Detection of Lithium Ion Battery Overcharging Monolithic IC MM1373

Outline

This IC detects overcharging of lithium ion batteries. It is designed for use with three or four battery cells, and detects battery voltages for each cell. An overcharge detection delay time can be set using an external capacitor. The overcharge detection signal output is open-collector, and goes low when overcharging is detected.

Features

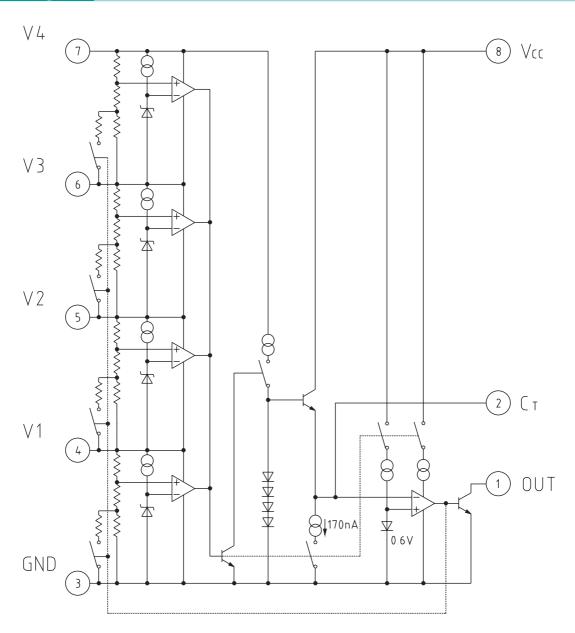
1. Consumption current	VCEL=3.8V	3.0µA typ.
2. Consumption current	VCEL=2.3V	0.3μA typ.
3. Input current between cell pins	VCEL=3.8V	±0.3µA max.
4. Overcharge detection voltage	A type	4.35V±50mV
5. Overcharge detection delay time	Cτ=0.22μF	1.5S typ.

6. Detection voltage can be changed to accommodate customer needs

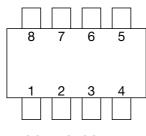
Package

SOP-8C

SOP-8E


Applications

1. For secondary protection of lithium ion battery packs


Overcharge Detection ICs

MM1373	Detection voltage	Hysteresis
Rank A	4.350V	250mV
Rank B	4.250V	250mV
Rank C	4.225V	None
Rank D	4.130V	None
Rank E	4.450V	100mV

Block Diagram

Pin Assignment

SOP-8C, SOP-8E

1	OUT
2	Ст
3	GND
4	V1
5	V2
6	V3
7	V4
8	Vcc

Pin Description

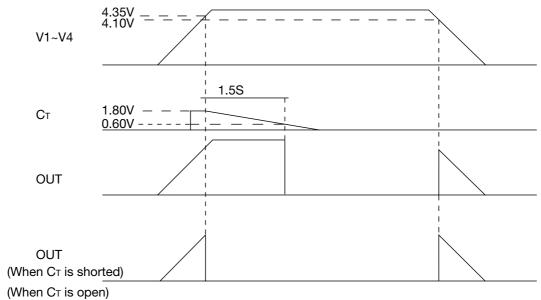
Pin no.	Pin name	Function	Internal equivalent circuit diagram
1	OUT	Reset output pin	V 0.6V
2	C_{T}	Delay capacitance pin	100kΩ ¥ 0.6V 170nA
4	V1	Cell 1 power supply	3
5	V2	Cell 2 power supply	5
6	V3	Cell 3 power supply	6
7	V4	Cell 4 power supply	7
8	Vcc		
3	GND		

Absolute Maximun Ratings

Item	Symbol	Ratings	Units	
Vcc input voltage	Vcc			
V4 input voltage *1	V4			
V3 input voltage *1	V3	-0.3~24	V	
V2 input voltage *1	V2			
V1 input voltage *1	V1			
C⊤ pin voltage *2	age *2 VcT -0.3~24		V	
Vоит pin voltage	Vout	-0.3~24	V	
Allowable loss	Pd	300	mW	
Operating temperature	Topr	-20~+80	°C	
Storage temperature	Tstg	-40~+125	°C	

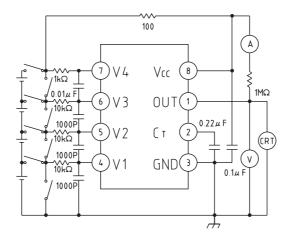
^{*1} $V_{CC} \ge V4 \ge V3 \ge V2 \ge V1 \ge -0.3$

Recommended Operating Conditions

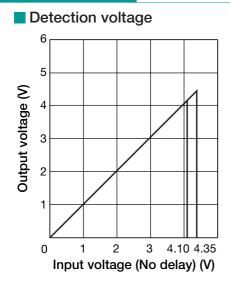

Item	Symbol	Ratings	Units
Input voltage between cells 1	Vop1	2.0~4.35	V
Vcc input voltage	Vop2	4.0~18	V

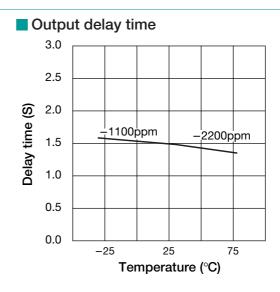
Electrical Characteristics (Except where noted otherwise, Ta=25°C, VcEL=V4-V3=V3-V2=V2-V1=V1-GND, Vcc=4XVcEL)

Item	Symbol	bol Measurement conditions		Тур.	Max.	Units
Consumption current 1	l1	Vcel=3.8V		3.0	6.0	μA
Consumption current 2	12	Vcel=2.3V		0.3	0.5	μА
Pin I/O current between cells	13	Vcel=3.8V (V4, V3, V2, V1 side)		±0.0	±0.3	μА
Overcharge detection voltage	V s	V _{CEL} =L→H, Ta=-20~+70°C	4.30	4.35	4.40	V
Hysteresis voltage	HSY	$V_{\text{CEL}}=L\rightarrow H\rightarrow L$	0.20	0.25	0.30	V
Overcharge detection delay time	TPLH	C _T =0.22µF	1.0	1.5	2.0	S
Output voltage L	Vol	IL=100μA			0.4	V
Output leakage current	ILEAK	VCEL=3.8V, VOUT=24V			0.1	μA


^{*2:} A current no greater than 100µA should be passed through pin Ct.

Timing Chart


Note: When pin Ct is shorted or left open, the output goes low when overcharging is detected.


Application Circuits

Note: By shorting each cell, two-, three- and four-cell series can be accommodated. A V4 cell should always be connected. If the V4 cell is shorted, the chip may not function correctly.

Characteristics

