

Pb Free Plating Product

250 Watt Silicon Type Metal Package Power Transistor

The MJ21193 and MJ21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

- Total Harmonic Distortion Characterized
- High DC Current Gain hFE = 25 Min @ IC = 8 Adc
- Excellent Gain Linearity
- High SOA: 2.5 A, 80 V, 1 Second

SCHEMATIC

CASE 3

TO-204AA (TO-3)

MAXIMUM	RATINGS
---------	---------

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	250	Vdc
Collector–Base Voltage	VCBO	400	Vdc
Emitter-Base Voltage	VEBO	5	Vdc
Collector–Emitter Voltage – 1.5 V	VCEX	400	Vdc
Collector Current — Continuous Peak ⁽¹⁾	IC	16 30	Adc
Base Current — Continuous	۱ _B	5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	PD	250 1.43	Watts W/°C
Operating and Storage Junction Temperature Range	Tj, T _{stg}	- 65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.7	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Мах	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage $(I_{C} = 100 \text{ mAdc}, I_{B} = 0)$	V _{CEO(sus)}	250	—	—	Vdc
Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0)	ICEO	_	—	100	μAdc

(1) Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

(continued)

ELECTRICAL CHARACTERISTICS ($1 \circ = 25^{\circ}$ C unless	ss otherwise noted)
--	---------------------

Characteristic		Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS						
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_{C} = 0$)		IEBO	—	—	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)		ICEX	_	_	100	μAdc
SECOND BREAKDOWN						
Second Breakdown Collector Current with Base Forwa (V _{CE} = 50 Vdc, t = 1 s (non–repetitive) (V _{CE} = 80 Vdc, t = 1 s (non–repetitive)	rd Biased	I _{S/b}	5 2.5			Adc
ON CHARACTERISTICS						
DC Current Gain (I _C = 8 Adc, V _{CE} = 5 Vdc) (I _C = 16 Adc, I _B = 5 Adc)		hFE	25 8		75	
Base–Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)		V _{BE(on)}	_	—	2.2	Vdc
$\label{eq:constraint} \begin{array}{l} \mbox{Collector-Emitter Saturation Voltage} \\ \mbox{(I}_{C} = 8 \mbox{ Adc}, \mbox{ I}_{B} = 0.8 \mbox{ Adc}) \\ \mbox{(I}_{C} = 16 \mbox{ Adc}, \mbox{ I}_{B} = 3.2 \mbox{ Adc}) \end{array}$		V _{CE(sat)}			1.4 4	Vdc
DYNAMIC CHARACTERISTICS						
Total Harmonic Distortion at the Output $V_{RMS} = 28.3 \text{ V}, \text{ f} = 1 \text{ kHz}, P_{LOAD} = 100 \text{ W}_{RMS}$ (Matched pair h _{FE} = 50 @ 5 A/5 V)	^h FE unmatched ^h FE matched	THD	_	0.8 0.08	_	%
Current Gain Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)		fT	4	—		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	—	_	500	pF

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%

NPN MJ21194

Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

Figure 3. DC Current Gain, VCE = 20 V

Figure 4. DC Current Gain, VCE = 20 V

Figure 5. DC Current Gain, V_{CE} = 5 V

Figure 6. DC Current Gain, V_{CE} = 5 V

NPN MJ21194

TYPICAL CHARACTERISTICS

Figure 11. Typical Base-Emitter Voltage

 $(\mathsf{Supp})_{\mathsf{CE}}, \mathsf{COLLECTOR-EMITTER VOLTAGE (VOLTS)}$

Figure 13. Active Region Safe Operating Area

Figure 10. Typical Saturation Voltages

Figure 12. Typical Base–Emitter Voltage

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

Figure 14. MJ21193 Typical Capacitance

Figure 15. MJ21194 Typical Capacitance

Figure 16. Typical Total Harmonic Distortion

Figure 17. Total Harmonic Distortion Test Circuit