New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

NPN - MJ15022, MJ15024*

*MJ15024 is a Preferred Device

Silicon Power Transistors

The MJ15022 and MJ15024 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area (100% Tested) 2 A @ 80 V
- High DC Current Gain $h_{FE} = 15$ (Min) @ $I_C = 8$ Adc

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MJ15022 MJ15024	V _{CEO}	200 250	Vdc
Collector-Base Voltage MJ15022 MJ15024	V _{CBO}	350 400	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage	V _{CEX}	400	Vdc
Collector Current - Continuous - Peak (Note 1)	I _C	16 30	Adc
Base Current - Continuous	lΒ	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.70	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle $\leq 10\%$.

16 AMPERES SILICON POWER TRANSISTORS 200 - 250 VOLTS, 250 WATTS

(TO-3)

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

NPN - MJ15022, MJ15024*

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 100 \text{ mAdc}, I_B = 0)$	MJ15022 MJ15024	V _{CEO(sus)}	200 250	-	-
Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 250 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$	MJ15022 MJ15024	I _{CEX}	-	250 250	μAdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 200 \text{ vdc}, I_B = 0)$	MJ15022 MJ15024	I _{CEO}	-	500 500	μAdc
Emitter Cutoff Current (V _{CE} = 5 Vdc, I _B = 0)		I _{EBO}	-	500	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased ($V_{CE} = 50 \text{ Vdc}$, $t = 0.5 \text{ s (non-repetitive)}$) ($V_{CE} = 80 \text{ Vdc}$, $t = 0.5 \text{ s (non-repetitive)}$)		I _{S/b}	5 2	- -	Adc
ON CHARACTERISTICS					
DC Current Gain (I _C = 8 Adc, V _{CE} = 4 Vdc) (I _C = 16 Adc, V _{CE} = 4 Vdc)		h _{FE}	15 5	60 -	-
Collector–Emitter Saturation Voltage ($I_C = 8$ Adc, $I_B = 0.8$ Adc) ($I_C = 16$ Adc, $I_B = 3.2$ Adc)		V _{CE(sat)}	-	1.4 4.0	Vdc
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 4 Vdc)		V _{BE(on)}	-	2.2	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain - Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)		f _T	4	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	-	500	pF

^{2.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

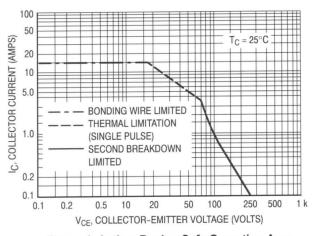


Figure 1. Active-Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)} = 200 \,^{\circ}\text{C}$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values Ion than the limitations imposed by second breakdown.