



## Absolute Maximum Ratings(Note 2)

| Voltage at Any Pin | $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| :--- | ---: |
| Operating Temperature Range |  |
| MM74C922, MM74C923 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Power Dissipation (P $)$ |  |
| Dual-In-Line 700 mW <br> Small Outline 500 mW |  |
|  |  |


| Operating $\mathrm{V}_{\mathrm{CC}}$ Range | 3 V to 15 V |
| :--- | ---: |
| $\mathrm{~V}_{\mathrm{CC}}$ | 18 V |
| Lead Temperature |  |
| (Soldering, 10 seconds) |  |
|  | $260^{\circ} \mathrm{C}$ |

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera ure Range" they are not meant to imply that the devices should be oper ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics
Min/Max limits apply across temperature range unless otherwise specified

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMOS TO | MOS |  |  |  |  |  |
| $\mathrm{V}_{\text {T+ }}$ | Positive-Going Threshold Voltage at Osc and KBM Inputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 0.7 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \geq 1.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \geq 2.1 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 6.8 \\ & 10 \end{aligned}$ | $\begin{gathered} 4.3 \\ 8.6 \\ 12.9 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{V}_{\text {T- }}$ | Negative-Going Threshold Voltage at Osc and KBM Inputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}} \geq 0.7 \mathrm{~mA} \\ & \mathrm{v}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \geq 1.4 \mathrm{~mA} \\ & \mathrm{v}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \geq 2.1 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \hline 0.7 \\ & 1.4 \\ & 2.1 \end{aligned}$ | $\begin{gathered} 1.4 \\ 3.2 \\ 5 \end{gathered}$ | $\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{V}_{\text {IN(1) }}$ | Logical "1" Input Voltage, Except Osc and KBM Inputs | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 3.5 \\ 8.0 \\ 12.5 \end{gathered}$ | $\begin{gathered} \hline 4.5 \\ 9 \\ 13.5 \end{gathered}$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{V}_{\operatorname{IN}(0)}$ | Logical "0" Input Voltage, Except Osc and KBM Inputs | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 0.5 \\ 1 \\ 1.5 \end{gathered}$ | $\begin{gathered} \hline 1.5 \\ 2 \\ 2.5 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{rp}}$ | Row Pull-Up Current at Y1, Y2, Y3, Y4 and Y5 Inputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline-2 \\ -10 \\ -22 \end{gathered}$ | $\begin{aligned} & \hline-5 \\ & -20 \\ & -45 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$ |
| $\mathrm{V}_{\text {OUT(1) }}$ | Logical "1" Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$ | $\begin{gathered} \hline 4.5 \\ 9 \\ 13.5 \end{gathered}$ |  |  | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{V}_{\text {OUT(0) }}$ | Logical "0" Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$ |  |  | $\begin{gathered} \hline 0.5 \\ 1 \\ 1.5 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{R}_{\text {on }}$ | Column "ON" Resistance at $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and X 4 Outputs | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 500 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 1400 \\ 700 \\ 500 \\ \hline \end{gathered}$ | $\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$ |
| ICC | Supply Current Osc at OV, (one Y low) | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline 0.55 \\ & 1.1 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & \hline 1.1 \\ & 1.9 \\ & 2.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\overline{\ln (1)}$ | Logical "1" Input Current at Output Enable | $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$ |  | 0.005 | 1.0 | $\mu \mathrm{A}$ |
| $\underline{\operatorname{IN}(0)}$ | Logical "0" Input Current at Output Enable | $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -1.0 | -0.005 |  | $\mu \mathrm{A}$ |

CMOS/LPTTL INTERFACE

| $\mathrm{V}_{\text {IN(1) }}$ | Except Osc and KBM Inputs | $\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}-1.5$ |  | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN(0) }}$ | Except Osc and KBM Inputs | $\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$ |  | 0.8 | V |
| $\mathrm{V}_{\text {OUT(1) }}$ | Logical "1" Output Voltage | $\begin{aligned} & \mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \hline \end{aligned}$ | 2.4 |  | V |
| $\mathrm{V}_{\text {OUT(0) }}$ | Logical "0" Output Voltage | $\begin{aligned} & \mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$ |  | 0.4 | V |


| DC Electrical Characteristics (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| OUTPUT DRIVE (See Family Characteristics Data Sheet) (Short Circuit Current) |  |  |  |  |  |  |
| ISOURCE | Output Source Current (P-Channel) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ | -1.75 | -3.3 |  | mA |
| I Source | Output Source Current (P-Channel) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ | -8 | -15 |  | mA |
| ISINK | Output Sink Current <br> (N-Channel) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ | 1.75 | 3.6 |  | mA |
| ISINK | Output Sink Current (N-Channel) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ | 8 | 16 |  | mA |

## AC Electrical Characteristics (Note 3)

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$ | Propagation Delay Time to Logical "0" or Logical "1" from D.A. | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { (Figure 1) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 60 \\ & 35 \\ & 25 \end{aligned}$ | $\begin{aligned} & 150 \\ & 80 \\ & 60 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{t}_{0 \mathrm{H},} \mathrm{t}_{1 \mathrm{H}}$ | Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \text { (Figure 2) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 80 \\ 65 \\ 50 \end{gathered}$ | $\begin{aligned} & 200 \\ & 150 \\ & 110 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{t}_{\mathrm{HO}}, \mathrm{t}_{\mathrm{H} 1}$ | Propagation Delay Time from High Impedance State to a Logical "0" or Logical "1" | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { (Figure 2) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{array}{r} 100 \\ 55 \\ 40 \end{array}$ | $\begin{gathered} 250 \\ 125 \\ 90 \end{gathered}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | Any Input (Note 4) |  | 5 | 7.5 | pF |
| Cout | 3-STATE Output Capacitance | Any Output (Note 4) |  | 10 |  | pF |

Note 3: AC Parameters are guaranteed by DC correlated testing.
Note 4: Capacitance is guaranteed by periodic testing.


Typical Performance Characteristics



Typical Applications


The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz



Synchronous Data Entry Onto Bus (MM74C922)


Outputs are enabled when valid entry is made and go into 3-STATE when key is released.
The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz


Outputs are in 3-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to 3-STATE.
Expansion to 32 Key Encoder (MM74C922)


## Theory of Operation

The MM74C922/MM74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(MM74C922) or 5(MM74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, C COSE, and the key bounce mask capacitor, $\mathrm{C}_{\text {MSK }}$. Thus, the MM74C922/MM74C923's performance can be optimized for many keyboards.
The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (MM74C922) or 5 rows by 4 columns (MM74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic " 0 ". These outputs are open drain and are therefore low for $25 \%$ of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2bit counter, and a 2-4-bit decoder.
When a key is depressed, key 0 , for example, nothing will happen when the X 1 input is off, since Y 1 will remain high. When the X 1 column is scanned, X 1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1
going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded $Y$ inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high.
If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.
The two-key roll-over feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other $Y$ inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset. The output latches feed 3-STATE, which is enabled when the Output Enable ( $\overline{\mathrm{OE})}$ input is taken low.


## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^0]
[^0]:    Fairchild does not assume any responsibility for use of ary circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

