPI Block Diagram

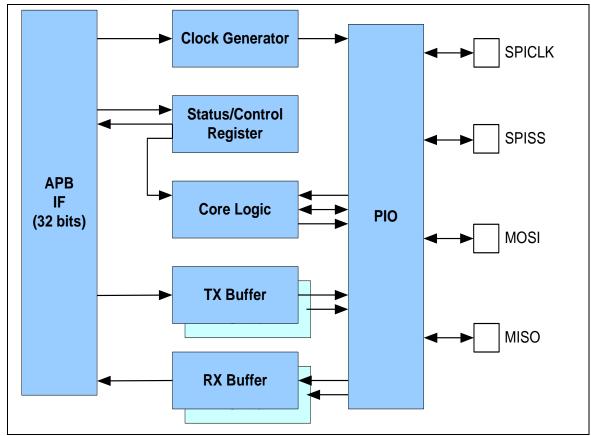


Figure 5.11-1 SPI Block Diagram

5.11.4 Functional Description

5.11.4.1 Master/Slave Mode

This SPI controller can be set as Master or Slave mode by setting the SLAVE bit (SPI_CNTRL[18]) to communicate with the off-chip SPI slave or master device. The application block diagrams in Master and Slave mode are shown in the following figures.

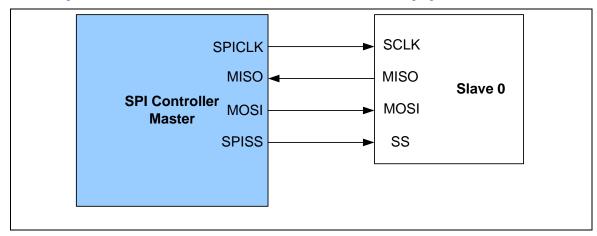


Figure 5.11-2 SPI Master Mode Application Block Diagram

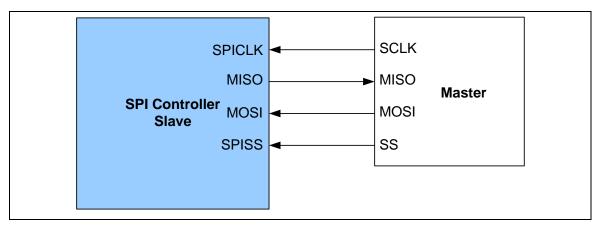


Figure 5.11-3 SPI Slave Mode Application Block Diagram

5.11.4.2 Slave Selection

In Master mode, this SPI controller can drive one off-chip slave device through the slave select output pin SPISS. In Slave mode, the off-chip master device drives the slave select signal from the SPISS input port to this SPI controller. In Master/Slave mode, the active level of slave selected signal can be programmed to low active or high active in SS_LVL bit (SPI_SSR[2]), and the SS_LTRIG bit (SPI_SSR[4]) define the slave select signal SPISS is level trigger or edge trigger. The selection of trigger condition depends on what type of peripheral slave/master device is connected.

nuvoton

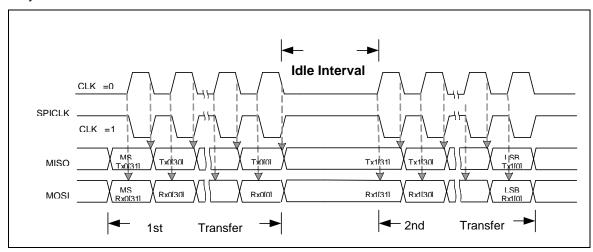
5.11.4.3 Automatic Slave Selection

In Master mode, if the bit ASS (SPI_SSR[3]) is set, the slave select signal will be generated automatically and output to SPISS pin according to SSR (SPI_SSR[0]) whether enabled or not. It means that the slave select signal, which is enabled in SSR register is asserted by the SPI controller when transmit/receive is started by setting the GO_BUSY bit (SPI_CNTRL[0]) and is deasserted after the data transfer is finished. If the ASS bit is cleared, the slave select output signal is asserted and de-asserted by manual setting and clearing the related bit in SPI_SSR[0] register. The active level of the slave select output signal is specified in SS_LVL bit (SPI_SSR[2]).

5.11.4.4 Serial Clock

In Master mode, writing a divisor into the DIVIDER (SPI_DIVIDER[15:0]) register to program the output frequency of serial clock to the SPICLK output port. It also supports the variable frequency function if the VARCLK_EN bit (SPI_CNTRL[23]) is enabled, in this case the each bit output frequency of serial clock can be programmed at one frequency of two different frequencies which depend on the DIVIDER and DIVIDER2 (SPI_DIVIDER[31:16]) settings. The decision of the variable frequency for each bit is defined in VARCLK (SPI_VARCLK[31:0]) register. In Slave mode, the off-chip master device drives the serial clock through the SPICLK input port to this SPI controller.

5.11.4.5 Clock Polarity


The CLKP bit (SPI_CNTRL[11]) defines the serial clock idle state in Master mode only. If CLKP = 1, the output SPICLK is idle at high state, otherwise it is at low state if CLKP = 0. For variable serial clock, it works in CLKP = 0 only.

5.11.4.6 Transmit/Receive Bit Length

The bit length of a transfer word is defined in TX_BIT_LEN bit field (SPI_CNTRL[7:3]). It can be set up to 32-bit length in a transfer word to transmit and receive.

5.11.4.7 Transmit/Receive Number

The transmit/receive number is defined in TX_NUM bit field (SPI_CNTRL[9:8]). But it can be set only as "00" or "01" to transmit/receive one or two transfer words.

nuvoTon

Figure 5.11-4 Two Transfer (Burst Mode) in One Transaction

5.11.4.8 LSB First

The LSB bit (SPI_CNTRL[10]) defines the data transmission either from LSB or from MSB to start to transmit/receive data.

5.11.4.9 Transmit Edge

The TX_NEG bit (SPI_CNTRL[2]) defines the data transmitted out either at negative edge or at positive edge of serial clock SPICLK.

5.11.4.10 Receive Edge

The RX_NEG bit (SPI_CNTRL[1]) defines the data received in either at negative edge or at positive edge of serial clock SPICLK.

5.11.4.11 Word Suspend

The four bits field of SP_CYCLE (SPI_CNTRL[15:12]) provide a configurable suspend interval 2 ~ 17 serial clock periods between two successive transfer words in Master mode. The suspend interval is from the last falling clock edge of the preceding transfer word to the first rising clock edge of the following transfer word if CLKP = 0. If CLKP = 1, the interval is from the rising clock edge of the preceding transfer word to the falling clock edge of the following transfer word. The default value of SP_CYCLE is "0" (2 serial clock cycles), but to set these bits field has no any effects on data transfer process if TX_NUM = "00".

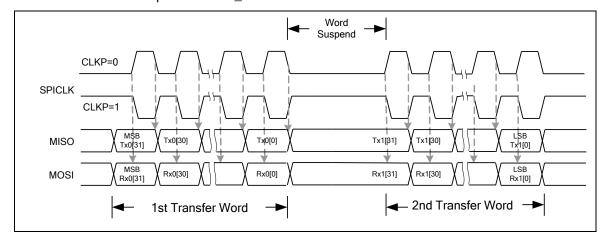


Figure 5.11-5 Word Suspend Mode

5.11.4.12 Byte Reorder

When the transfer is set as MSB first (LSB = 0) and the REORDER is enabled, the data stored in the TX buffer and RX buffer will be rearranged in the order as [BYTE0, BYTE1, BYTE2, BYTE3] in TX_BIT_LEN = 32-bit mode, and the sequence of transmitted/received data will be BYTE0, BYTE1, BYTE2, and then BYTE3. If the TX_BIT_LEN is set as 24-bit mode, the data in TX buffer and RX buffer will be rearranged as [unknown byte, BYTE0, BYTE1, BYTE2] and the BYTE0,

nuvoTon

BYTE1, and BYTE2 will be transmitted/received data step by step in MSB first. The rule of 16-bit mode is the same as above.

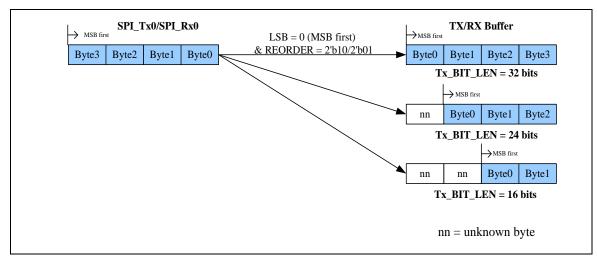


Figure 5.11-6 Byte Reorder

5.11.4.13 Byte Suspend

In Master mode, if SPI_CNTRL[19] is set to "1", the hardware will insert a suspend interval $2 \sim 17$ serial clock periods between two successive bytes in a transfer word. The byte suspend setting is the same as the word that using the common bit field of SP_CYCLE register. Note that when enable the byte suspend function, the setting of TX_BIT_LEN must be programmed as 0x00 only (32 bits per transfer word).

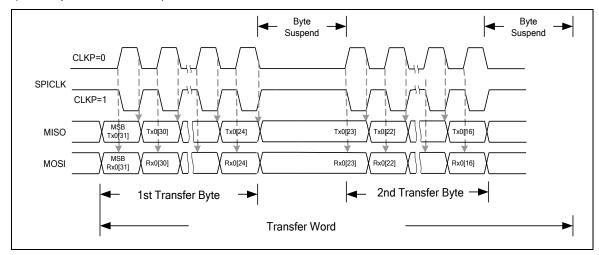


Figure 5.11-7 Byte Suspend Mode

Register	Description
00	No bytes reorder function and no clock idle interval among each byte.

nuvoTon

01	Byte reorder function active. Insert a clock idle interval among each byte.
	The setting of TX_BIT_LEN must be configured as 0x00 (32 bits/word).
10	Bytes reorder function active but no clock idle interval among each byte.
11	No bytes reorder function but insert a clock idle interval among each byte.
11	The setting of TX_BIT_LEN must be configured as 0x00. (32 bits/word).

Table 5.11-1 Byte Order and Byte Clock Idle Internal Conditions

5.11.4.14 Interrupt

Each SPI controller can generate an individual interrupt source when data transfer is finished and the respective interrupt event flag IF (SPI_CNTRL[16]) will be set. The interrupt event flag will generate an interrupt to CPU if the interrupt enable IE (SPI_CNTRL[17]) is set. The interrupt event flag IF can be cleared only by writing "1" to it.

5.11.4.15 Variable Serial Clock Frequency

In Master mode, the output of serial clock can be programmed as variable frequency pattern if the Variable Clock Enable bit VARCLK_EN (SPI_CNTRL[23]) is enabled. The frequency pattern format is defined in VARCLK (SPI_VARCLK[31:0]) register. If the bit content of VARCLK is '0' the output frequency is in accordance with the DIVIDER (SPI_DIVIDER[15:0]) and if the bit content of VARCLK is "1", the output frequency is in accordance with the DIVIDER2 (SPI_DIVIDER[31:16]). The following figure is the timing relationship among the serial clock (SPICLK), VARCLK, DIVIDER and DIVIDER2 registers. A two-bit combination in the VARCLK defines one clock cycle. The bit field VARCLK[31:30] defines the first clock cycle of SPICLK. The bit field VARCLK[29:28] defines the second clock cycle of SPICLK, and so on. The clock source selections are defined in VARCLK and it must be set to 1 cycle before the next clock option. For example, if there are 5 CLK1 cycles in SPICLK, the VARCLK shall set 9 "0" in the MSB of VARCLK. The 10th shall be set as "1" in order to switch the next clock source as CLK2. Note that when enabling the VARCLK_EN bit, the setting of TX_BIT_LEN must be programmed as 0x10 (16-bit mode only).

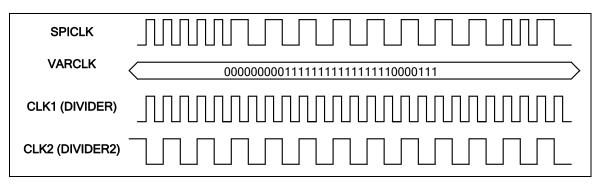


Figure 5.11-8 Variable Serial Clock Frequency

nuvoTon

5.11.4.16 SPI Timing Diagram

In Master/Slave mode, the active level of device/slave select (SPISS) signal can be programmed to low active or high active in SS_LVL bit (SPI_SSR[2]), but the SPISS is level trigger or edge trigger which is defined in SS_LTRIG bit (SPI_SSR[4]). The serial clock (SPICLK) idle state can be configured as high state or low state by setting the CLKP bit (SPI_CNTRL[11]). It also provides the bit length of a transfer word in TX_BIT_LEN (SPI_CNTRL[7:3]), the transfer number in TX_NUM (SPI_CNTRL[9:8]), and transmit/receive data from MSB or LSB first in LSB bit (SPI_CNTRL[10]). User can also determine which edge of serial clock to transmit/receive data in TX_NEG/RX_NEG (SPI_CNTRL[2:1]) registers. Four SPI timing diagrams for master/slave operations and the related settings are shown below.

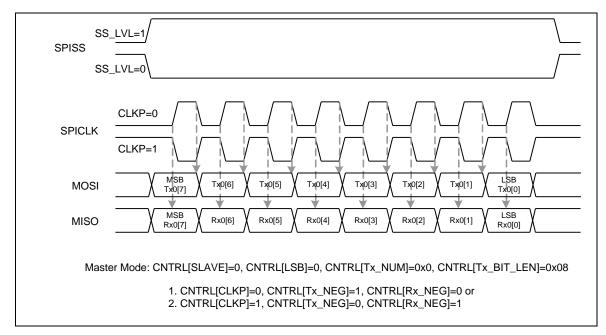


Figure 5.11-9 SPI Timing in Master Mode

nuvoTon

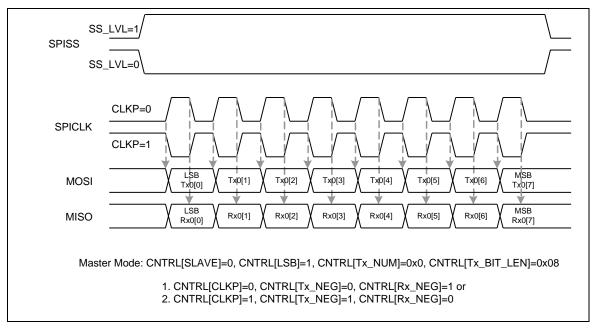


Figure 5.11-10 SPI Timing in Master Mode (Alternate Phase of SPICLK)

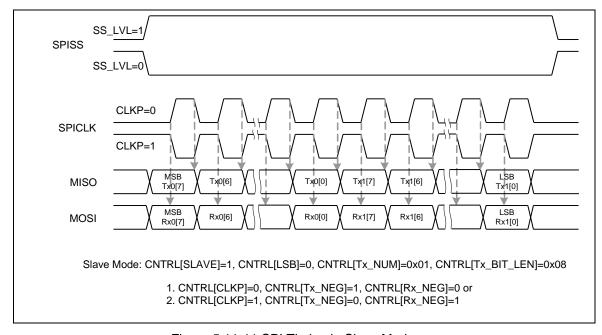


Figure 5.11-11 SPI Timing in Slave Mode

nuvoTon

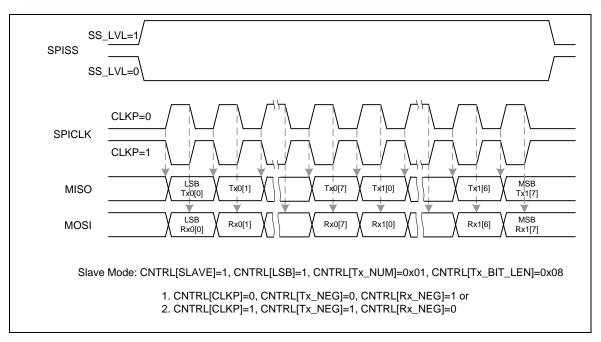


Figure 5.11-12 SPI Timing in Slave Mode (Alternate Phase of SPICLK)

5.11.4.17 SPI Programming Examples

Example 1: The SPI controller is set as a master to access an off-chip slave device with following specifications:

- Data bit is latched on positive edge of serial clock.
- Data bit is driven on negative edge of serial clock.
- Data bit is transferred from MSB first.
- SPICLK idles at low state.
- Only one byte data is transmitted/received in a transfer.
- Slave select signal is active low.

Basically, the specification of the connected off-chip slave device should be referred in detail before the following steps:

- 1) Write a divisor into the DIVIDER (SPI_DIVIDER[15:0]) register to determine the output frequency of serial clock.
- Write the SPI_SSR register a proper value for the related settings of Master mode.
 - 1. Enable the Automatic Slave Select bit ASS (SPI_SSR[3] = 1).
 - 2. Select low level trigger output of slave select signal in the Slave Select Active Level bit SS_LVL (SPI_SSR[2] = 0).
 - 3. Select slave select signal to be output active at the I/O pin by setting the respective Slave Select Register bits SSR (SPI_SSR[0]) to active the off-chip slave devices.
- Write the related settings into the SPI_CNTRL register to control the SPI master

nuvoTon

actions.

- 1. Set this SPI controller as the master device in SLAVE bit (SPI CNTRL[18] = 0).
- 2. Force the serial clock idle state at low in CLKP bit (SPI_CNTRL[11] = 0).
- 3. Select data transmitted at negative edge of serial clock in TX_NEG bit (SPI_CNTRL[2] = 1).
- 4. Select data latched at positive edge of serial clock in RX_NEG bit (SPI_CNTRL[1] = 0).
- 5. Set the bit length of word transfer as 8 bits in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08).
- 6. Set word transfer in TX_NUM (SPI_CNTRL[9:8] = 0x0) only once.
- 7. Set MSB transfer first in LSB bit (SPI_CNTRL[10] = 0), and disregard the SP_CYCLE bit field (SPI_CNTRL[15:12]) due to it's not burst mode in this case.
- 4) If this SPI master will transmit (write) one byte data to the off-chip slave device, write the byte data that will be transmitted into the Tx0 (SPI TX0[7:0]) register.
- 5) If this SPI master just only receives (reads) one byte data from the off-chip slave device, disregard what data will be transmitted and just write 0xFF into the SPI_TX0[7:0] register.
- Enable the GO_BUSY bit (SPI_CNTRL[0] = 1) to start the data transfer at the SPI interface.
 - ◆ Waiting for SPI interrupt occurred (if the Interrupt Enable IE bit is set) or just polling the GO BUSY bit till it be cleared to "0" by hardware automatically.--
- 7) Read out the received one byte data from Rx0 (SPI_RX0[7:0]) register.
- 8) Go to 4) to continue with another data transfer or set SSR to "0" to inactivate the offchip slave devices.

Example 2: The SPI controller is set as a slave device that is controlled by an off-chip master device, and supposes the off-chip master device to access the on-chip SPI slave controller through the SPI interface with the following specifications:

- Data bit is latched on positive edge of serial clock.
- Data bit is driven on negative edge of serial clock.
- Data bit is transferred from LSB first.
- SPICLK idles at high state.
- Only one byte data is transmitted/received in a transfer.
- Slave select signal is high level trigger.

Basically, the specification of the connected off-chip master device should be referred in detail before the following steps,

1) Write the SPI_SSR register a proper value for the related settings of Slave mode.

Select high level and level trigger for the input of slave select signal by setting the Slave Select Active Level bit SS_LVL (SPI_SSR[2] = 1) and the Slave Select Level Trigger bit SS_LTRIG (SPI_SSR[4] = 1).

nuvoTon

- 2) Write the related settings into the SPI_CNTRL register to control this SPI slave actions.
 - 1. Set this SPI controller as slave device in SLAVE bit (SPI_CNTRL[18] = 1).
 - 2. Select the serial clock idle state at high in CLKP bit (SPI_CNTRL[11] = 1).
 - Select data transmitted at negative edge of serial clock in TX_NEG bit (SPI_CNTRL[2] = 1).
 - 4. Select data latched at positive edge of serial clock in RX_NEG bit (SPI_CNTRL[1] = 0).
 - 5. Set the bit length of word transfer as 8 bits in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08).
 - 6. Set only one time of word transfer in TX_NUM (SPI_CNTRL[9:8] = 0x0).
 - 7. Set LSB transfer first in LSB bit (SPI_CNTRL[10] = 1), and disregard the SP_CYCLE bit field (SPI_CNTRL[15:12]) due to it's not burst mode in this case.
- 3) If this SPI slave will transmit (be read) one byte data to the off-chip master device, write the byte data that will be transmitted into the Tx0 (SPI TX0[7:0]) register.
- 4) If this SPI slave just only receives (be written) one byte data from the off-chip master device, disregard what data will be transmitted and just write 0xFF into the SPI_TX0[7:0] register.
- 5) Enable the GO_BUSY bit (SPI_CNTRL[0] = 1) to wait for the slave select trigger input and serial clock input from the off-chip master device to start the data transfer at the SPI interface.
 - Waiting for SPI interrupt to occur (if the Interrupt Enable IE bit is set) or just polling the GO_BUSY bit until it is cleared to "0" by hardware automatically.
- 6) Read out the received one byte data from Rx (SPI_RX0[7:0]) register.
- 7) Go to 3) to continue with another data transfer or disable the GO_BUSY bit to stop data transfer.

5.11.5 SPI Serial Interface Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value					
SPI_BA = 0x40	SPI_BA = 0x4003_4000								
SPI_CNTRL	SPI_BA+0x00	R/W	Control and Status Register	0x0000_0004					
SPI_DIVIDER	SPI_BA+0x04	R/W	Clock Divider Register	0x0000_0000					
SPI_SSR	SPI_BA+0x08	R/W	Slave Select Register	0x0000_0000					
SPI_RX0	SPI_BA+0x10	R	Data Receive Register 0	0x0000_0000					
SPI_RX1	SPI_BA+0x14	R	Data Receive Register 1	0x0000_0000					
SPI_TX0	SPI_BA+0x20	W	Data Transmit Register 0	0x0000_0000					
SPI_TX1	SPI_BA+0x24	W	Data Transmit Register 1	0x0000_0000					
SPI_VARCLK	SPI_BA+0x34	R/W	Variable Clock Pattern Register	0x007F_FF87					
SPI_CNTRL2	SPI_BA+0x3C	R/W	Control and Status Register 2	0x0000_0000					

Note: When software programs SPI_CNTRL, the GO_BUSY bit should be written last.

nuvoTon

5.11.6 Register Description

SPI Control and Status Register (SPI_CNTRL)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL	PI_CNTRL SPI_BA+0x00		Control and Status Register	0x0000_0004

NuMicroTM Mini51 Technical Reference Manual

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
VARCLK_EN		-		REORDER		IE	IF
15	14	13	12	11	10	9	8
	SP_C	YCLE		CLKP	LSB	TX_	NUM
7	6	5	4	3	2	1	0
	TX_BIT_LEN					RX_NEG	GO_BUSY

Bits	Description						
[31:24]	-	Reserved	Reserved				
		Variable Clock Enab	ole (Master Only)				
			output frequency is variable. The output frequency is decided by CLK, DIVIDER, and DIVIDER2.				
[23]	VARCLK_EN	0 = The serial clock DIVIDER.	coutput frequency is fixed and decided only by the value of				
			g this VARCLK_EN bit, the setting of TX_BIT_LEN must be $0x10$ (16-bit mode).				
[22:21]	-	Reserved					
		Reorder Mode Selec	etion				
		REORDER	Description				
		00	Disable both Byte Reorder and byte suspend functions				
[20:19]	REORDER[1:0]	01	Enable Byte Reorder function and insert a byte suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as "00" (32-bit/word).				
		10	Enable Byte Reorder function, but disable byte suspend function.				
		11	Disable Byte Reorder function, but insert a suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as "00" (32-bit/word).				
[18]	SLAVE	Slave Mode Indication	on				

Bits	Description								
		1 = 8	Slave mode.						
		0 = N	Naster mode.						
		Interrupt Enable							
[17]	IE	1 = SPI Interrupt Enabled.							
		0 = 5	SPI Interrupt D	isabled.					
		Inter	rupt Flag						
[16]	IF	1 = T	he transfer do	one. The inte	rrupt flag is set if it was enabled.				
[]	-	0 =T	he transfer do	es not finish	yet.				
		Note	: This bit is cle	eared by writ	ing "1" to itself.				
		Susp	oend Interval	(Master On	ly)				
		trans clock trans fallin no e follow	smit/receive tra c edge of the saction if CLKI g clock edge.	ansaction in current trans P = 0. If CLh The default sfer. The de	gurable suspend interval between two successive a transfer. The suspend interval is from the last falling saction to the first rising clock edge of the successive (P = 1, the interval is from the rising clock edge to the value is "0". When TX_NUM = 00, setting this field has esired suspend interval is obtained according to the of SPICLK				
[15:12]	SP_CYCLE[3:0]		SP_CYCLE		The suspend Interval				
			0000	Value	·				
					2 SPICLK clock cycle				
			0001		3 SPICLK clock cycle				
			1110		16 SPICLK clock cycle				
			1111		17 SPICLK clock cycle				
		Cloc	k Polarity						
[11]	CLKP	1 = 5	SPICLK idle high	gh.					
		0 = S	SPICLK idle lov	W.					
			First						
[10]	LSB	1 = The LSB sent first on the line (bit 0 of SPI_TX0/1), and the first bit received from the line will be put in the LSB position in the Rx register (bit 0 of SPI_RX0/1).							
		0 = The MSB transmitted/received first (which bit in SPI_TX0/1 and SPI_RX0/1 register depends on the TX_BIT_LEN field).							
		Tran	smit/Receive	Word Num	bers				
			field specifies transfer.	how many	transmit/receive word numbers should be executed in				
		TX_NUM De		Description	Description				
[9:8]	TX_NUM[1:0]			Only one one transfe	transmit/receive transaction will be executed in er.				
			01		cessive transmit/receive transactions will be n one transfer (burst mode).				
			10	Reserved					

nuvoTon

Bits	Description								
			11	Reserved					
		No	Note: In Slave mode with level-trigger configuration, the slave select pin mus at active state during the successive data transfer.						
		Tł	Transmit Bit Length This field specifies how many bits are transmitted in one transmit/receive. Up to bits can be transmitted.						
			TX_BIT_LEN	Description					
	TV DIT LEN		00001	1 bit is transmitted in one transaction					
[7:3]	TX_BIT_LEN [4:0]		00010	2 bits are transmitted in one transaction					
			00011	3 bits are transmitted in one transaction					
			11111	31 bits are transmitted in one transaction					
			00000	32 bits are transmitted in one transaction					
		Transmit At Negative Edge							
[2]	TX_NEG	1 = The transmitted data output signal changed at the falling edge of SPICLK.							
		0 = The transmitted data output signal changed at the rising edge of SPICLK.							
			Receive At Negative Edge						
[1]	RX_NEG	1 = The received data input signal latched at the falling edge of SPICLK.							
		0 = The received data input signal latched at the rising edge of SPICLK.							
		Go and Busy Status							
[0]	GO_BUSY	1= In Master mode, writing "1" to this bit to start the SPI data transfer; in Slave mode, writing "1" to this bit indicates that the slave is ready to communicate with a master. During the data transfer, this bit keeps the value of "1". As the transfer is finished, this bit will be cleared automatically.							
		0 :	= Data transfer st	opped if SPI is transferring.					
		No	ote: All registers s	should be set before writing "1" to the GO_BUSY bit.					

SPI Divider Register (SPI_DIVIDER)

Register	Offset	R/W	Description	Reset Value
SPI_DIVIDER	SPI_BA+0x04	R/W	Clock Divider Register (Master Only)	0x0000_0000

31	30	29	28	27	26	25	24			
	DIVIDER2									
23	22	21	20	19	18	17	16			
			DIVII	DER2						
15	14	13	12	11	10	9	8			
	DIVIDER									
7	6	5	4	3	2	1	0			
	DIVIDER									

Bits	Description						
[31:16]	DIVIDER2[15:0]	Clock Divider 2 Register (Master Only) The value in this field is the 2nd frequency divider of the system clock, PCLK, to generate the serial clock on the output SPICLK. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{psclk}}{(DIVIDER2+1)*2}$					
[15:0]	DIVIDER[15:0]	Clock Divider Register (Master Only) The value in this field is the frequency divider of the system clock, PCLK, to generate the serial clock on the output SPICLK. The desired frequency is obtained according to the following equation: $ f_{sclk} = \frac{f_{psclk}}{(DIVIDER+1)*2} $ In Slave mode, the period of SPI clock driven by a master shall equal or over 5 times the period of PCLK. In other words, the maximum frequency of SPI clock is the fifth of the frequency of slave's PCLK.					

nuvoTon

SPI Slave Select Register (SPI_SSR)

Register	Offset		Description	Reset Value
SPI_SSR	SPI_BA+0x08	R/W	Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-	LTRIG_FLAG	SS_LTRIG	ASS	SS_LVL	-	SSR

Bits	Description	
[31:6]	-	Reserved
		Level Trigger Flag
		When the SS_LTRIG bit is set in Slave mode, this bit can be read to indicate whether the received bit number meets the requirement or not.
[5]	LTRIG_FLAG	1 = The transaction number and the transferred bit length met the specified requirements which defined in TX_NUM and TX_BIT_LEN.
		0 = The transaction number or the transferred bit length of one transaction doesn't meet the specified requirements.
		Note: This bit is READ only.
		Slave Select Level Trigger (Slave Only)
[4]	SS_LTRIG	1 = The slave select signal will be level-trigger. It depends on SS_LVL to decide the signal is active low or active high.
		0 = The input slave select signal is edge-trigger. This is the default value.
		Automatic Slave Selection (Master Only)
[3]	ASS	1 = If this bit is set, SPISS signals are generated automatically. It means that device/slave select signal, which is set in SSR register is asserted by the SPI controller when transmit/receive is started by setting GO_BUSY, and is de- asserted after each transmit/receive is finished.
		0 = If this bit is cleared, slave select signals are asserted and de-asserted by setting and clearing related bits in SSR register.
		Slave Select Active Level
[2]	SS LVL	It defines the active level of device/slave select signal (SPISS).
	35_EVE	1 = The slave select signal SPISS active at high-level/rising-edge.
		0 = The slave select signal SPISS active at low-level/falling-edge.
[1]	-	Reserved

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAI

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

Bits	Description	n
		Slave Select Register (Master Only)
		If ASS bit is cleared, writing "1" to any bit location of this field will set the proper SPISS line to an active state and writing "0" will set the line back to inactive state.
[0]	SSR	If ASS bit is set, writing "1" to any bit location of this field will select appropriate SPISS line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. (The active level of SPISS is specified in SS_LVL).
		Note: SPISS is always defined as device/slave select input signal in Slave mode.

nuvoTon

SPI Data Receive Register (SPI_RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX0	SPI_BA+0x10	R	Data Receive Register 0	0x0000_0000
SPI_RX1	SPI_BA+0x14	R	Data Receive Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
	RX								
23	22	21	20	19	18	17	16		
			R	Х					
15	14	13	12	11	10	9	8		
	RX								
7	6	5	4	3	2	1	0		
	RX								

Bits	Description	escription					
		Data Receive Register					
[31:0]	RX[31:0]	The Data Receive Registers hold the value of received data of the last executed transfer. Valid bits depend on the transmit bit length field in the SPI_CNTRL register. For example, if TX_BIT_LEN is set to 0x08 and TX_NUM is set to "0", bit Rx0[7:0] holds the received data.					
		Note: The Data Receive Registers are read only registers.					

nuvoTon

SPI Data Transmit Register (SPI_TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX0	SPI_BA+0x20	W	Data Transmit Register 0	0x0000_0000
SPI_TX1	SPI_BA+0x24	W	Data Transmit Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
	TX								
23	22	21	20	19	18	17	16		
			Т	X					
15	14	13	12	11	10	9	8		
	TX								
7	6	5	4	3	2	1	0		
	тх								

Bits	Description	
[31:0]		Data Transmit Register The Data Transmit Registers hold the data to be transmitted in the next transfer. Valid bits depend on the transmit bit length field in the CNTRL register. For example, if TX_BIT_LEN is set to 0x08 and the TX_NUM is set to "0", the bit TX0[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x00 and TX_NUM is set to "1", the core will perform two 32-bit transmit/receive successive
		using the same setting (the order is TX0[31:0], TX1[31:0]).

nuvoTon

SPI Variable Clock Register (SPI_VARCLK)

Register	Offset	R/W	Description	Reset Value
SPI_VARCLK	SPI_BA+0x34	R/W	Variable Clock Pattern Register	0x007F_FF87

31	30	29	28	27	26	25	24		
	VARCLK								
23	22	21	20	19	18	17	16		
	VARCLK								
15	14	13	12	11	10	9	8		
	VARCLK								
7	6	5	4	3	2	1	0		
	VARCLK								

Bits	Description	
		Variable clock Pattern
[31:0]	VARCLK[31:0]	The value in this field is the frequency pattern of the SPI clock. If the bit pattern of VARCLK is "0", the output frequency of SPICLK is in accordance with the value of DIVIDER. If the bit patterns of VARCLK are "1", the output frequency of SPICLK is in accordance with the value of DIVIER2. Refer to the register SPI_DIVIER.
		Refer to Figure 5.11-8
		Note: It is used for CLKP = "0" only.

nuvoTon

SPI Control and Status Register 2 (SPI_CNTRL2)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL	SPI_BA+0x3C	R/W	Control and Status Register 2	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	-			SLV_START_I NTSTS	SSTA_INTEN	SLV_ABORT	NOSLVSEL
7	6	5	4	3	2	1	0
			-				DIV_ONE

Bits	Description	
[31:12]	-	Reserved
[11]		Slave Start Interrupt Status
	SLV_START_IN	It is used to indicate that the transfer has started in Slave mode with no slave selected.
	TSTS	1 = It indicates that the transfer starts in Slave mode with no slave select. It is auto clear by transfer done or writing "1" clear.
		0 = It indicates that the slave starts transfer no active.
[10]		Slave Start Interrupt Enable
	SSTA_INTEN	It is used to enable interrupt when the transfer has started in Slave mode with no slave select. If there is no transfer done interrupt over the time period which is defined by user after the transfer start, the user can set the SLV_ABORT bit to force the transfer done.
		1 = Enable the transaction start interrupt. It is clear by the current transfer done or the SLV_START_INTSTS bit be clear (write "1" clear).
		0 = Disable the transfer start interrupt.
		Abort in Slave Mode with No Slave Selected
[9]	SLV_ABORT	In normal operation, there is interrupt event when the received data meet the required bits defined in TX_BIT_LEN and TX_NUM.
		If the received bits are less than the requirement and there is no more serial clock input over the one transfer time in Slave mode with no slave select, user can set this bit to force the current transfer done and then get a transfer done interrupt event.
		Note: It is auto clear to "0" by hardware when the abort event is active.
[8]		No Slave Selected in Slave Mode
	NOSLVSEL	This is used to ignore the slave select signal in Slave mode. The SPI controller can work on 3-wire interface including SPICLK, SPI_MISO, and SPI_MOSI when it is set as a slave device.
		1 = The controller is 3-wire bi-direction interface in Slave mode. When this bit is set

nuvoTon

Bits	Description	
		as "1", the controller start to transmit/receive data after the GO_BUSY bit active and the serial clock input.
		0 = The controller is 4-wire bi-direction interface.
		Note: In no slave select signal mode, the SS_LTRIG, SPI_SSR[4] shall be set as "1".
[7:1]	-	Reserved
	DIV_ONE	Clock Divider Fixed Divide one Register
[0]		The register is used to set the frequency divider as one of the system clock, PCLK, to generate the serial clock on the output SPICLK.
		1 = Clock divide value fixed as "1"
		0 = Clock divide value based on the DIVIDER and DIVIDER2 registers.

5.12 Timer Controller

5.12.1 Overview

The timer module includes two channels, TIMER0~TIMER1, which allow user to easily implement a timer control for applications. The timer can perform functions like frequency measurement, interval measurement, clock generation, delay timing, and so on. The timer can generate an interrupt signal upon time-out, or provide the current value of count during operation.

5.12.2 Features

- Two sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
- Independent clock source for each channel (TMR0_CLK, TMR1_CLK)
- Provides one-shot, periodic, toggle and continuous counting operation modes
- Time-out period = (period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit TCMP)
- Maximum counting cycle time = (1 / T MHz) * (2⁸) * (2²⁴); T is the period of timer clock
- Internal 24-bit up timer is readable through TDR (Timer Data Register)
- Supports event counting function to count the event from external pin
- Supports input capture function to capture or reset counter value

nuvoTon

5.12.3 Block Diagram

Each channel is equipped with an 8-bit pre-scale counter, a 24-bit up-timer, a 24-bit compare register and an interrupt request signal. Refer to Figure 5.12-1. There are five options of clock sources for each channel. Figure 5.12-2 illustrates the clock source control function.

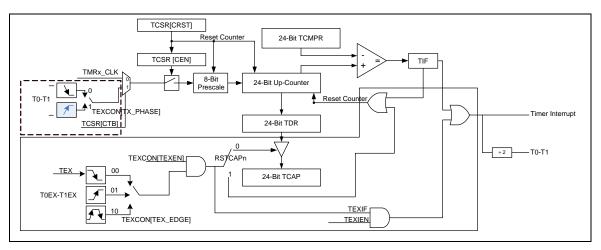


Figure 5.12-1 Timer Controller Block Diagram

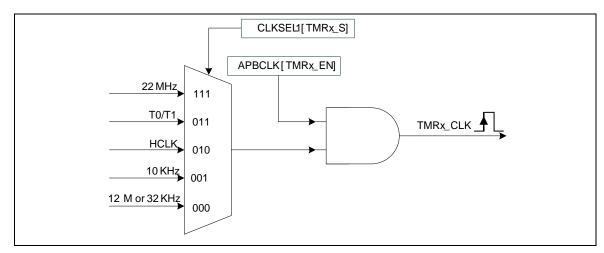


Figure 5.12-2 Clock Source of Timer Controller

5.12.4 Functional Description

A Timer controller provides one-shot, periodic, toggle and continuous counting operation modes. It also provides the event counting function to count the event from the external pin and input capture function to capture or reset timer counter value. Each operating function mode is shown as follows:

5.12.4.1 One-Shot Mode

If the timer is operated at one-shot mode and CEN (TCSR[30] timer enable bit) is set to "1", the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE (TCSR[29] interrupt enable bit) is set to "1", then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. If IE is set to "0", no interrupt signal is generated. In this operation mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN is cleared to "0" by timer controller. Timer counting operation stops, once the timer counter value reaches timer compare register (TCMPR) value. That is to say, timer operates timer counting and compares with TCMPR value function only one time after programming the timer compare register (TCMPR) value and CEN is set to "1". So, this operation mode is called One-Shot mode.

5.12.4.2 Periodic Mode

If the timer is operated at period mode and CEN is set to "1", the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE is set to "1", then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. If IE is set to "0", no interrupt signal is generated. In this operation mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN is kept at "1" (counting enable continuously). The timer counter operates up counting again. If the interrupt flag is cleared by software, once the timer counter value reaches timer compare register (TCMPR) value and IE is set to "1", then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU again. That is to say, timer operates timer counting and compares with TCMPR value function periodically. The timer counting operation doesn't stop until the CEN is set to "0". The interrupt signal is also generated periodically. So, this operation mode is called Periodic mode.

5.12.4.3 Toggle Mode

If the timer is operated at toggle mode and CEN is set to "1", the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE is set to "1", then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. The associated toggle output (tout) signal is set to "1". In this operation mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN is kept at "1" (counting enable continuously). The timer counter operates up counting again. If the interrupt flag is cleared by software, once the timer counter value reaches timer compare register (TCMPR) value and IE is set to "1", then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU again. The associated toggle output (tout) signal is set to "0". Thus, the toggle output (tout) signal is changing back and force with 50% duty cycle. So, this operation mode is called Toggle mode.

5.12.4.4 Continuous Counting Mode

If the timer is operated at continuous counting mode and CEN is set to "1", the associated interrupt

nuvoTon

signal is generated depending on TDR = TCMPR if IE is enabled. User can change different TCMPR value immediately without disabling timer counting and restarting timer counting. For example, TCMPR is set as 80, first. (The TCMPR should be less than 2^{24} -1 and be greater than 1). The timer generates the interrupt if IE is enabled and TIF (timer interrupt flag) will set to "1" then the interrupt signal is generated and sent to NVIC to inform CPU when TDR value is equal to 80 and. But the CEN is kept at "1" (counting enable continuously) and TDR value will not go back to "0", It continues to count 81, 82, 83, ... to 2^{24} -1, 0, 1, 2, 3, ... to 2^{24} -1 again and again. Next, if user programs TCMPR as 200 and the TIF is cleared to "0", then timer interrupt occurred and TIF is set to "1", then the interrupt signal is generated and sent to NVIC to inform CPU again when TDR value reaches to 200. At last, user programs TCMPR as 500 and clears TIF to "0" again, then timer interrupt occurred and TIF sets to "1" then the interrupt signal is generated and sent to NVIC to inform CPU when TDR value reaches to 500. From application view, the interrupt is generated depending on TCMPR. In this mode, the timer counting is continuous. Thus, this operation mode is called as continuous counting mode.

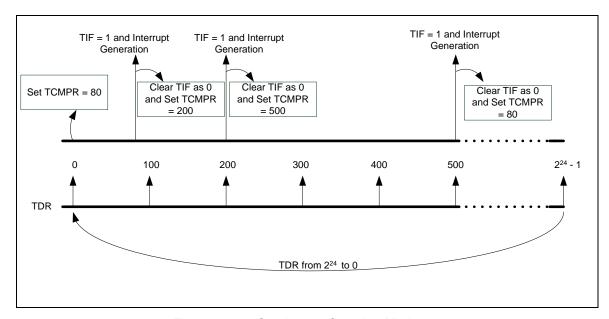


Figure 5.12-3 Continuous Counting Mode

5.12.4.5 Event Counting Function

The event counting mode can count the event from T0~T1 pins. In event counting mode, the clock source of timer controller, TMRx_CLK, as shown in Figure 5.12-2, should be set as HCLK. Also, the event count source operating frequency should be less than 1/3 HCLK frequency if counting de-bounce is disabled or there's less than 1/8 HCLK frequency if counting de-bounce is enabled. Otherwise, the returned TDR value is incorrect. It provides T0~T1 enabled or disabled de-bounce function by TEXCON[7] and T0~T1 falling or rising phase counting setting by TEXCON[0].

5.12.4.6 Input Capture Function

The input capture or reset function is provided to capture or reset timer counter value. The capture function with free-counting capture mode and trigger-counting capture mode are configured by CAP_MODE (TEXCON[8]). The free-counting capture mode, reset mode, trigger-counting capture mode are described as follows.

nuvoTon

5.12.4.7 Free-Counting Capture Mode

If CAP_MODE is cleared to "0", TEXEN (TEXCON[3]) is set to "1" and RSTCAPN is set to "0", the TDR will be captured into TCAP register when TEX (Timer External Pin) pin trigger condition occurred. The TEX trigger edge can be chosen by TEX_EDGE. The detail operation method is described in.

5.12.4.8 Reset Mode

If CAP_MODE is cleared to "0", TEXEN (TEXCON[3]) is set to "1" and RSTCAPN is set to "1", the TDR will be reset to "0" when TEX pin trigger condition happened. The TEX trigger edge can be chosen by TEX_EDGE. The detail operation method is described in.

5.12.4.9 Trigger-Counting Capture Mode

If CAP_MODE is set to "1", TEXEN (TEXCON[3]) is set to "1" and RSTCAPN is set to "0", the TDR will be reset to "0" then captured into TCAP register when TEX (Timer External Pin) pin trigger condition occurred. The TEX trigger edge can be chosen by TEX_EDGE. The detailed operation method is described.

When TEX trigger occurred, TEXIF (Timer External Interrupt Flag) is set to "1", and the interrupt signal is generated, then, sent to NVIC to inform CPU if TEXIEN (Timer External Interrupt Enable Bit) is "1". Also, the TEX source operating frequency should be less than 1/3 HCLK frequency if disable TEX debounce or less than 1/8 HCLK frequency if enabling TEX de-bounce. It also provides T0EX~T1EX enabled or disabled capture de-bounce function by TEXCON[6].

Table 5.12-1 Input Capture Mode Operation

		-		· -
Function	CAP_MODE	RSTCAPN	TEX_EDGE	Operation Description
Function	(TEXCON[8])	(TEXCON[4])	(TEXCON[2:1])	Operation Description
	0	0	00	The high to zero transition on Timer External Input Pin is detected. TDR is captured to TCAP.
Free-counting Capture Mode	0	0	The zero to high transition on Timer	
	0	0	10	transition on Timer External Input Pin is
	0	0	11	Reserved
	0	1	00	External Input Pin is detected. TDR is
Reset Mode	0	1	Either high to zero or zero to high transition on Timer External Input Pir detected. TDR is captured to TCAP. 1 Reserved The high to zero transition on Timer External Input Pin is detected. TDR is reset to "0". The zero to high transition on Timer	External Input Pin is detected. TDR is
	0	1	10	Either high to zero or zero to high transition on Timer External Input Pin is detected. TDR is reset to "0".
	0	1	11	Reserved
Trigger- Counting	1	0	00	Falling Edge Trigger: The 1st high to zero transition on Timer

nuvoTon

Capture Mode				External Input Pin is detected to reset TDR as "0" and then starts counting, while the 2nd high to zero transition stops counting
	1	0	01	Rising Edge Trigger: The 1st zero to high transition on Timer External Input Pin is detected to reset TDR as "0" and then starts counting, while the 2nd zero to high transition stops counting.
	1	0	10	Level Change Trigger: The high to zero transition on Timer External Input Pin is detected to reset TDR as "0" and then starts counting, while zero to high transition stops counting.
	1	0	11	Level Change Trigger: The zero to high transition on Timer External Input Pin is detected to reset TDR as "0" and then starts counting, while high to zero transition stops counting.

5.12.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
TMR_BA = 0	x4001_0000	<u>.</u>		
TCSR0	TMR_BA+0x00	R/W	Timer0 Control and Status Register	0x0000_0005
TCMPR0	TMR_BA+0x04	R/W	Timer0 Compare Register	0x0000_0000
TISR0	TMR_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TDR0	TMR_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TCAP0	TMR_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TEXCON0	TMR_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TEXISR0	TMR_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TCSR1	TMR_BA+0x20	R/W	Timer1 Control and Status Register	0x0000_0005
TCMPR1	TMR_BA+0x24	R/W	Timer1 Compare Register	0x0000_0000
TISR1	TMR_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TDR1	TMR_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TCAP1	TMR_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TEXCON1	TMR_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000
TEXISR1	TMR_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000

nuvoTon

5.12.6 Register Description

Timer Control Register (TCSR)

Register	Offset	R/W	Description	Reset Value
TCSR0	TMR_BA+0x00	R/W	Timer0 Control and Status Register	0x0000_0005
TCSR1	TMR_BA+0x20	R/W	Timer1 Control and Status Register	0x0000_0005

31	30	29	28	27	26	25	24	
DBGACK_TMR	CEN	IE	MODE		CRST	CACT	СТВ	
23	22	21	20	19	18	17	16	
WAKE_EN				-			TDR_EN	
15	14	13	12	11	10	9	8	
				-				
7	6	5	4	3	2	1	0	
	PRESCALE							

Bits	Description				
		ICE Debug Mode	Acknowledge Disable (Write-protection Bit)		
		1 = ICE debug mode acknowledgement Disabled.			
[31]	DBGACK_TMR	TIMER counter w	ill keep going no matter ICE Debug mode acknowledged or not.		
		0 = ICE Debug m	ode acknowledgement effects TIMER counting.		
		The TIMER count	er will be held while ICE Debug mode acknowledged.		
		Timer Enable Bit	ı		
		1 = Counting started.			
roo1	CEN	0 = Counting stopped/suspended.			
[30]		Note1 : In stop status, and then set CEN to "1" will enable the 24-bit up-timer keeps up counting from the last stop counting value.			
			auto-cleared by hardware in one-shot mode (MODE = 00) when the nterrupt is generated (IE = "1").		
		Interrupt Enable	Bit		
		1 = Timer Interrupt Enabled.			
[29]	IE	0 = Timer Interrupt Disabled.			
		If timer interrupt is enabled, the timer asserts its interrupt signal when the associated up-timer value is equal to TCMPR.			
		Timer Operation	mode		
[28:27]	MODE[1:0]	MODE	Timer Operation Mode		
		00	The timer is operating in One-shot mode. The associated interrupt signal is generated once (if IE is enabled) and CEN is		

			automatically cleared by hardware.			
		01	The timer is operating in Periodic mode. The associated interrupt signal is generated periodically (if IE is enabled).			
		10	The timer is operating in Toggle mode. The interrupt signal is generated periodically (if IE is enabled). The associated signal (tout) is changing back and forth with 50% duty cycle.			
		11	The timer is operating in Continuous Counting mode. The associated interrupt signal is generated when TDR = TCMPR (if IE is enabled). However, the 24-bit up-timer counts continuously. Please refer to 5.12.4.4 for detailed description about Continuous Counting mode operation.			
		Timer Reset Bi	t			
[26]	CRST	Set this bit will r "0".	eset the 24-bit up-timer, 8-bit pre-scale counter and also force CEN to			
		1 = Timer's 8-bi	t pre-scale counter, internal 24-bit up-timer and CEN bit reset.			
		0 = No effect.				
		Timer Active S	tatus Bit (Read only)			
[25]	CACT	This bit indicate	This bit indicates the up-timer status.			
[]		1 = Timer active.				
		0 = Timer not active.				
		Counter Mode Enable Bit				
[24]	СТВ	This bit is the counter mode enable bit. When Timer is used as an event counter, this bit should be set to "1" and Timer will work as an event counter. The counter detect phase can be selected as rising/falling edge of external pin by TX_PHASE field.				
		1 = Counter mode Enabled.				
		0 = Counter mode Disabled.				
		Wake-Up Enab	le			
[23]	WAKE_EN	When WAKE_EN is set and the TIF or TEXIF is set, the timer controller will a wake-up trigger event to CPU.				
		1 = Wake-up trigger event Enabled.				
		0 = Wake-up tri	gger event Disabled.			
[22:17]	-	Reserved				
		Data Load Ena	ble			
[16]	TDR_EN		When TDR_EN is set, TDR (Timer Data Register) will be updated continuously with the 24-bit up-timer value as the timer is counting.			
		1 = Timer Data	Register update Enabled.			
		0 = Timer Data Register update Disabled.				
[15:8]	-	Reserved				
	PRESCALE	Pre-Scale Cou	nter			
[7:0]	[7:0]	Clock input is d = "0", there is no	ivided by PRESCALE+1 before it is fed to the counter. If PRESCALE o scaling.			

nuvoTon

Timer Compare Register (TCMPR)

Register	Offset	R/W	Description	Reset Value
TCMPR0	TMR_BA+0x04	R/W	Timer0 Compare Register	0x0000_0000
TCMPR1	TMR_BA+0x24	R/W	Timer1 Compare Register	0x0000_0000

31	30	29	28	27	26	25	24			
	-									
23	22	21	20	19	18	17	16			
			TC	MP						
15	14	13	12	11	10	9	8			
	TCMP									
7	6	5	4	3	2	1	0			
	ТСМР									

Bits	Description	
[31:24]	-	Reserved
[23:0]	TCMP[23:0]	Timer Compared Value TCMP is a 24-bit compared register. When the internal 24-bit up-timer counts and its value is equal to TCMP value, a Timer Interrupt is requested if the timer interrupt is enabled with TCSR.IE[29] = "1". The TCMP value defines the timer counting cycle time. Time-out period = (Period of timer clock input) * (8-bit PRESCALE + 1) * (24-bit TCMP) Note1: Never write "0" or "1" in TCMP, or the core will run into unknown state. Note2: When timer is operating at continuous counting mode, the 24-bit up-timer will count continuously if software writes a new value into TCMP. If timer is operating at other modes, the 24-bit up-timer will restart counting and using newest TCMP value to be the compared value if software writes a new value into TCMP.

nuvoTon

Timer Interrupt Status Register (TISR)

Register	Offset	R/W	Description	Reset Value
TISR0	TMR_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TISR1	TMR_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			•	-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
-					TWF	TIF	

Bits	Description			
[31:2]	-	Reserved		
		Timer Wake-up Flag		
[1] TWF		If timer causes CPU wakes up from power-down mode, this bit will be set to high.		
	It must be cleared by software with writing "1" to this bit.			
		1 = CPU wakes up from sleep or power-down mode by timer time-out.		
		0 = Timer does not cause CPU wake-up.		
		Timer Interrupt Flag		
		This bit indicates the interrupt status of timer.		
[0]	TIF	TIF bit is set by hardware when the up counting value of internal 24-bit up-timer matches the timer compared value (TCMP) and if the timer interrupt is enabled with TCSR.IE[29] = "1". It is cleared by writing "1" to this bit.		

nuvoTon

Timer Data Register (TDR)

Register	Offset	R/W	Description	Reset Value
TDR0	TMR_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TDR1	TMR_BA+0x2C	R	Timer1 Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
			Τſ	DR					
15	14	13	12	11	10	9	8		
	TDR								
7	6	5	4	3	2	1	0		
	TDR								

Bits	Description	escription				
[31:24]	-	Reserved				
[00.0] TDD[00.0]		Timer Data Register				
[23:0] TDR[23:0]	1DK[23.0]	This field indicates the current count value.				

nuvoTon

Timer Capture Data Register (TCAP)

Register	Offset	R/W	Description	Reset Value
TCAP0	TMR_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TCAP1	TMR_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	<u>-</u>								
23	22	21	20	19	18	17	16		
	ТСАР								
15	14	13	12	11	10	9	8		
	TCAP								
7	6	5	4	3	2	1	0		
	TCAP								

Bits	Description	
[31:24]	-	Reserved
		Timer Capture Data Register
[23:0]	TCAP[23:0]	When TEXEN (TEXCON[3]) is set, RSTCAPN (TEXCON[4]) is "0", and the transition on the TEX pins associated TEX_EDGE (TEXCON[2:1]) setting is occurred, the internal 24-bit up-timer value will be loaded into TCAP. User can read this register for the counter value.

nuvoTon

Timer External Control Register (TEXCON)

Register	Offset	R/W	Description	Reset Value
TEXCON0	TMR_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TEXCON1	TMR_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000

31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
			-				CAP_MODE
7	6	5	4	3	2	1	0
TCDB	TEXDB	TEXIEN	RSTCAPN	TEXEN	TEX_	EDGE	TX_PHASE

Bits	Description	
[31:9]	-	Reserved
		Capture Mode Selection
[8]	CAP_MODE	1 = Trigger-counting mode of timer capture function.
		0 = Timer counter reset function or free-counting mode of timer capture function.
		Timer Counter Pin De-bounce Enable Bit
[7]	TCDB	1 = De-bounce Enabled.
[7] TCDB	0 = De-bounce Disabled.	
		If this bit is enabled, the edge of T0~T1 pin is detected with de-bounce circuit.
		Timer External Capture Pin De-bounce Enable Bit
[6]	TEXDB	1 = De-bounce Enabled.
[O]	ILADB	0 = De-bounce Disabled.
		If this bit is enabled, the edge of TEX pin is detected with de-bounce circuit.
		Timer External Interrupt Enable Bit
		1 = Timer External Interrupt Enabled.
		0 = Timer External Interrupt Disabled.
[5]	TEXIEN	If timer external interrupt is enabled, the timer asserts its external interrupt signal and sent to NVIC to inform CPU when the transition on the TEX pins associated with TEX_EDGE (TEXCON[2:1]) setting is happened.
		For example, while TEXIEN = "1", TEXEN = "1", and TEX_EDGE = 00, a high to zero transition on the TEX pin will cause the TEXIF (TEXISR[0]) interrupt flag to be set then the interrupt signal is generated and sent to NVIC to inform CPU.
[4]	RSTCAPN	Timer External Reset Counter / Capture Mode Selection

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUA

NuMicroTM Mini51 Technical Reference Manual

Bits	Description							
		1 = TEX transition	on is used as the timer counter reset function.					
		0 = TEX transition	0 = TEX transition is used as the timer capture function.					
		Timer External Pin Enable						
		This bit enables	the reset/capture function on the TEX pin.					
[3]	TEXEN	1 = The transition detected on the TEX pin will result in capture or reset of time counter.						
		0 = The TEX pin will be ignored.						
		Timer External Pin Edge Detection						
		TEX_EDGE	Description					
	TEX EDGE	00	A high to zero transition on TEX will be detected.					
[2:1]	[1:0]	01	A zero to high transition on TEX will be detected.					
		10	Either high to zero or zero to high transition on TEX will be detected.					
		11	Reserved.					
		Timer External	Count Phase					
[0]	TX PHASE	This bit indicates the external count pin phase.						
[0]	IX_PHASE	1 = A rising edge of external count pin will be counted.						
		0 = A falling edge of external count pin will be counted.						

nuvoTon

Timer External Interrupt Status Register (TEXISR)

Register	Offset	R/W	Description	Reset Value
TEXISR0	TMR_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TEXISR1	TMR_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			,	-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
	•	•		-			•
7	6	5	4	3	2	1	0
			-				TEXIF

Bits	Description	Y Control of the Cont
[31:1]	-	Reserved
		Timer External Interrupt Flag
	This bit indicates the external interrupt status of the timer.	
[0]	TEXIF	This bit is set by hardware when TEXEN (TEXCON[3]) is set "1", and the transition on the TEX pins associated with TEX_EDGE (TEXCON[2:1]) setting occurred. It is cleared by writing "1" to this bit.
	For example, while TEXEN = "1", and TEX_EDGE = 00, a high to zero transition on the TEX pin causes the TEXIF to be set.	

5.13 UART Interface Controller

The NuMicro Mini51™ series provides one channel of Universal Asynchronous Receiver/Transmitters (UART). UART performs Normal Speed UART, and support flow control function.

5.13.1 Overview

Mode

0

1

2

1

1

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports IrDA SIR function, and RS-485 mode functions. Each UART channel supports six types of interrupts, including transmitter FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line status interrupt (parity error or framing error or break interrupt) (INT_RLS), receiver buffer time-out interrupt (INT_TOUT), MODEM/Wake-up status interrupt (INT_MODEM), and Buffer error interrupt (INT_BUF_ERR). Interrupt number 12 (vector number is 28) supports UART interrupt. Refer to Nested Vectored Interrupt Controller chapter for System Interrupt Map.

The UART is built-in with a 16-byte transmitter FIFO (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU and the CPU can read the status of the UART at any time during the operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 4 error conditions (parity error, framing error, break interrupt and buffer error) probably occur while receiving data. The UART includes a programmable baud rate generator that is capable of dividing crystal clock input by divisors to produce the clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in Baud Rate Divider Register (UA_BAUD). The following table lists the equations in the various conditions and the UART baud rate setting table.

 DIV_X_EN
 DIV_X_ONE
 Divider X
 BRD
 Baud Rate Equation

 0
 0
 B
 A
 UART_CLK / [16 * (A+2)]

 1
 0
 B
 A
 UART_CLK / [(B+1) * (A+2)] , B must >= 8

Α

UART CLK / (A+2), A must >=3

Table 5.13-1 UART Baud Rate Setting Table

Table 5.13-2 UART	Raud Rate	Setting	Table
1 4015 3.13-2 07111	Daud Nate	Jettinia	I abic

Don't care

	System clock = 22.1184 MHz						
Baud rate	Mode0	Mode1	Mode2				
921600	Not Support	A=0, B=11	A=22				
460800	A=1	A=1, B=15 A=2, B=11	A=46				
230400	A=4	A=4, B=15 A=6, B=11	A=94				
115200	A=10	A=10, B=15	A=190				

nuvoTon

		A=14, B=11	
57600	A=22	A=22, B=15 A=30, B=11	A=382
38400	A=34	A=62, B=8 A=46, B=11 A=34, B=15	A=574
19200	A=70	A=126, B=8 A=94, B=11 A=70, B=15	A=1150
9600	A=142	A=254, B=8 A=190, B=11 A=142, B=15	A=2302
4800	A=286	A=510, B=8 A=382, B=11 A=286, B=15	A=4606

5.13.1.1 Auto-Flow Control

The UART controller supports auto-flow control function that uses two low-level signals, CTSn (clear-to-send) and RTSn (request-to-send), to control the flow of data transfer between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts RTSn to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR[19:16]), the RTSn is de-asserted. The UART sends data out when UART controller detects CTSn is asserted from external device. If a validly asserted CTSn is not detected the UART controller will not send data out.

5.13.1.2 IrDA Function Mode

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (user must set IrDA_EN (UA_FUN_SEL[1:0]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. Thus it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception. This delay feature must be implemented by software.

5.13.1.3 RS-485 Function Mode

Alternate function of UART controllers is RS-485 9 bit mode function, direction control provided by RTSn pin or can program GPIO (P0.1 for RTSn) to implement the function by software. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are the same as UART.

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

5.13.2 Features

- Full duplex, asynchronous communications
- Separates receive/transmit 16 bytes entry FIFO for data payloads
- Supports hardware auto flow control/flow control function (CTSn, RTSn) and programmable RTSn flow control trigger level
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports CTSn wake-up function
- Supports 7-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting UA_TOR[DLY] register
- Supports break error, frame error, parity error and receive/transmit buffer overflow detection function
- Fully programmable serial-interface characteristics
 - ◆ Programmable number of data bit, 5, 6, 7, 8 character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - ◆ Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports IrDA SIR function mode
 - ◆ Supports 3/16-bit duration for normal mode
- Supports RS-485 function mode
 - ◆ Supports RS-485 9-bit mode
 - Supports hardware or software RTSn control or software GPIO control to control transfer direction

nuvoton

5.13.3 Block Diagram

The UART clock control and block diagram are shown as follows.

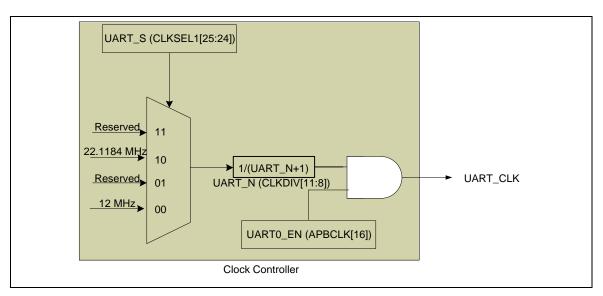


Figure 5.13-1 UART Clock Control Diagram

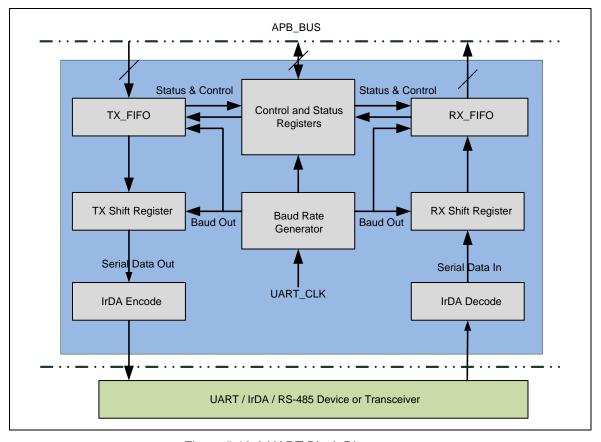


Figure 5.13-2 UART Block Diagram

TX FIFO

The transmitter is buffered with a 16-byte FIFO to reduce the number of interrupts presented to the CPU.

RX FIFO

The receiver is buffered with a 16-byte FIFO (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

TX Shift Register

This block is shifting the transmitting data out serial control block.

RX Shift Register

This block is shifting the receiving data in serial control block.

Baud Rate Generator

Dividing the external clock by the divisor to get the desired baud rate clock. Refer to baud rate equation.

IrDA Encode

This block is IrDA encode control block.

nuvoTon

IrDA Decode

This block is IrDA decode control block.

Control and Status Register

This field is a register set which includes the FIFO control registers (UA_FCR), FIFO status registers (UA_FSR), and line control register (UA_LCR) for transmitter and receiver. The time-out control register (UA_TOR) identifies the condition of time-out interrupt. This register set also includes the interrupt enable register (UA_IER) and interrupt status register (UA_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are six types of interrupts, including transmitter FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line status interrupt (parity error or framing error or break interrupt) (INT_RLS), time-out interrupt (INT_TOUT), MODEM/Wake-up status interrupt (INT_MODEM), and Buffer error interrupt (INT_BUF_ERR).

5.13.4 Functional Description

5.13.4.1 Auto-flow Control

The following diagram demonstrates the auto-flow control block diagram.

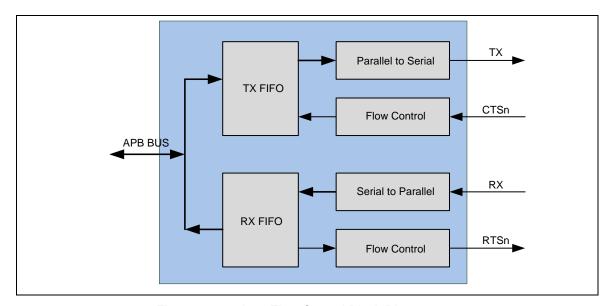


Figure 5.13-3 Auto Flow Control Block Diagram

5.13.4.2 IrDA Mode

The UART supports IrDA SIR (Serial Infrared) Transmit Encoder and Receive Decoder, and IrDA mode is selected by setting the IrDA_EN bit in UA_FUN_SEL register.

When in IrDA mode, the UA_BAUD[DIV_X_EN] register must be disabled.

Baud Rate = Clock / (16 * BRD), where BRD is Baud Rate Divider in UA_BAUD register.

The following diagram demonstrates the IrDA control block diagram.

nuvoTon

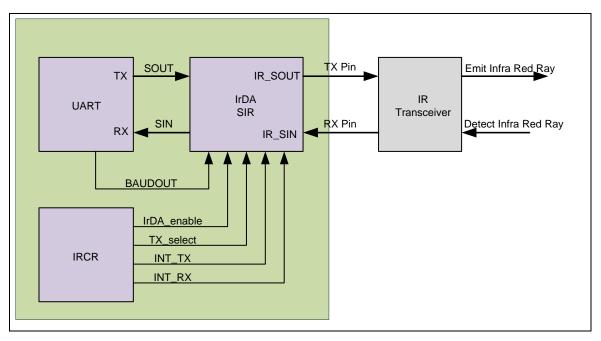


Figure 5.13-4 IrDA Block Diagram

IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies use of Return-to-Zero, Inverted (RZI) modulation scheme which represent logic "0" as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared Light Emitting Diode.

In Normal mode, the transmitted pulse width is specified as 3/16 period of baud rate.

IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the return-to-zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in the idle state. (Because of this, IRCR[6] should be set as "1" by default.)

A start bit is detected when the decoder input is LOW.

IrDA SIR Operation

The IrDA SIR Encoder/decoder provides functionality which converts between UART data stream and half duplex serial SIR interface. The following diagram is IrDA encoder/decoder waveform:

nuvoton

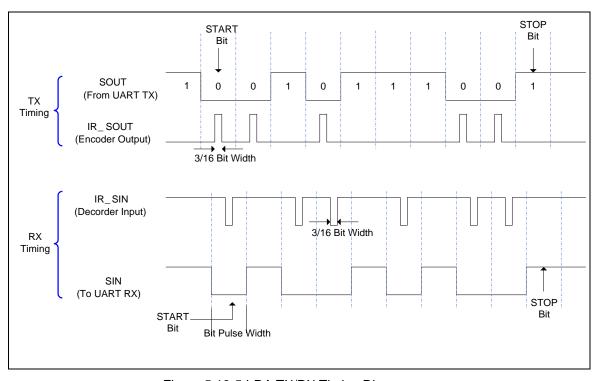


Figure 5.13-5 IrDA TX/RX Timing Diagram

5.13.4.3 RS-485 Function Mode

The UART support RS-485 9-bit mode function. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are the same as UART.

In RS-485 transfer mode, the controller can be configured as a RS-485 addressable slave mode and the RS-485 master transmitter will identify an address character by setting the parity (9th bit) to "1". For data characters, the parity is set to "0". Software can program UA_LCR register to control the 9-th bit. (When the PBE, EPE and SPE are set, the 9-th bit is transmitted "0"; when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1.) The Controller supports three operation modes - RS-485 Normal Operation mode (NMM), RS-485 Auto Address Detection Operation mode (AAD), and RS-485 Auto Direction Control Operation mode (AUD). Software can choose any of the operation modes by programming UA_ALT_CSR register, and drive the transfer delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting UA_TOR[DLY] register.

RS-485 Normal Operation Mode (NMM)

In RS-485 Normal Operation mode, first, software must decide whether data before the address byte detected will be stored in RX-FIFO or not. If software wants to ignore data before address byte is detected, the flow will set UART_FCR[RX_DIS] and then enable UA_ALT_CSR[RS-485_NMM], and the receiver will ignore the data until an address byte is detected (bit9 = "1") and the address byte data will be stored in the RX-FIFO. If software wants to receive any data before address byte detected, the flow is to disable UART_FCR[RX_DIS] and then enable UA ALT CSR[RS-485 NMM], and the receiver will receive the data. If an address byte is

nuvoTon

detected (bit9 = "1"), an interrupt will be generated to CPU and software can decide whether the receiver will be enabled or disabled to accept the following data byte by setting UA_ALT_CSR[RX_DIS]. If the receiver is enabled, all received byte data will be accepted and stored in the RX-FIFO; if the receiver is disabled, all received byte data will be ignored until the next address byte is detected. If software disables the receiver by setting UA_ALT_CSR[RX_DIS] register, when the next address byte is detected, the controller will clear the UA_ALT_CSR[RX_DIS] bit and the address byte data will be stored in the RX-FIFO.

RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation mode, the receiver will ignore data until an address byte is detected (bit9 = "1"), and the address byte data matches the UA_ALT_CSR[ADDR_MATCH] value. The address byte data will be stored in the RX-FIFO. All the received byte data will be accepted and stored in the RX-FIFO and the address byte data does not match the UA_ALT_CSR[ADDR_MATCH] value.

RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function. The RS-485 driver control is implemented using the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. The RTSn line is connected to the RS-485 driver enable such that setting the RTSn line to high (logic "1") enables the RS-485 driver. Setting the RTSn line to low (logic "0") will put the driver into the tri-state condition. User can set LEV_RTS in UA_MCR register to change the RTSn driving level.

Program sequence example:

- 1. Program FUN_SEL in UA_FUN_SEL to select RS-485 function.
- 2. Program the RX_DIS bit in UA_FCR register to determine whether to enable or disable RS-485 receiver.
- 3. Program the RS-485 NMM or RS-485 AAD mode.
- 4. If the RS-485_AAD mode is selected, the ADDR_MATCH is programmed for auto address match value.
- 5. Determine auto direction control by programming RS-485_AUD.

nuvoTon

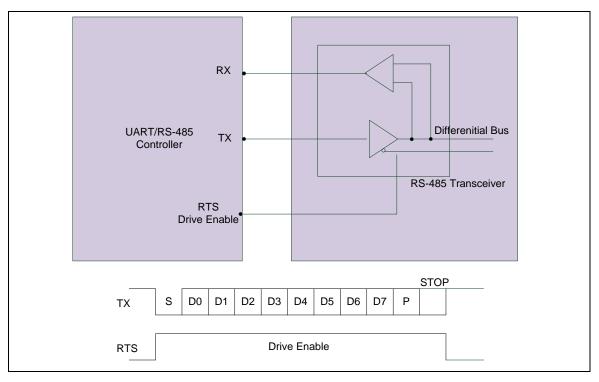


Figure 5.13-6 Structure of RS-485 Frame

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

5.13.5 Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
UART_BA = 0	x4005_0000	•		
UA_RBR	UART_BA+0x00	R	UART Receive Buffer Register	Undefined
UA_THR	UART_BA+0x00	W	UART Transmit Holding Register	Undefined
UA_IER	UART_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000
UA_FCR	UART_BA+0x08	R/W	UART FIFO Control Register	0x0000_0000
UA_LCR	UART_BA+0x0C	R/W	UART Line Control Register	0x0000_0000
UA_MCR	UART_BA+0x10	R/W	UART Modem Control Register	0x0000_0000
UA_MSR	UART_BA+0x14	R/W	UART Modem Status Register	0x0000_0000
UA_FSR	UART_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000
UA_ISR	UART_BA+0x1C	R/W	UART Interrupt Status Register	0x0000_0002
UA_TOR	UART_BA+0x20	R/W	UART Time-out Register	0x0000_0000
UA_BAUD	UART_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000
UA_IRCR	UART_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040
UA_ALT_CSR	UART_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_0000
UA_FUN_SEL	UART_BA+0x30	R/W	UART Function Select Register	0x0000_0000

5.13.6 Register Description

Receive Buffer Register (UA_RBR)

Register	Offset	R/W	Description	Reset Value
UA_RBR	UART_BA+0x00	R	UART Receive Buffer Register	Undefined

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	RBR						

Bits	Description		
[31:8]	-	Reserved	
[7:0]	RBR[7:0]	Receive Buffer Register (Read Only) By reading this register, the UART will return a 8-bit data received from RX pin (LSB first).	

nuvoTon

Transmit Holding Register (UA_THR)

Register	Offset	R/W	Description	Reset Value
UA_THR	UART_BA+0x00	W	UART Transmit Holding Register	Undefined

31	30	29	28	27	26	25	24
			,	-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	THR						

Bits	Description	
[31:8]	-	Reserved
[7:0]	TUDI7-01	Transmit Holding Register By writing to this register, the UART sends out an 8-bit data through the TX pin (LSB first).

nuvoTon

Interrupt Enable Register (UA_IER)

Register	Offset	R/W	Description	Reset Value
UA_IER	UART_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
	<u> </u>						
15	14	13	12	11	10	9	8
- 4		AUTO_CTS_EN	AUTO_RTS_ EN	TIME_OUT_EN		-	
7	6	5	4	3	2	1	0
-	WAKE_EN	BUF_ERR_IEN	RTO_IEN	MODEM_IEN	RLS_IEN	THRE_IEN	RDA_IEN

Bits	Description					
[31:14]	-	Reserved				
		CTS Auto Flow Control Enable				
		1 = CTSn auto flow control Enabled.				
[13]	AUTO_CTS_EN	0 = CTSn auto flow control Disabled.				
		Note : When CTSn auto-flow is enabled, the UART will send data to external device when CTSn input assert (UART will not send data to device until CTSn is asserted).				
		RTS Auto Flow Control Enable				
		1 = RTSn auto flow control Enabled.				
[12] AUTO_RTS	AUTO_RTS_EN	0 = RTSn auto flow control Disabled.				
		Note : When RTSn auto-flow is enabled, if the number of bytes in the RX FIFO equals the UA_FCR [RTS_TRI_LEV], the UART will de-assert RTSn signal.				
		Time-out Counter Enable				
[11]	TIME_OUT_EN	1 = Time-out counter Enabled.				
		0 = Time-out counter Disabled.				
[10:7]	-	Reserved				
		Wake-up CPU Function Enable				
[6]	WAKE_EN	1 = Wake-up function Enabled; when the system is in Deep Sleep mode, an external CTSn change will wake up CPU from Deep Sleep mode.				
		0 = UART wake-up CPU function Disabled.				
		Buffer Error Interrupt Enable				
[5]	BUF_ERR_IEN	1 = INT_BUF_ERR Enabled.				
		0 = INT_BUF_ERR Masked off.				

nuvoTon

Bits	Description			
		RX Time-out Interrupt Enable		
[4]	RTO_IEN	1 = INT_TOUT Enabled.		
		0 = INT_TOUT Masked off.		
		Modem Status Interrupt Enable		
[3]	MODEM_IEN	1 = INT_MODEM Enabled.		
		0 = INT_MODEM Masked off.		
		Receive Line Status Interrupt Enable		
[2]	RLS_IEN	1 = INT_RLS Enabled.		
		0 = INT_RLS Masked off.		
		Transmit Holding Register Empty Interrupt Enable		
[1]	THRE_IEN	1 = INT_THRE Enabled.		
		0 = INT_THRE Masked off.		
		Receive Data Available Interrupt Enable		
[0]	RDA_IEN	1 = INT_RDA Enabled.		
		0 = INT_RDA Masked off.		

nuvoTon

FIFO Control Register (UA_FCR)

Register	Offset	R/W	Description	Reset Value
UA_FCR	UART_BA+0x08	R/W	UART FIFO Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
		•		RTS_TRI_LEV			
15	14	13	12	11	10	9	8
			-				RX_DIS
7	6	5	4	3	2	1	0
	RFITL				TFR	RFR	-

Bits	Description				
[31:20]	-	Reserved			
		RTSn Trigger Level (for Auto-flow Control Use)			
		RTS_TRI_LEV	Trigger Level (Bytes)		
		0000	01		
[40.46]	RTS_TRI_LEV	0001	04		
[19:16]	[3:0]	0010	08		
		0011	14		
		Others	14		
		Note: This field is used for auto RTSn flow control.			
[15:9]	-	Reserved			
		Receiver DisableRegister			
		The receiver is disabled or not (setting "1" to disable the receiver).			
[8]	RX DIS	1 = Receiver Disabled.			
,	_	0 = Receiver Enabled.			
		Note : This field is used for RS-485 Normal Multi-drop mode. It shou programmed before UA_ALT_CSR[RS-485_NMM] is programmed.			
		RX FIFO Interrupt (IN	T_RDA) Trigger Level		
[7:4]	RFITL[3:0]		oytes in the received FIFO equals to the RFITL, the RDA_IF will a_IEN] is enabled, an interrupt will be generated).		
,	[0.0]	RFITL	INTR_RDA Trigger Level (Bytes)		
		0000	01		

nuvoTon

Bits	Description	n		
		0001	04	
		0010	08	
		0011	14	
		Others	14	
[3]	-	Reserved		
[2]	TFR	TX Field Software Reset When TX_RST is set, all the byte in the transmit FIFO and TX internal state machine are cleared. 1 = The TX internal state machine and pointers reset. 0 = No effect. Note: This bit will auto clear needs at least 3 UART engine clock cycles.		
[1]	RFR	RX Field Software Reset When RX_RST is set, all the byte in the receiver FIFO and RX internal state machine are cleared. 1 = The RX internal state machine and pointers reset. 0 = No effect. Note: This bit will auto clear needs at least 3 UART engine clock cycles.		
[0]	-	Reserved		

nuvoTon

Line Control Register (UA_LCR)

Register	Offset	R/W	Description	Reset Value
UA_LCR	UART_BA+0x0C	R/W	UART Line Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
-	ВСВ	SPE	EPE	PBE	NSB	W	LS

Bits	Description					
[31:7]	-	Reserved				
		Break Control Bit				
[6]	ВСВ	When this bit is set to logic "1", the serial data output (TX) is forced to the Spacing State (logic "0"). This bit acts only on TX and has no effect on the transmitter logic.				
		Stick Parity Enable				
[5]	SPE	1 = When bits PBE, EPE and SPE are set, the parity bit is transmitted and checked as cleared. When PBE and SPE are set and EPE is cleared, the parity bit is transmitted and checked as set.				
		0 = Stick parity Disabled.				
		Even Parity Enable				
[4]	EPE	1 = Even number of logic "1" transmitted or checked in the data word and parity bits.				
[4]	L. L	0 = Odd number of logic "1" transmitted or checked in the data word and parity bits.				
		Note: This bit has effect only when bit 3 (parity bit enable) is set.				
		Parity Bit Enable				
[3]	PBE	1 = Parity bit generated or checked between the "last data word bit" and "stop bit" of the serial data.				
		0 = Parity bit not generated (transmit data) or checked (receive data) during transfer.				
		Number of "STOP bit"				
[2]	NSB	1 = One and a half "STOP bit" generated in the transmitted data when 5-bit word length is selected; Two "STOP bit" is generated when 6, 7 and 8bit word length is selected.				
		0 = One "STOP bit" generated in the transmitted data.				
[1:0]	WLS[1:0]	Word Length Selection				
[1.0]	WL3[1.0]	WLS Character length				

Bits	Description					
		00	5 bits			
		01	6 bits			
		10	7 bits			
		11	8 bits			

MODEM Control Register (UA_MCR)

Register	Offset	R/W	Description	Reset Value
UA_MCR	UART_BA+0x10	R/W	UART Modem Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				•			
15	14	13	12	11	10	9	8
		RTS_ST		-		LEV_RTS	-
7	6	5	4	3	2	1	0
-					RTSn	-	

Bits	Description			
[31:14]	-	Reserved		
[13]	RTS_ST	RTSn Pin State (Read Only) This bit is the output pin status of RTSn.		
[12:10]	-	Reserved		
[9]	LEV_RTS	RTSn Trigger Level This bit can change the RTSn trigger level. 1 = High level triggered. 0 = Low level triggered. UART Mode : MCR[LEV_RTS] = "1" MCR [RTS] MCR [RTS_ST] UART Mode : MCR[LEV_RTS] = "0" MCR [RTS] MCR [RTS] MCR [RTS]		

nuvoTon

Bits	Description	iption					
		RS-485 Mode : MCR[LE	RS-485 Mode : MCR[LEV_RTS] = "0"				
		TX Start [D0 D1 D2 D3 D4	D5 D6 D7			
		MCR [RTS_ST]					
		RS-485 Mode : MCR[LEV_RTS] = "1" TX Start D0 D1 D2 D3 D4 D5 D6 D7					
		MCR [RTS_ST]					
[8:2]	-	Reserved	Reserved				
		RTSn (Request-to-Send) Signal					
[1]		LEV_RTS	RTSn	RTS_ST			
	RTSn	0 (Low Level Trigger)	0	1			
	Kion	0 (Low Level Trigger)	1	0			
		1 (High Level Trigger)	0	0			
		1 (High Level Trigger)	1	1			
[0]	-	Reserved					

nuvoTon

Modem Status Register (UA_MSR)

Register	Offset	R/W	Description	Reset Value
UA_MSR	UART_BA+0x14	R/W	UART Modem Status Register	0x0000_0000

31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
				•			
15	14	13	12	11	10	9	8
			-				LEV_CTS
7	6	5	4	3	2	1	0
	-		CTS_ST		-		DCTSF

Bits	Description	
[31:9]	-	Reserved
[8]	LEV_CTS	CTSn Trigger Level This bit can change the CTSn trigger level. 1 = High level triggered. 0 = Low level triggered.
[7:5]	-	Reserved
[4]	CTS_ST	CTSn Pin Status (Read Only) This bit is the pin status of CTSn.
[3:1]	-	Reserved
[0]	DCTSF	Detect CTSn State Change Flag (Read Only) This bit is set whenever CTSn input has change state, and it will generate Modem interrupt to CPU when UA_IER[MODEM_IEN]. Note: This bit is read only but can be cleared by writing "1" to it.

nuvoTon

FIFO Status Register (UA_FSR)

Register	Offset	R/W	Description	Reset Value
UA_FSR	UART_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000

31	30	29	28	27	26	25	24
	-		TE_FLAG		-		TX_OVER_IF
23	22	21	20	19	18	17	16
TX_FULL	TX_EMPTY			TX_PC	INTER		
15	14	13	12	11	10	9	8
RX_FULL	RX_EMPTY		RX_POINTER				
7	6	5	4	3	2	1	0
-	BIF	FEF	PEF	RS-485_ ADD_DETF		-	RX_OVER_IF

Bits	Description	
[31:29]	-	Reserved
		Transmitter Empty Flag (Read Only)
[28]	TE_FLAG	Bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the last byte has been transmitted.
		Bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed.
[27:25]	-	Reserved
		TX Overflow Error Interrupt Flag (Read Only)
[24]	TX_OVER_IF	If TX FIFO (UA_THR) is full, an additional write to UA_THR will cause this bit to logic "1".
		Note: This bit is read only, but can be cleared by writing "1" to it.
		Transmitter FIFO Full (Read Only)
[23]	TX_FULL	This bit indicates TX FIFO full or not.
		This bit is set when TX_POINTER is equal to 16, otherwise is cleared by hardware.
		Transmitter FIFO Empty (Read Only)
1001	TV 5110TV	This bit indicates whether TX FIFO is empty or not.
[22]	TX_EMPTY	When the last byte of TX FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX FIFO not empty).
		TX FIFO Pointer (Read Only)
[21:16] TX_POINTER [5:0]		This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into UA_THR, TX_POINTER increases one. When one byte of TX FIFO is transferred to Transmitter Shift Register, TX_POINTER decreases one.

Bits	Description						
		Receiver FIFO Full (Read Only)					
[15]	RX_FULL	This bit initiates RX FIFO full or not.					
		This bit is set when RX_POINTER is equal to 16; otherwise, it is cleared by hardware.					
		Receiver FIFO Empty (Read Only)					
[14]	RX_EMPTY	This bit initiates RX FIFO empty (or not).					
[]		When the last byte of RX FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.					
		RX FIFO Pointer (Read Only)					
[13:8]	RX_POINTER [5:0]	This field indicates the RX FIFO Buffer Pointer. When the UART receives one byte from an external device, RX_POINTER increases one. When one byte of RX FIFO is					
		read by CPU, RX_POINTER decreases one.					
[7]	-	Reserved					
		Break Interrupt Flag (Read Only)					
[6]	BIF	This bit is set to a logic "1" when the received data input(RX) is held in the "spacing state" (logic 0) for the time longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and is reset when the CPU writes "1" to this bit.					
		Note: This bit is read only, but can be cleared by writing "1" to it.					
		Framing Error Flag (Read Only)					
[5]	FEF	This bit is set to logic "1" when the received character does not have a valid "stop (that is, the stop bit follows the last data bit or parity bit is detected as a logic "0"), a is reset when the CPU writes "1" to this bit.					
		Note: This bit is read only, but can be cleared by writing "1" to it.					
		Parity Error Flag (Read Only)					
[4]	PEF	This bit is set to logic "1" when the received character does not have a valid "parity bit", and is reset when the CPU writes "1" to this bit.					
		Note: This bit is read only, but can be cleared by writing "1" to it.					
		RS-485 Address Byte Detection Flag (Read Only)					
[3]	RS-485_	This bit is set to logic "1" and set UA_ALT_CSR[RS-485_ADD_EN] when in RS-485 mode the receiver detects the address byte received address byte character (bit9 = '1') bit", and it is reset when the CPU writes "1" to this bit.					
	ADD_DETF	Note: This field is used for RS-485 function mode.					
		Note: This bit is read only, but can be cleared by writing "1" to it.					
[2:1]	-	Reserved					
		RX Overflow Error IF (Read Only)					
		This bit is set when RX FIFO overflows.					
[0]	RX_OVER_IF	If the number of bytes of received data is greater than RX_FIFO (UA_RBR) size, 16 bytes of UART, this bit will be set.					
		Note: This bit is read only, but can be cleared by writing "1" to it.					

nuvoTon

Interrupt Status Control Register (UA_ISR)

Register	Offset	R/W	Description	Reset Value
UA_ISR	UART_BA+0x1C	R/W	UART Interrupt Status Register	0x0000_0002

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
	-	BUF_ERR_INT	TOUT_INT	MODEM_INT	RLS_INT	THRE_INT	RDA_INT
7	6	5	4	3	2	1	0
	-	BUF_ERR_IF	TOUT_IF	MODEM_IF	RLS_IF	THRE_IF	RDA_IF

Bits	Description				
[31:14]	-	Reserved			
[13]	BUF_ERR_INT	Buffer Error Interrupt Indicator to Interrupt Controller (Read Only)			
[13]	BOI _ERR_INI	An AND output with inputs of BUF_ERR_IEN and BUF_ERR_IF.			
		Time-out Interrupt Indicator to Interrupt Controller (Read Only)			
[40]	TOUT INT	This bit is set if TOUT_IEN and TOUT_IF are both set to "1".			
[12]	1001_111	1 = The Tout interrupt generated.			
		0 = No Tout interrupt generated.			
		MODEM Status Interrupt Indicator to Interrupt Controller (Read Only)			
[11]	MODEM INT	This bit is set if MODEM_IEN and MODEM_IF are both set to "1".			
		1 = The Modem interrupt generated.			
		0 = No Modem interrupt generated.			
		Receive Line Status Interrupt Indicator to Interrupt Controller (Read Only)			
[10]	RLS INT	This bit is set if RLS_IEN and RLS_IF are both set to "1".			
[10]	INEO_INT	1 = The RLS interrupt generated.			
		0 = No RLS interrupt generated.			
		Transmit Holding Register Empty Interrupt Indicator to Interrupt Controller (Read Only)			
[9]	THRE_INT	This bit is set if THRE_IEN and THRE_IF are both set to "1".			
		1 = The THRE interrupt generated.			
		0 = No THRE interrupt generated.			
		Receive Data Available Interrupt Indicator to Interrupt Controller (Read Only)			
[8]	RDA_INT	This bit is set if RDA_IEN and RDA_IF are both set to "1".			
		1 = The RDA interrupt generated.			

Description	Description						
	0 = No RDA interrupt generated.						
-	Reserved						
	Buffer Error Interrupt Flag (Read Only)						
BUF_ERR_IF	This bit is set when the TX or RX FIFO overflows or Break Interrupt Flag or Parity Error Flag or Frame Error Flag (TX_OVER_IF or RX_OVER_IF or BIF or PEF or FEF) is set. When BUF_ERR_IF is set, the transfer is not correct. If UA_IER [BUF_ERR_IEN] is enabled, the buffer error interrupt will be generated.						
	Time-out Interrupt Flag (Read Only)						
TOUT_IF	This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC. If UA_IER[TOUT_IEN] is enabled, the Tout interrupt will be generated.						
	Note: This bit is read only and user can read UA_RBR (RX is in active) to clear it.						
	MODEM Interrupt Flag (Read Only)						
MODEM_IF	This bit is set when the CTSn pin has state change (DCTSF = "1"). If UA_IER [MODEM_IEN] is enabled, the Modem interrupt will be generated.						
	Note : This bit is read only and reset to "0" when bit DCTSF is cleared by a write "1" on DCTSF.						
	Receive Line Interrupt Flag (Read Only)						
DI C IF	This bit is set when the RX receive data have parity error, framing error or break error (at least one of 3 bits, BIF, FEF and PEF, is set). If UA_IER[RLS_IEN] is enabled, the RLS interrupt will be generated.						
KLS_IF	Note : When in RS-485 function mode, this field include "receiver detect any address byte received address byte character (bit9 = "1") bit".						
	Note : This bit is read only and reset to "0" when all bits of BIF, FEF and PEF are cleared.						
	Transmit Holding Register Empty Interrupt Flag (Read Only)						
THRE_IF	This bit is set when the last data of TX FIFO is transferred to Transmitter Shift Register. If UA_IER [THRE_IEN] is enabled, the THRE interrupt will be generated.						
	Note : This bit is read only and it will be cleared when writing data into THR (TX FIFO not empty).						
	Receive Data Available Interrupt Flag (Read Only)						
RDA_IF	When the number of bytes in the RX FIFO equals the RFITL then the RDA_IF will be set. If UA_IER[RDA_IEN] is enabled, the RDA interrupt will be generated.						
	Note : This bit is read only and it will be cleared when the number of unread bytes of RX FIFO drops below the threshold level (RFITL).						
	BUF_ERR_IF TOUT_IF MODEM_IF THRE_IF						

nuvoTon

Table 5.13-3 UART Interrupt Sources and Flags Table In Software Mode

UART Interrupt Source		Interrupt Indicator to Interrupt Controller	Interrupt Flag	Flag Clear
Buffer Error Interrupt (INT_BUF_ERR)	BUF_ERR_IEN	BUF_ERR_INT	(TX_OVER_IF or RX_OVER_IF or BIF or	Write '1' to TX_OVER_IF/ RX_OVER_IF/ BIF/PEF/FEF
RX Time-out Interrupt (INT_TOUT)	RTO_IEN	TOUT_INT	TOUT_IF	Read UA_RBR
Modem Status Interrupt (INT_MODEM)	MODEM_IEN	MODEM_INT	MODEM_IF = (DCTSF)	Write "1" to DCTSF
Receive Line Status Interrupt (INT_RLS)	RLS_IEN	RLS_INT	RLS_IF = (BIF or FEF or PEF or RS-485_ ADD_DETF)	Write "1" to BIF/FEF/PEF/ RS-485_ ADD_DETF
Transmit Holding Register Empty Interrupt (INT_THRE)	THRE_IEN	THRE_INT	THRE_IF	Write UA_THR
Receive Data Available Interrupt (INT_RDA)	RDA_IEN	RDA_INT	RDA_IF	Read UA_RBR

nuvoTon

Time-out Register (UA_TOR)

Register	Offset	R/W	Description	Reset Value
UA_TOR	UART_BA+0x20	R/W	UART Time-out Register	0x0000_0000

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
				-					
15	14	13	12	11	10	9	8		
	DLY								
7	6	5	4	3	2	1	0		
	TOIC								

Bits	Description	
[31:16]	-	Reserved
[15:8]	DLY[7:0]	TX Delay Time Value This field is used to program the transfer delay time between the last stop bit and next start bit. TX Start Byte (i) Stop DLY
[7:0]	TOIC[7:0]	Time-out Interrupt Comparator The time-out counter resets and starts counting (the counting clock = baud rate) whenever the RX FIFO receives a new data word. Once the content of time-out counter (TOUT_CNT) is equal to that of time-out interrupt comparator (TOIC), a receiver time-out interrupt (INT_TOUT) is generated if UA_IER[RTO_IEN]. A new incoming data word or RX FIFO empty clears INT_TOUT.

nuvoTon

Baud Rate Divider Register (UA_BAUD)

Register	Offset	R/W	Description	Reset Value
UA_BAUD	UART_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000

31	30	29	28	27	26	25	24	
	-	DIV_X_EN	DIV_X_ONE	DIVIDER_X				
23	22	21	20	19	18	17	16	
				-				
15	14	13	12	11	10	9	8	
	BRD							
7	6	5	4	3	2	1	0	
BRD								

Bits	Description	
[31:30]	-	Reserved
		Divider X Enable
		The BRD = baud rate divider, and the baud rate equation is:Baud Rate = Clock / $[M * (BRD + 2)]$, The default value of M is 16.
[29]	DIV_X_EN	1 = The divider X Enabled (the equation of M = X+1, but DIVIDER_X [27:24] must $>= 8$).
		0 = The divider X Disabled (the equation of M = 16).
		Refer to the table below for more information.
		Note: When in IrDA mode, this bit must be disabled.
		Divider X Equal 1
		1 = Divider M = "1" (the equation of M = "1", but BRD [15:0] must >= 3).
[28]	DIV_X_ONE	0 = Divider M = "any value" (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8).
		Refer to the table below for more information.
		Divider X
[27:24]	DIVIDER_X[3:0]	The baud rate divider M = X+1.
[23:16]	-	Reserved
[45.0]	DDD[45-0]	Baud Rate Divider
[15:0]	BRD[15:0]	The field indicates the baud rate divider.

Table 5.13-4 UART Baud Rate Setting Table

Mode	DIV_X_EN	DIV_X_ONE	Divider X	BRD Baud Rate Equation	
0	0	0	В	Α	UART_CLK / [16 * (A+2)]
1	1	0	В	Α	UART_CLK / [(B+1) * (A+2)] , B must >= 8
2	1	1	Don't care	Α	UART_CLK / (A+2), A must >=3

nuvoTon

IrDA Control Register (IRCR)

Register	Offset	R/W	Description	Reset Value
UA_IRCR	UART_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040

31	30	29	28	27	26	25	24
			,	-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
-	INV_RX	INV_TX		-		TX_SELECT	-

Bits	Description	Description				
[31:7]	-	Reserved				
		INV_RX				
[6]	INV_RX	1 = RX input signal inversed.				
		0 = No inversion.				
		INV_TX				
[5]	INV_TX	1 = TX output signal inversed.				
		0 = No inversion.				
[4:2]	-	Reserved				
		TX_SELECT				
		1 = IrDA transmitter Enabled.				
[1]	TX_SELECT	0 = IrDA receiver Enabled.				
		Note : When in IrDA mode, the UA_BAUD[DIV_X_EN] register must be disabled (the baud equation must be Clock / $16 * (BRD)$.				
[0]	-	Reserved				

nuvoTon

UART Alternate Control/Status Register (UA_ALT_CSR)

Register	Offset	R/W	Description	Reset Value
UA_ALT_CSR	UART_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ADDR_MATCH									
23	22	21	20	19	18	17	16			
				=						
15	14	13	12	11	10	9	8			
RS485_ADD_ EN			-		RS485_AUD	RS485_AAD	RS485_NMM			
7	6	5	4	3	2	1	0			

Bits	Description				
	ADDR MATCH	Address Match Value Register			
[31:24]	[7:0]	This field contains the RS-485 address match values.			
	[7.0]	Note: This field is used for Auto RS-485 Address Detection mode.			
[23:16]	-	Reserved			
		RS-485 Address Detection Enable			
		This bit is use to enable RS-485 Address Detection mode.			
[15]	RS485_ADD_E N	1 = Address Detection mode Enabled.			
		0 = Address Detection mode Disabled.			
		Note: This field is used for any RS-485 Operation mode.			
[14:11]	-	Reserved			
		RS-485 Auto Direction Mode (AUD)			
[10]	RS485 AUD	1 = RS-485 Auto Direction Operation mode (AUD) Enabled.			
[10]	NO-00_A0D	0 = RS-485 Auto Direction Operation mode (AUD) Disabled.			
		Note : It is able to be active in RS-485_AAD or RS-485_NMM Operation mode.			
		RS-485 Auto Address Detection Operation Mode (AAD)			
[9]	RS485 AAD	1 = RS-485 Auto Address Detection Operation mode (AAD) Enabled.			
ازعا	10403_AAD	0 = RS-485 Auto Address Detection Operation mode (AAD) Disabled.			
		Note: It is unable to be active in RS-485_NMM Operation mode.			
		RS-485 Normal Multi-drop Operation Mode (NMM)			
[8]	RS485 NMM	1 = RS-485 Normal Multi-drop Operation mode (NMM) Enabled.			
[0]	TOTOS_INIMI	0 = RS-485 Normal Multi-drop Operation mode (NMM) Disabled.			
		Note: It is unable to be active in RS-485_AAD Operation mode.			

Bits	Description	Description			
[7:0]	-	Reserved			

nuvoTon

UART Function Select Register (UA_FUN_SEL)

Register	Offset	R/W	Description	Reset Value
UA_FUN_SEL	UART_BA+0x30	R/W	UART Function Select Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
			-			FUN _.	SEL

Bits	Description	Description				
[31:2]	-	Reserved				
		Function Selec	Function Select Enable			
		FUN_SEL	Description			
[1:0]	FUN_SEL[1:0]	00	UART Function			
[1.0]	1 014_022[1.0]	01	Reserved.			
		10	Enable IrDA Function			
		11	Enable RS-485 Function			

nuvoTon

5.14 Watchdog Timer

5.14.1 Overview

The purpose of Watchdog Timer (WDT) is to perform a system reset after software runs into a problem. This prevents system from hanging for an infinite period of time. Besides, the Watchdog Timer supports another function to wake up CPU from Power-down mode. The Watchdog timer includes an 18-bit free running counter with programmable time-out intervals. The following table shows the Watchdog time-out interval selection and the following figure shows the timing of Watchdog interrupt signal and reset signal.

Setting WTE (WTCR[7]) will enable the watchdog timer and the WDT counter starts counting up. When the counter reaches the selected time-out interval, the Watchdog timer interrupt flag WTIF will be set immediately to request a WDT interrupt if the Watchdog timer interrupt enable bit WTIE is set; in the meanwhile, a specified delay time (1024 * TWDT) follows the time-out event. User must set WTR (WTCR[0]) (Watchdog Timer Reset) high to reset the 18-bit WDT counter to avoid CPU from Watchdog Timer Reset before the delay time expires. The WTR bit is cleared automatically by hardware after the WDT counter is reset. There are eight time-out intervals with specific delay time which are selected by Watchdog timer interval select bits WTIS (WTCR[10:8]). If the WDT counter has not been cleared after the specific delay time expires, the Watchdog timer will set Watchdog Timer Reset Flag (WTRF) high and reset CPU. This reset will last 63 WDT clocks (TRST) and then CPU restarts executing program from reset vector (0x0000_0000). WTRF will not be cleared by Watchdog reset. User may poll WTRF through software to recognize the reset source. WDT also provides the wake-up function. When chip is powered down and the Watchdog Timer Wake-up Function Enable bit (WTCR[4]) is set, if the WDT counter has not been cleared after the specific delay time expires, the chip will be waked up from Power-down state.

WTIS	WTR Timeout Interval T _{TIS}	Interrupt Period T _{INT}	WTR Timeout Interval (WDT_CLK = 10 KHz) T _{TIS}	WTR Reset Interval (WDT_CLK = 10 KHz) T _{WTR}
000	24 * T _{WDT}	1024 * T _{WDT}	1.6 ms	104 ms
001	2 ⁶ * T _{WDT}	1024 * T _{WDT}	6.4 ms	108.8 ms
010	28 * T _{WDT}	1024 * T _{WDT}	25.6 ms	128 ms
011	2 ¹⁰ * T _{WDT}	1024 * T _{WDT}	102.4 ms	204.8 ms
100	2 ¹² * T _{WDT}	1024 * T _{WDT}	407 ms	512 ms
101	2 ¹⁴ * T _{WDT}	1024 * T _{WDT}	1.638 s	1.741 s
110	2 ¹⁶ * T _{WDT}	1024 * T _{WDT}	6.553 s	6.6.656 s
111	2 ¹⁸ * T _{WDT}	1024 * T _{WDT}	26.214 s	26.316 s

Table 5.14-1 Watchdog Time-out Interval Selection

nuvoton

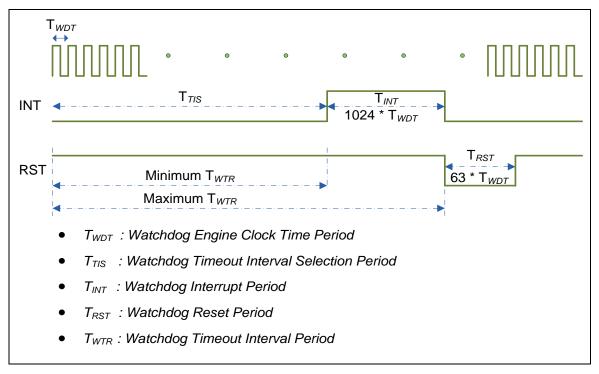


Figure 5.14-1 Timing of Interrupt and Reset Signal

5.14.2 Features

- 18-bit free running counter to avoid CPU from Watchdog Timer Reset before the delay time expires.
- Selectable time-out interval (24 ~ 218) and the time-out interval is 104 ms ~ 26.3168 s (if WDT_CLK = 10 KHz).
- Reset period = (1 / 10 KHz) * 63, if WDT_CLK = 10 KHz.

5.14.3 Block Diagram

The Watchdog Timer clock control and block diagram are shown as follows.

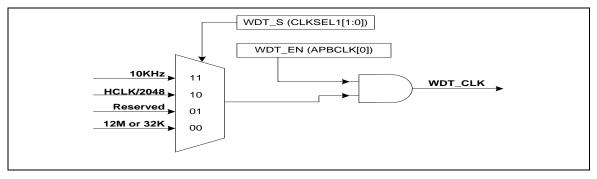


Figure 5.14-2 Watchdog Timer Clock Control

nuvoTon

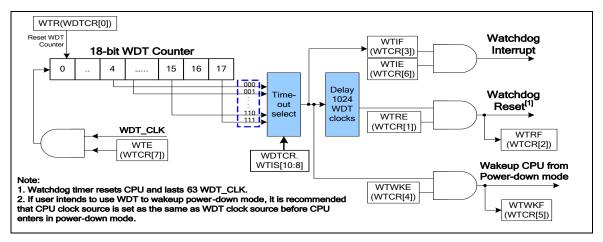


Figure 5.14-3 Watchdog Timer Block Diagram

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUA

NuMicroTM Mini51 Technical Reference Manual

5.14.4 Watchdog Timer Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
WDT_BA = 0x4000_4000				
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

nuvoton

5.14.5 Register Description

Watchdog Timer Control Register (WTCR)

Register	Offset	R/W	Description	Reset Value
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

Note: All bits in this register are write-protected. To program it, an open lock sequence is needed, by sequentially writing 0x59, 0x16, and 0x88 to register RegLockAddr at address GCR_BA + 0x100.

31	30	29	28	27	26	25	24
DBGACK_WD T				-			
23	22	21	20	19	18	17	16
			-	ı			
15	14	13	12	11	10	9	8
		-				WTIS	
7	6	5	4	3	2	1	0
WTE	WTIE	WTWKF	WTWKE	WTIF	WTRF	WTRE	WTR

Bits	Description	Description		
		ICE Debug Mode Acknowledge Disable (write-protection bit)		
		1 = ICE Debug mode acknowledgement Disabled.		
[31]	DBGACK_WDT	The Watchdog Timer counter will keep on no matter ICE Debug mode acknowledged or not.		
		0 = ICE Debug mode acknowledgement affects Watchdog Timer counting.		
		The Watchdog Timer counter will be held while ICE Debug mode is acknowledged.		
[30:11]	-	Reserved		

Bits	Description							
		Watchdog Timer Interval Selection						
			These three bits select the time-out interval for the Watchdog timer.					
		WTIS	Time-out Interval Selection	Interrupt Period	WTR Time-out Interval (WDT_CLK=10 kHz)			
		000	24 * TWDT	(24 + 1024) * TWDT	1.6 ms ~ 104 ms			
		001	26 * TWDT	(26 + 1024) * TWDT	6.4 ms ~ 108.8 ms			
		010	28 * TWDT	(28 + 1024) * TWDT	25.6 ms ~ 128 ms			
[10:8]	WTIS[2:0]	011	210 * TWDT	(210 + 1024) * TWDT	102.4 ms ~ 204.8 ms			
		100	212 * TWDT	(212 + 1024) * TWDT	409.6 ms ~ 512 ms			
		101	214 * TWDT	(214 + 1024) * TWDT	1.6384 s ~ 1.7408 s			
		110	216 * TWDT	(216 + 1024) * TWDT	6.5536 s ~ 6.656 s			
		111	218 * TWDT	(218 + 1024) * TWDT	26.2144 s ~ 26.3168 s			
		Watchdoo	Watchdog Timer Enable					
[7]	WTE	1 = Watch	1 = Watchdog timer Enabled.					
		0 = Watch	0 = Watchdog timer Disabled (this action will reset the internal counter).					
		Watchdoo	Watchdog Timer Interrupt Enable					
[6]	WTIE	1 = Watch	1 = Watchdog timer interrupt Enabled.					
		0 = Watch	0 = Watchdog timer interrupt Disabled.					
		Watchdog	g Timer Wake-up F	Flag				
[5]	WTWKF	If Watchdo high. It mu	If Watchdog timer causes CPU wakes up from Power-down mode, this bit will be set to high. It must be cleared by software with a write "1" to this bit.					
		1 = CPU V	1 = CPU Wake-up from sleep or Power-down mode by Watchdog time-out.					
		0 = Watch	0 = Watchdog timer does not cause CPU wake up.					
		Watchdog	Watchdog Timer Wake-up Function Enable bit					
[4]	WTWKE		1 = Wake-up function Enabled so that Watchdog timer time-out can wake-up CPU from Power-down mode.					
		0 = Watch	0 = Watchdog timer Wake-up CPU function Disabled.					
		Watchdog	Timer Interrupt F	Flag				
			chdog timer interrup timer interrupt has		re will set this bit to indica	ate that the		
[3]	WTIF	1 = Watch	dog timer interrupt	occurs.				
		0 = Watch	dog timer interrupt	does not occur.				
		Note: This	s bit is cleared by w	riting "1" to this bit.				

nuvoTon

Bits	Description	
		Watchdog Timer Reset Flag
[2]	WTRF	When the Watchdog timer initiates a reset, the hardware will set this bit. This flag can be read by software to determine the source of reset. Software is responsible to clear it manually by writing "1" to it. If WTRE is disabled, then the Watchdog timer has no effect on this bit.
		1 = Watchdog Timer Reset occurs.
		0 = Watchdog Timer Reset does not occur.
		Note: This bit is cleared by writing "1" to this bit.
		Watchdog Timer Reset Enable
[4]	WTRE	Setting this bit will enable the Watchdog Timer Reset function.
[1]	WIKE	1 = Watchdog Timer Reset function Enabled.
		0 = Watchdog Timer Reset function Disabled.
		Clear Watchdog Timer
		Set this bit will clear the Watchdog timer.
[0]	WTR	1 = The contents of the Watchdog Timer Reset.
		0 = No effect.
		Note: This bit will be automatically cleared after a few clock cycles.

6 ARM[®] CORTEX™-M0 CORE

6.1 Overview

The Cortex[™]-M0 processor is a configurable, multistage, 32-bit RISC processor which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processors. The profile supports two modes - Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset and can be entered as a result of an exception return. Figure 6.1-1 shows the functional controller of the processor.

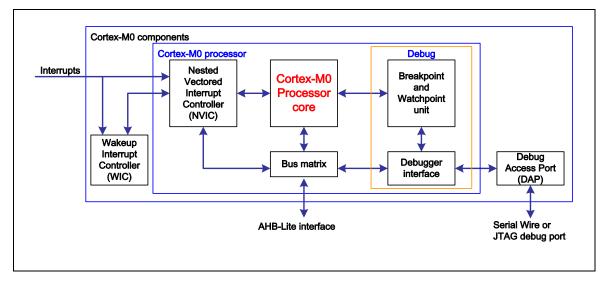


Figure 6.1-1 Functional Block Diagram

nuvoTon

6.2 Features

- A low gate count processor
 - ◆ ARMv6-M Thumb[®] instruction set
 - ◆ Thumb-2 technology
 - ◆ ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - Supports little-endian data accesses
 - Deterministic, fixed-latency, interrupt handling
 - ◆ Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model:
 - ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - ◆ Low power Idle mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature

NVIC

- ♦ 32 external interrupt inputs, each with four levels of priority
- Dedicated Non-Maskable Interrupt (NMI) input
- Supports both level-sensitive and pulse-sensitive interrupt lines
- ◆ Wake-up Interrupt Controller (WIC) with ultra-low power Idle mode support
- Debug support
 - Four hardware breakpoints
 - Two watchpoints
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling
 - Single step and vector catch capabilities
- Bus interfaces
 - ◆ Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
 - Single 32-bit slave port that supports the Debug Access Port DAP (DAP)

6.3 System Timer (SysTick)

The Cortex-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock edge, and then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on read.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer to count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM® Cortex™-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.3.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
SCS_BA = 0xl	SCS_BA = 0xE000_E000					
SYST_CSR	SCS_BA+0x10	R/W	SysTick Control and Status	0x0000_0000		
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload value	0x00XX_XXXX		
SYST_CVR	SCS_BA+0x18	R/W	SysTick Current value	0x00XX_XXXX		

6.3.2 System Timer Control Register

SysTick Control and Status (SYST_CSR)

Register	Offset	R/W	Description	Reset Value
SYST_CSR	SCS_BA+0x10	R/W	SysTick Control and Status	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
			-				COUNTFLAG
15	14	13	12	11	10	9	8
							•
7	6	5	4	3	2	1	0
		-			CLKSRC	TICKINT	ENABLE

Bits	Description	
[31:17]	-	Reserved
[16]	COUNTFLAG	Returns "1" if timer counted to 0 since this register was read last time. COUNTFLAG is set by a count transition from 1 to 0. COUNTFLAG is cleared on read or by a write to the Current Value register.
[15:3]	-	Reserved
[2]	CLKSRC	1 = Core clock used for SysTick If no external clock provided; this bit will be read as "1" and ignore writes. 0 = Clock source is optional (refer to STCLK_S).
[1]	TICKINT	Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a register write in software will not cause SysTick to be pended. Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to zero has occurred.
[0]	ENABLE	1 = The counter will operate in a multi-shot manner. 0 = The counter Disabled.

nuvoTon

SysTick Reload Value Register (SYST_RVR)

Register	Offset	R/W	Description	Reset Value
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload Value Register	0x00XX_XXXX

31	30	29	28	27	26	25	24		
-									
23	22	21	20	19	18	17	16		
	RELOAD								
15	14	13	12	11	10	9	8		
	RELOAD								
7	6	5	4	3	2	1	0		
	RELOAD								

Bits	Description	escription				
[31:24]	-	Reserved				
[23:0]	RELOAD[23:0]	Value to load into the Current Value register when the counter reaches 0.				

nuvoTon

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SCS _BA+0x18	R/W	SysTick Current Value Register	0x00XX_XXXX

31	30	29	28	27	26	25	24		
				-					
23	22	21	20	19	18	17	16		
	CURRENT								
15	14	13	12	11	10	9	8		
	CURRENT								
7	6	5	4	3	2	1	0		
CURRENT									

Bits	Description	
[31:24]	-	Reserved
[23:0]	CURRENT[23:0]	Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. Software write of any value will clear the register to "0". Bits RAZ is not supported (see SysTick Reload Value Register).

nuvoTon

6.4 System Control Registers

Cortex-M0 status and operation mode control are managed System Control Registers. Including CPUID, Cortex-M0 interrupt priority and Cortex-M0 power management can be controlled through these system control registers.

For more detailed information, please refer to the "ARM® Cortex™-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.4.1 System Control Register Memory Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
SCS_BA = 0>	SCS_BA = 0xE000_E000							
CPUID	SCS_BA+0xD00	R	CPUID Base Register	0x410C_C200				
ICSR	SCS_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000				
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000				
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000				
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000				
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000				

6.4.2 System Control Register

CPUID Base Register (CPUID)

Register	Offset	R/W	Description	Reset Value
CPUID	SCS_BA+0xD00	R	CPUID Base Register	0x410C_C200

31	30	29	28	27	26	25	24
	IMPLEMENTER						
23	22	21	20	19	18	17	16
					PA	RT	
15	14	13	12	11	10	9	8
			PAR	TNO			
7	6	5	4	3	2	1	0
PARTNO				REVI	SION		

Bits	Description		
1131.241	IMPLEMENTER [7:0]	Implementer code assigned by ARM. (ARM = 0x41).	
[23:20]	-	Reserved	
[19:16]	PART[3:0]	Read as 0xC for ARMv6-M parts.	
[15:4]	PARTNO[11:0]	Read as 0xC20.	
[3:0]	REVISION[3:0]	Read as 0x0.	

nuvoTon

Interrupt Control State Register (ICSR)

Register	Offset	R/W	Description	Reset Value
ICSR	SCS_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000

31	30	29	28	27	26	25	24
NMIPENDSE T	-		PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	-
23	22	21	20	19	18	17	16
ISRPREEMP T	ISRPENDING	-		VECTPENDING			
15	14	13	12	11	10	9	8
VECTPENDING					-		VECTACTIVE
7	6	5	4	3	2	1	0
	VECTACTIVE						

Bits	Description	
		NMI Set-pending Bit
		Write:
		0 = No effect.
		1 = NMI exception state changed to pending.
[31]	NMIPENDSET	Read:
[51]	INIIII ENDOET	0 = NMI exception not pending.
		1 = NMI exception pending.
		Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.
[30:29]	-	Reserved.
		PendSV Set-pending Bit
		Write:
		0 = No effect.
[28]	PENDSVSET	1 = PendSV exception state changed to pending.
[20]	FENDSVSET	Read:
		0 = PendSV exception not pending.
		1 = PendSV exception pending.
		Writing 1 to this bit is the only way to set the PendSV exception state to pending.

Description	Description				
	PendSV Clear-pending Bit (Write Only)				
DENDSVOLD	Write:				
PENDSVCLK	0 = No effect.				
	1 = The pending state removed from the PendSV exception.				
	SysTick Exception Set-pending Bit				
	Write:				
	0 = No effect.				
PENDSTSET	1 = SysTick exception state changed to pending.				
	Read:				
	0 = SysTick exception not pending.				
	1 = SysTick exception pending.				
	SysTick Exception Clear-pending Bit (Write Only)				
DENDSTOLD	Write:				
PENDSTCLR	0 = No effect.				
	1 = The pending state removed from the SysTick exception.				
-	Reserved.				
ISPDDEEMDT	Interrupt Preemption (Read Only)				
ION NEEMI 1	If set, a pending exception will be serviced on exit from the debug halt state.				
	Interrupt Pending Flag (Read Only)				
ISDDENDING	Excluding NMI and Faults.				
ISKFENDING	0 = Interrupt not pending.				
	1 = Interrupt pending.				
-	Reserved.				
	Vector Pending Indicator (Read Only)				
VECTPENDING	This field indicates the exception number of the highest priority pending enabled exception:				
[6.0]	0 = No pending exceptions.				
	Non-zero = The exception number of the highest priority pending enabled exception.				
-	Reserved.				
	Vector Active Indicator (Read Only)				
VECTACTIVE	This field contains the active exception number:				
[8:0]	0 = Thread mode.				
	Non-zero = The exception number of the currently active exception.				
	PENDSVCLR PENDSTSET PENDSTCLR - ISRPREEMPT ISRPENDING - VECTPENDING [8:0]				

nuvoTon

Application Interrupt and Reset Control Register (AIRCR)

Register	Offset	R/W	Description	Reset Value
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000

31	30	29	28	27	26	25	24
			VECTO	ORKEY			
23	22	21	20	19	18	17	16
			VECTO	ORKEY			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
		-			SYSRESETR EQ	VECTCLKAC TIVE	-

Bits	Description	
[31:16]	VECTORKEY [15:0]	When writing this register, this field should be 0x05FA; otherwise, the write action will be unpredictable.
[15:3]	-	Reserved
[2]	SYSRESETREQ	Writing this bit "1" will cause a reset signal to be asserted to the chip to indicate a reset is requested.
		The bit is a write only bit and self-clears as part of the reset sequence.
		Setting this bit to "1" will clear all active state information for fixed and configurable exceptions.
[1]	VECTCLRACTIVE	The bit is a write only bit and can only be written when the core is halted.
		Note: It is the debugger's responsibility to re-initialize the stack.
[0]	-	Reserved

nuvoTon

System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24
				-			
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
	-		SEVONPEND	-	SLEEPDEEP	SLEEPONEXIT	-

Bits	Description				
[31:5]	-	Reserved			
		Send Event on Pending Bit			
		0 = Only the enabled interrupts or events can wake up the processor, disabled interrupts are excluded.			
[4]	SEVONPEND	1 = The enabled events and all interrupts, including disabled interrupts, can wake up the processor.			
		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects next WFE.			
		The processor also wakes up on execution of an SEV instruction or an external event.			
[3]	-	Reserved			
		Deep Sleep Mode Enable			
[2]	SLEEPDEEP	This bit controls whether the processor uses sleep or deep sleep as its low power mode:			
		0 = Sleep.			
		1 = Deep sleep.			
		Sleep-On-exit Enable			
		This bit controls sleep-on-exit when returning from Handler mode to Thread mode:			
[1]	SLEEPONEXIT	0 = Do not sleep when returning to Thread mode.			
		1 = Enter sleep or deep sleep when returning from an ISR to Thread mode.			
		Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.			
[0]	-	Reserved			

nuvoTon

System Handler Priority Register 2 (SHPR2)

Register	Offset	R/W	Description	Reset Value
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_11				-		
23	22	21	20	19	18	17	16
				-			
15	14	13	12	11	10	9	8
				_			
7	6	5	4	3	2	1	0
							•

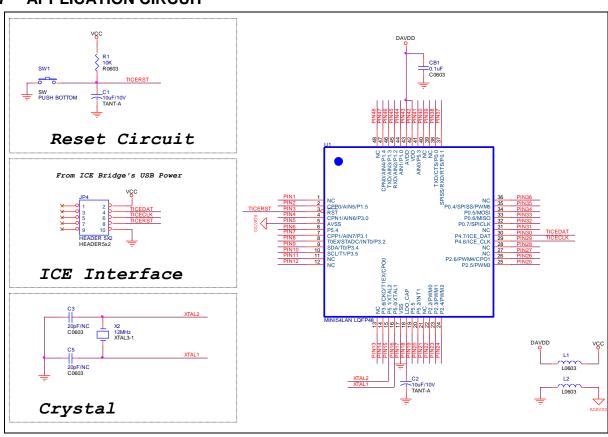
Bits	Description			
[31:30]	PRI_11[1:0]	Priority of System Handler 11 – SVCall "0" denotes the highest priority and "3" denotes the lowest priority.		
[29:0]	-	Reserved		

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

System Handler Priority Register 3 (SHPR3)


Register	Offset	R/W	Description	Reset Value
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24
PRI	PRI_15				-		
23	22	21	20	19	18	17	16
PRI	_14				-		
15	14	13	12	11	10	9	8
				-			
7	6	5	4	3	2	1	0
				-			

Bits	Description				
[31:30]	PRI_15[1:0]	Priority of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes the lowest priority.			
[29:24]	-	Reserved			
[23:22]	PRI_14[1:0]	Priority of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes the lowest priority.			
[21:0]	-	Reserved			

nuvoTon

7 APPLICATION CIRCUIT

8 ELECTRICAL CHARACTERISTICS

8.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	Min	MAX	UNIT
DC power supply	V _{DD} -V _{SS}	-0.3	+7.0	V
Input voltage	VIN	V _{SS} -0.3	V _{DD} +0.3	V
Oscillator frequency	1/t _{CLCL}	4	24	MHz
Operating temperature	TA	-40	+85	°C
Storage temperature	TST	-55	+150	°C
Maximum current into VDD		-	120	mA
Maximum current out of VSS			120	mA
Maximum current sunk by a I/O pin			35	mA
Maximum current sourced by a I/O pin			35	mA
Maximum current sunk by total I/O pins			100	mA
Maximum current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

8.2 DC Electrical Characteristics

(VDD-VSS = 5.0 V, TA = 25°C , FOSC = 24 MHz unless otherwise specified.)

DARAMETER	PARAMETER Sym.					TEST CONDITIONS
PARAMETER	Sym.	Min.	TYP.	Max.	Unit	TEST CONDITIONS
Operation voltage	V_{DD}	2.5		5.5	٧	V _{DD} = 2.5 V ~ 5.5 V up to 24 MHz
V _{DD} rise rate to ensure internal operation correctly	V _{RISE}	0.05			V/mS	
Power ground	V _{SS} AV _{SS}	-0.3			V	
LDO output voltage	V _{LDO}	-10%	1.8	+10%	V	V _{DD} = 2.5V ~ 5.5V
Analog operating voltage	AV _{DD}	0		V_{DD}	V	
	I _{DD1}		9.5		mA	V _{DD} = 5.5V at 24 MHz, all IP Enabled
Operating current Normal run mode	I _{DD2}		7.5		mA	V _{DD} = 5.5V at 24 MHz, all IP Disabled
normar rum mode at 24 MHz	I _{DD3}		7.5		mA	V _{DD} = 3.3V at 24 MHz, all IP Enabled
S. 2 · · · · · · 2	I _{DD4}		6		mA	V _{DD} = 3.3V at 24 MHz, all IP Disabled
	I _{DD5}		5.5		mA	V _{DD} = 5.5V at 12 MHz, all IP Enabled
Operating current Normal run mode	I _{DD6}		4.5		mA	V _{DD} = 5.5V at 12 MHz, all IP Disabled
at 12 MHz	I _{DD7}		4		mA	V _{DD} = 3.3V at 12 MHz, all IP Enabled
	I _{DD8}		3		mA	V _{DD} = 3.3V at 12 MHz, all IP Disabled
	I _{DD9}		3.6		mA	V _{DD} = 5.5V at 4 MHz, all IP Enabled
Operating current Normal run mode	I _{DD10}		3.3		mA	V _{DD} = 5.5V at 4 MHz, all IP Disabled
at 4 MHz	I _{DD11}		1.7		mA	V _{DD} = 3.3V at 4 MHz, all IP Enabled
	I _{DD12}		1.4		mA	V _{DD} = 3.3V at 4 MHz, all IP Disabled
	I _{DD13}		6.6		mA	V _{DD} = 5.5V at 22.1184 MHz, all IP Enabled
Operating current	I _{DD14}		5		mA	V _{DD} = 5.5V at 22.1184 MHz, all IP Disabled
Normal run mode at 22.1184 MHz IRC	I _{DD15}		6.6		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Enabled
	I _{DD16}		5		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Disabled

PARAMETER	Cum		Speci	fication		TEST CONDITIONS
PARAMETER	Sym.	Min.	TYP.	Max.	Unit	TEST CONDITIONS
	I _{DD17}		116		μΑ	V _{DD} = 5.5V at 32.768 KHz, all IP Enabled
Operating current Normal run mode	I _{DD18}		113		μА	V _{DD} = 5.5V at 32.768 KHz, all IP Disabled
at 32.768 KHz crystal oscillator	I _{DD19}		112		μА	V _{DD} = 3.3V at 32.768 KHz, all IP Enabled
	I _{DD20}		100		μА	V_{DD} = 3.3V at 32.768 KHz, all IP Disabled
	I _{DD21}		109		μΑ	V _{DD} = 5.5V at 10 KHz, all IP Enabled
Operating current Normal run mode	I _{DD22}		108		μΑ	V _{DD} = 5.5V at 10 KHz, all IP Disabled
at 10 KHz IRC	I _{DD23}		100		μΑ	V _{DD} = 3.3V at 10 KHz, all IP Enabled
	I _{DD24}		98		μΑ	V _{DD} = 3.3V at 10 KHz, all IP Disabled
	I _{IDLE1}		5.5		mA	V _{DD} = 5.5V at 24 MHz, all IP Enabled
Operating current Idle mode	I _{IDLE2}		3.5		mA	V _{DD} = 5.5V at 24 MHz, all IP Disabled
at 24 MHz	I _{IDLE3}		3.8		mA	V _{DD} = 3.3V at 24 MHz, all IP Enabled
	I _{IDLE4}		1.8		mA	V _{DD} = 3.3V at 24 MHz, all IP Disabled
	I _{IDLE5}		3.3		mA	V _{DD} = 5.5V at 12 MHz, all IP Enabled
Operating current	I _{IDLE6}		2.6		mA	V _{DD} = 5.5V at 12 MHz, all IP Disabled
Idle mode at 12 MHz	I _{IDLE7}		2		mA	V _{DD} = 3.3V at 12 MHz, all IP Enabled
	I _{IDLE8}		1		mA	V _{DD} = 3.3V at 12 MHz, all IP Disabled
	I _{IDLE9}		3		mA	V _{DD} = 5.5V at 4 MHz, all IP Enabled
Operating current	I _{IDLE10}		2.3		mA	V _{DD} = 5.5V at 4 MHz, all IP Disabled
Idle mode at 4 MHz	I _{IDLE11}		1		mA	V _{DD} = 3.3V at 4 MHz, all IP Enabled
at + 1/11/12	I _{IDLE12}		0.7		mA	V _{DD} = 3.3V at 4 MHz, all IP Disabled
	I _{IDLE13}		3.0		mA	V _{DD} = 5.5V at 22.1184 MHz, all IP Enabled
Operating current Idle mode at 22.1184 MHz IRC	I _{IDLE14}		1.2		mA	V _{DD} = 5.5V at 22.1184 MHz, all IP Disabled
2. 22	I _{IDLE15}		3.0		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Enabled

nuvoTon

PARAMETER	Cum		Speci	fication		TEST CONDITIONS			
PARAMETER	Sym.	Min.	TYP.	Max.	Unit	. LOT CONDITIONS			
	I _{IDLE16}		1.2		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Disabled			
	I _{IDLE17}		110		μА	V_{DD} = 5.5V at 32.768 KHz, all IP Enabled			
Operating current	I _{IDLE18}		107		μА	V_{DD} = 5.5V at 32.768 KHz, all IP Disabled			
at 32.768 KHz crystal oscillator	I _{IDLE19}		105		μА	V _{DD} = 3.3V at 32.768 KHz, all IP Enabled			
	I _{IDLE20}		102		μА	V _{DD} = 3.3V at 32.768 KHz, all IP Disabled			
	I _{IDLE21}		103		μΑ	V _{DD} = 5.5V at 10 KHz, all IP Enabled			
Operating current Idle mode	I _{IDLE22}		102		μА	V _{DD} = 5.5V at 10 KHz, all IP Disabled			
at 10 KHz IRC	I _{IDLE23}		96		μА	V _{DD} = 3.3V at 10 KHz, all IP Enabled			
	I _{IDLE24}		95		μА	V _{DD} = 3.3V at 10 KHz, all IP Disabled			
Standby current	I _{PWD1}		10		μА	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF			
Power-down mode	I _{PWD2}		5		μА	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF			
Standby current Power-down mode with	I _{PWD3}		12		μА	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator			
32.768 KHz crystal enabled	I _{PWD4}		7		μΑ	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator			
Input current P0~P5 (Quasi-bidirectional mode)	I _{IN1}		-50	-60	μА	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{IN} = V_{DD}$			
Input current at /RESET ^[1]	I _{IN2}	-55	-45	-30	μА	$V_{DD} = 3.3 \text{ V}, V_{IN} = 0.45 \text{ V}$			
Input leakage current PA, PB, PC, PD, PE	I _{LK}	-0.1	-	+0.1	μА	$V_{DD} = 5.5 \text{ V}, 0 < V_{IN} < V_{DD}$			
Logic 1 to 0 transition current PA~PE (Quasi- bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μА	V _{DD} = 5.5 V, V _{IN} <2.0 V			
Input low voltage	V _{IL1}	-0.3	-	0.8	V	V _{DD} = 4.5 V			

PARAMETER	Sym.		Speci	fication		TEST CONDITIONS
PARAIVIETER	Sylli.	Min.	TYP.	Max.	Unit	TEST CONDITIONS
P0~P5 (TTL input)		-0.3	-	0.6		V _{DD} = 2.5 V
Input high voltage	.,	2.0	-	V _{DD} +0.2	V	V _{DD} = 5.5V
P0~P5 (TTL input)	V_{IH1}	1.5	-	V _{DD} +0.2	V	V _{DD} = 3.0V
Input low voltage P0~P5, (Schmitt input)	V_{IL2}		0.4 V _{DD}		V	
Input high voltage P0~P5, (Schmitt input)	V _{IH2}		0.6 V _{DD}		V	
Hysteresis voltage of P0~P5 (Schmitt input)	V_{HY}		0.2 V _{DD}		V	
Input low voltage	.,	0	-	0.8	V	V _{DD} = 4.5V
XTAL1 ^[*2]	V_{IL3}	0	-	0.4	V	$V_{DD} = 3.0V$
Input high voltage XTAL1 ^[*2]	M	3.5	-	V _{DD} +0.2	V	V _{DD} = 5.5V
XTAL1 ^[-2]	V _{IH3}	2.4	-	V _{DD} +0.2		$V_{DD} = 3.0V$
Internal /RESET pin pull-up resistor	R _{RST}	40	-	100	ΚΩ	
Negative going threshold (Schmitt input), /RESET	V _{ILS}	-0.5	-	0.3 V _{DD}	V	
Positive going threshold (Schmitt input), /RESET	V _{IHS}	0.6 V _{DD}	-	V _{DD} +0. 5	V	
O	I _{SR11}	-300	-370	-450	μΑ	$V_{DD} = 4.5V, V_{S} = 2.4V$
Source current P0~P5. (Quasi-bidirectional	I _{SR12}	-50	-70	-90	μΑ	$V_{DD} = 2.7V, V_{S} = 2.2V$
mode)	I _{SR12}	-40	-60	-80	μΑ	$V_{DD} = 2.5V, V_{S} = 2.0V$
	I _{SR21}	-20	-24	-28	mA	$V_{DD} = 4.5V, V_{S} = 2.4V$
Source current P0~P5, (Push-pull mode)	I _{SR22}	-4	-6	-8	mA	$V_{DD} = 2.7V, V_{S} = 2.2V$
	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5V, V_{S} = 2.0V$
Sink current P0~P5,	I _{SK1}	10	16	20	mA	$V_{DD} = 4.5V, V_{S} = 0.45V$
(Quasi-bidirectional and Push-pull mode)	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7V, V_S = 0.45V$
. don pan mode)	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5V, V_S = 0.45V$

Notes:

^{1. /}RESET pin is a Schmitt trigger input.

NUMICRO™ MINI51 TECHNICAL REFERENCE MANUAL

NuMicroTM Mini51 Technical Reference Manual

nuvoTon

- 2. Crystal Input is a CMOS input.
- 3. Pins of P0~P5 can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} =5.5V, the transition current reaches its maximum value when V_{IN} approximates to 2V.

8.3 AC Electrical Characteristics

8.3.1 External Input Clock


PARAMETER	Sym.		Specif	ication		TEST CONDITIONS		
TAKAMETEK	Oyiii.	Min.	TYP.	Max.	Unit	TEST CONDITIONS		
Clock high time	t _{CHCX}	20			nS			
Clock low time	t _{CLCX}	20			nS			
Clock rise time	t _{CLCH}			10	nS			
Clock fall time	t _{CHCL}			10	nS			
Clock fall time tchcl tchcl								

Note: Duty cycle is 50%.

8.3.2 External 4 ~ 24 MHz XTAL Oscillator

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS
IANAMETEN	Oyiii.	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Oscillator frequency	f _{HXTAL}	4	12	24	MHz	V _{DD} = 2.5V ~ 5.5V
Temperature	T _{HXTAL}	-40		+85	°C	
Operating current	I _{HXTAL}		TBD		mA	$V_{DD} = 5.0V$

8.3.3 Typical Crystal Application Circuit

nuvoton

Figure 8.3-1 Typical Crystal Application Circuit

8.3.4 External 32.768 KHz XTAL Oscillator

PARAMETER	Sym.		Specifi	ication		TEST CONDITIONS	
ANAMETEN	Oyiii.	Min.	TYP.	Max.	Unit	ILOI GONDINGNO	
Oscillator frequency	fL_{XTAL}		32.768		KHz	V _{DD} = 2.5V ~ 5.5V	
Temperature	TL _{XTAL}	-40		+85	°C		
Operating current	I _{HXTAL}		TBD		μΑ	$V_{DD} = 5.0V$	

8.3.5 Internal 22.1184 MHz RC Oscillator

PARAMETER	Sym.		Specific	cation		TEST CONDITIONS
IANAMETEN	Oyiii.	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Supply voltage ^[1]	V_{HRC}		1.8		V	
		21.89	22.1184	22.34	MHz	25°C, V _{DD} = 5V
		20.57	22.1184	23.23	MHz	$-40^{\circ}\text{C} \sim +85^{\circ}\text{C}, V_{DD} = 2.5\text{V} \sim 5.5\text{V}$
Center frequency	F _{HRC}	21.78	22.0	22.22	MHz	-40° C~+85 $^{\circ}$ C, V _{DD} = 2.5V~5.5V 32.768K crystal oscillator Enabled and TRIM_SEL = 1
Operating current	I _{HRC}		TBD		mA	

Note: Internal operation voltage comes from LDO.

8.3.6 Internal 10 KHz RC Oscillator

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS	
ANAMETEN	Sylli.	Min.	TYP.	Max.	Unit	TEST CONDITIONS	
Supply voltage ^[1]	V_{LRC}		1.8		V		
Center frequency	г	7	10	13	KHz	25°C, V _{DD} = 5V	
Contain requerity	F_{LRC}	5	10	15	KHz	-40° C = $\sim +85^{\circ}$ C, $V_{DD} = 2.5V \sim 5.5V$	
Operating current	I_{LRC}		TBD		μΑ	$V_{DD} = 5V$	

Note: Internal operation voltage comes from LDO.

8.4 Analog Characteristics

(V_{DD} - V_{SS} = 5.0V, TA = 25°C, FOSC = 24 MHz unless otherwise specified.)

8.4.1 Brown-Out Reset (BOD)

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS
IANAMETEN	Oyiii.	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Operating voltage	V_{BOD}	2.0		5.5	V	
Operating current	I _{BOD}		5	15	μΑ	V _{DD} = 5V BOD27 and BOD38 Enabled
BOD38 detection level	V _{B38dt}	3.6	3.8	4.0	V	25°C
BOD27 detection level	V _{B27dt}	2.6	2.7	2.8	V	25°C

8.4.2 Low Voltage Reset (LVR)

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS	
FARANLILK	Sylli.	Min.	TYP.	Max.	Unit	TEST CONDITIONS	
Operating voltage	V _{BOD}	2.0		5.5	V		
Operating current	I _{BOD}		1	2	μА		
Detection level			2.0		V	25°C	
LVR always enabled	V_{LVR}	1.6	2.0	2.4	V	-40°C ~ +85°C	

8.4.3 Analog Comparator

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS
	Sylli.	Min.	TYP.	Max.	Unit	TEST CONDITIONS
Operating voltage	V_{BOD}	2.5	3.3	5.5	V	
Operating current	I _{CMP}		40	80	μΑ	
Input offset voltage	V _{OFFSET}		10	20	mV	
Output swing voltage	V_{swin}	0.2		V _{DD} -0.2	V	
Input common mode range (V _{CM})	V _{CM}	0.1		V _{DD} -0.1	V	
DC gain	G _{DC}		70		dB	
Propagation delay	T _{PDLY}		200		ns	V _{CM} = 1.2V The difference voltage in CPPx and CPNx is 0.1V
Hysteresis	V _{HYS}		±10		mV	One bit control W/O and W. hysteresis @V _{CM} = 0.2V ~ VDD-0.2V

PARAMETER	Svm.	Specification				TEST CONDITIONS
	Oy	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Stable time	T _{STBL}			2	μS	CPPx = 1.3V and CPNX = 1.2V

8.4.4 Analog Comparator Reference Voltage (CRV)

PARAMETER			Specif	ication		TEST CONDITIONS
	Sym.		Specifi	Cation		
		Min.	TYP.	Max.	Unit	
Operating voltage	V_{BOD}	2.5		5.5	V	
CRV step size	V _{STEP}		V _{DD} /24		V	VDD = 5V, BOD27 and BOD38 Enabled
CRV output voltage absolute accuracy	A _{CRV}	-5		+5	%	
Unit resistor value	R _{CRV}		2K		ohm	

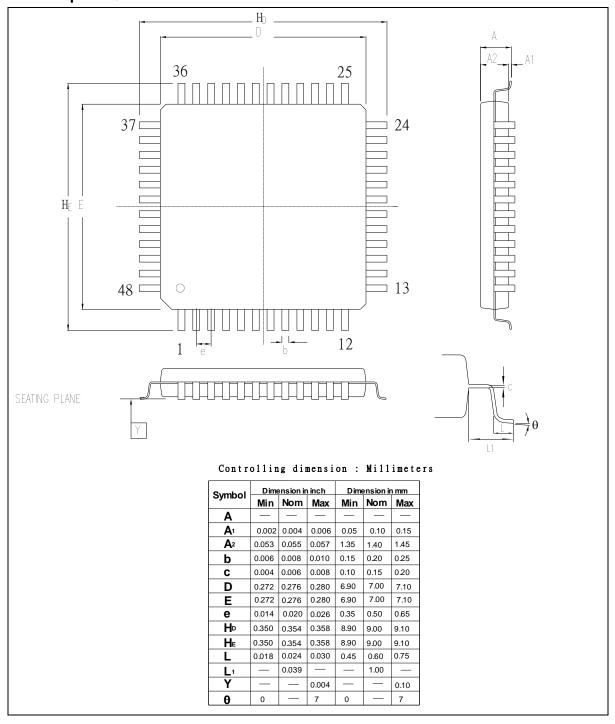
8.4.5 10-bit ADC

PARAMETER	Cum		Specif	ication		TEST COMPITIONS
	Sym.	Min.	TYP.	Max.	Unit	TEST CONDITIONS
Operating voltage	AV_{DD}	2.7		5.5	V	$AV_{DD} = V_{DD}$
Operating current	I _{ADC}			1	mA	$AV_{DD} = V_{DD} = 5V, F_{SPS} = 150K$
Resolution	R _{ADC}			10	bit	
Reference voltage	V_{REF}		A _{VDD}		V	V _{REF} connected to A _{VDD} in chip
ADC input voltage	V _{IN}	0		V_{REF}	V	
Conversion time	T _{CONV}	6.7			μS	
Sampling rate	F _{SPS}	150K			Hz	V _{DD} = 5V, ADC clock = 6MHz Free running conversion
Integral non-linearity error (INL)	INL			±1	LSB	
Differential non-linearity (DNL)	DNL			±1	LSB	
Gain error	E _G			±2	LSB	
Offset error	E _{OFFSET}			3	LSB	
Absolute error	E _{ABS}			4	LSB	
ADC clock frequency	F _{ADC}	5K		6M	Hz	$V_{DD} = 5V$
Clock cycle	AD _{CYC}	38			Cycle	

PARAMETER	Sym.	Specification				TEST CONDITIONS
	O y	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Bang-gap voltage	V_{BG}	1.27	1.35	1.44	V	-40°C ~ +85°C

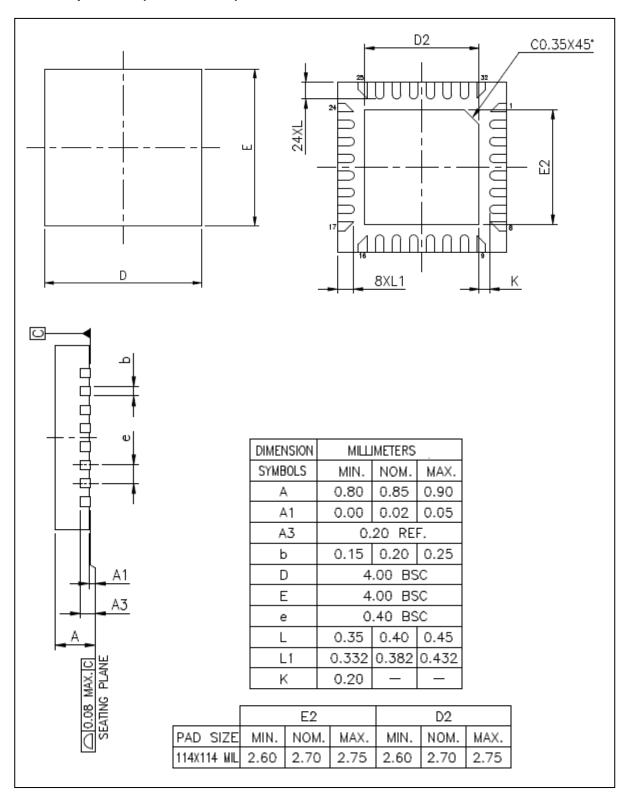
NUMICRO™ MINI51 TECHNICAL REFERENCE MANUA

NuMicroTM Mini51 Technical Reference Manual

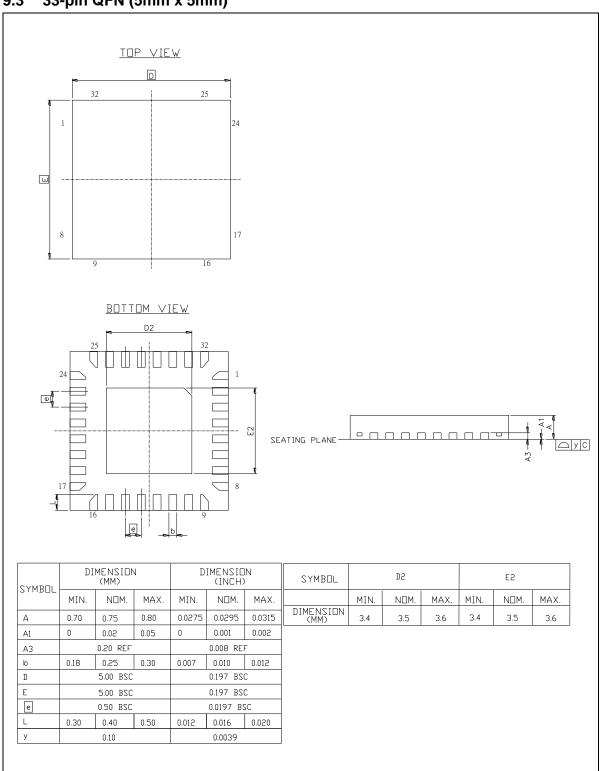

8.4.6 Flash Memory Characteristics

PARAMETER	Sym.		Specif	ication		TEST CONDITIONS
	Oy	Min.	TYP.	Max.	Unit	TEST SONDITIONS
Cycling (erase/write) Program memory	N _{CYC}	100			K cycle	
Data retention	T _{RET}	10			years	$T_A = +85^{\circ}C$
Erase time of ISP mode	T _{ERASE}	2.3	2.5	2.7	mS	Erase time for one page
Program time of ISP mode	T _{PROG}	57	62	67	uS.	Programming time for one word
Program current	I_{PROG}		3.3		mA	$V_{DD} = 5.5V$

nuvoton


9 PACKAGE DIMENSION

9.1 48-pin LQFP


nuvoTon

9.2 33-pin QFN (4mm x 4mm)

nuvoton

9.3 33-pin QFN (5mm x 5mm)

10 REVISION HISTORY

Date	Revision	Changes					
Sep 6, 2011	1.00	Initial release					
		Changed electrical characteristics of comparator, 22 MHz RC oscillator, ADC and band-gap.					
		Added electrical characteristics of Flash memory.					
		3. Changed maximum SPI frequency as 12MHz.					
Oct 20, 2011	1.01	Added more description about ADC channel enable register (ADCHER).					
		5. Modified the block diagram of timer controller.					
		6. Modified the description of timer capture mode.					
		7. Fixed some typos.					
		Fixed electrical characteristics of 22 MHz RC oscillator.					
		2. Modified all "1XX" description in registers and related figures.					
		3. Updated "Figure 5.10-18: Motor Control PWM Architecture".					
		4. Updated "Figure 5.10-17: Initial State and Polarity Control with Rising Edge Dead-zone Insertion".					
Dec 1, 2011	1.02	5. Revised the TIF (bit 0 TISR register) description.					
		6. Changed the SYST_CSR reset value from "0x0000_0004" to "0x0000_0000".					
		Modified 33-pin QFN 5mm x 5mm package outline specification.					
		8. Fixed some typos.					
		Added the VDD rise rate specification.					
	1.03	Revised the minimum ADC clock frequency specification.					
		Revised the minimum and maximum specification of band-gap voltage.					
Feb 9, 2012		4. Added a note about only even channels (PWM0, PWM2 and PWM4) can be set as inverter bit (CHnINV, n = 0, 2, 4) in independent mode.					
		Modified the diagram in the LEV_RTS (bit 9 of UA_MCR register) description.					
		Added the CFGUEN and LDUEN bit description in the ISP Control Register (ISPCON) section.					

nuvoton

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.