

NPN General Purpose Amplifier

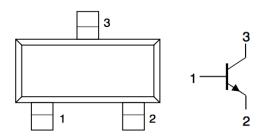
Features

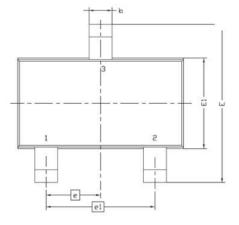
- Collector current capability IC = -200 mA
- Collector-emitter voltage VCEO = -40 V
- · RoHS compliant package

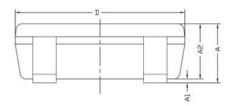
Application

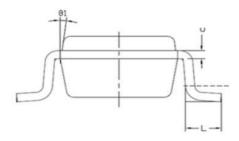
· General switching and amplification

Mechanical Data


Case outline: SOT23


Packing & Order Information


3,000/Reel



Graphic symbol

Cumbal	MILLIMET	TERS
Symbol	MIN	MAX
Α	0.8	1.2
A1	0	0.1
A2	0.7	1.1
b	0.3	0.5
С	0.1	0.2
D	2.7	3.1
E	2.6	3
E1	1.4	1.8
е	0.95	BSC
e1	1.9	BSC
L	0.3	0.6
θ1	7° N	MON

NPN General Purpose Amplifier

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS				
Symbol	Characteristic	Rating	Unit	
V_{CBO}	Collector-Base Voltage	40	Vdc	
V_{CEO}	Collector-Emitter Voltage	60	Vdc	
V_{EBO}	Emitter-Base Voltage	6	Vdc	
I _C	Collector Current -Continuous	200	mAdc	

THERMAL CHARACTERISTICS				
Symbol	Characteristic	Max	Unit	
	Total Device Dissipation			
P_D	FR-5 Board(1)	225	mW	
	TA=25°C	1.8	mW/°C	
	Derate above 25°C			

Symbol	Characteristic	Rating	Unit	
	Total Device Dissipation			
D.	Alumina Substrate	300	mW	
P_D	TA=25°C	2.4	mW/°C	
	Derate above 25°C			
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	417	°C/W	
T _J ,Tstg	Junction and Storage Temperature	150°C, -55	150°C, -55 to + 150°C	

ELECTRICAL CHARACTERISTICS @ Ta=25°C unless otherwise specified

OFF CHARACTERISTICS					
Symbol	Characteristic	Min	Max	Unit	
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage(3) $(I_C = 1.0 \text{mAdc}, I_B = 0)$	40		Vdc	
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage $(I_C = 10\mu Adc , I_E = 0)$	40		Vdc	
$V_{(BR)CEO}$	Emitter-Base Breakdown Voltage $(I_E = 10\mu Adc , I_C = 0)$	6.0		Vdc	
I _{BEX}	Base Cutoff Current (V _{CE} = 30Vdc , V _{EB} = 3.0 Vdc)		50	nAdc	
I _{CEX}	Collector Cutoff Current (V _{CE} = 30Vdc , V _{EB} = 3.0 Vdc)		50	nAdc	

NPN General Purpose Amplifier

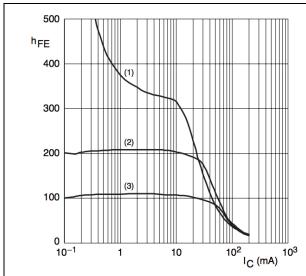
ON CHARACTERISTICS					
Symbol	Characteristic	Min	Max	Unit	
h _{PE}	DC Current Gain				
	$I_C = 0.1 \text{mAdc}$, $V_{CE} = 1.0 \text{Vdc}$	40			
	$I_C = 1.0 \text{mAdc}$, $V_{CE} = 1.0 \text{Vdc}$	70			
	$I_C = 10$ mAdc , $V_{CE} = 1.0$ Vdc	100	300		
	$I_C = 50$ mAdc , $V_{CE} = 1.0$ Vdc	60			
	$I_C = 100$ mAdc , $V_{CE} = 1.0$ Vdc	30			

ON CHARACTERISTICS					
Symbol	Characteristic	Min	Max	Unit	
	Collector-Emitter Saturation Voltage				
$V_{\text{CE(sat)}}$	$(I_C = 10 \text{mAdc}, V_B = 1.0 \text{ mAdc})$		0.25	Vdc	
	$(I_C = 50 \text{mAdc}, V_B = 5.0 \text{ mAdc})$		0.4		

ON CHARACTERISTICS					
Symbol	Characteristic	Min	Max	Unit	
$V_{\text{CE(sat)}}$	Base-Emitter Saturation Voltage $(I_C = 10 \text{mAdc})$ $(I_C = 50 \text{mAdc})$ $(I_C = 50 \text{mAdc})$	0.65	0.85 0.95	Vdc	

Symbol	Characteristic	Min	Max	Unit
f⊤	Current-Gain-Bandwidth Product	200		NALIZ
Т	$(I_C = 10 \text{mAdc}, V_{CE} = 20 \text{Vdc}, f = 100 \text{MHz})$	300		MHZ
0	Output Capacitance		4.0	
C_{obo}	$(V_{CB} = 5.0 Vdc , I_E = 0 , f = 1.0 MHz)$		4.0	pF
C_{ibo}	Input Capacitance		8.0	pF
Oibo	$(V_{EB} = 0.5Vdc, I_{C}=0, f = 1.0MHz)$		0.0	Pi
Hie	Input Impedance	1.0	10	kΩ
	$(V_{CE} = 10Vdc, I_{C} = 1.0mAdc, f = 1.0KHz)$	1.0	10	17.52
Hre	Voltage Feedback Ration	0.5 8.0	8.0	×10 ⁻⁴
	$(V_{CE} = 10Vdc, I_{C} = 1.0mAdc, f = 1.0KHz)$	0.5	0.0	X10
Hfe	Small-Signal Current Gain	100	400	
1116	$(V_{CE} = 10Vdc, I_{C} = 1.0mAdc, f = 1.0KHz)$	100	400	
Hoe	Output Admittance	1.0	40	µmhos
1106	$(V_{CE} = 10Vdc, I_{C} = 1.0mAdc, f = 1.0KHz)$	1.0	1.0 40	
NF	Noise Figure			
	$(V_{CE} = 5.0 Vdc, I_C = 100 \mu Adc,$		5.0	dB
	$Rs = 1.0k\Omega f = 1.0KHz$			

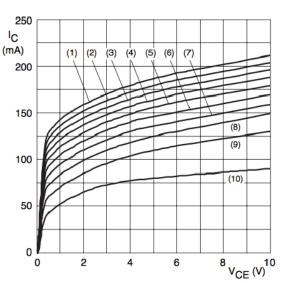
NPN General Purpose Amplifier


SMALL-SIGNAL CHARACTERISTICS						
Symbol	Characteristic		Min	Max	Unit	
t _d	Delay Time	$V_{CC} = 3.0 V_{dC}$, $V_{BE} = 0.5 V_{dC}$		35	ns	
t_r	Rise Time	$I_C = 10$ mAdc , $I_{B1} = 1.0$ mAdc)		35	ns	
ts	Storage Time	$(V_{CC} = 3.0 \text{Vdc}, I_C = 10 \text{ mAdc},$		225	ns	
t _f	Fall Time	I _{B1} =I _{B2} = 1.0mAdc)		75	ns	

- 1. FR-5=1.0 \times 0.75 \times 0.062in.
- 2. Alumina= $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.
- 3. Pulse Width \leq 300us, Duty Cycle \leq 2.0%
- 4. Pulse Test : Pulse Width \leq 300us ; Duty Cycle 2.0%

NPN General Purpose Amplifier

■Characteristics Curve



 $V_{CE} = 1 V$.

(1)
$$T_{amb} = 150 \, ^{\circ}C$$
.

(2)
$$T_{amb} = 25 \, ^{\circ}C$$
.

(3)
$$T_{amb} = -55 \, ^{\circ}C$$
.

T_{amb} = 25 °C.

(1)
$$I_B = 5 \text{ mA}$$
.

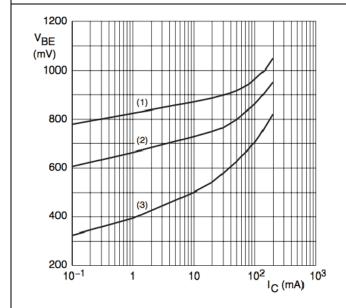
(5)
$$I_B = 3 \text{ mA}$$
.

(9)
$$I_B = 1 \text{ mA}$$
.

(2)
$$I_B = 4.5 \text{ mA}.$$

(6)
$$I_B = 2.5 \text{ mA}.$$

$$(10) I_B = 0.5 mA.$$

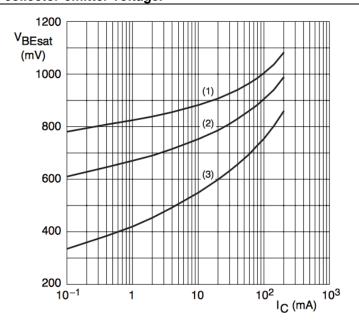

(3)
$$I_B = 4 \text{ mA}$$
.

(7)
$$I_B = 2 \text{ mA}$$
.

(4)
$$I_B = 3.5 \text{ mA}$$
. (8

(8)
$$I_B = 1.5 \text{ mA}.$$

FIG.1-DC current gain; typical values



 $V_{CE} = 1 V$.

(1)
$$T_{amb} = -55 \, ^{\circ}C$$
.

(3) $T_{amb} = 150 \, ^{\circ}C$.

FIG.2-Collector current as a function of collector-emitter voltage.

 $I_{\rm C}/I_{\rm B} = 10.$

(1)
$$T_{amb} = -55 \, ^{\circ}C$$
.

(3) $T_{amb} = 150 \, ^{\circ}C$.

FIG.3-Base-emitter voltage as a function of collector current.

FIG.4-Base-emitter saturation voltage as a function of collector current.

NPN General Purpose Amplifier

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.