Preferred Device

Quad General Purpose Transistor

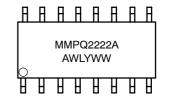
NPN Silicon

ON Semiconductor®

http://onsemi.com

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CB}	75	Vdc
Emitter - Base Voltage	V _{EB}	5.0	Vdc
Collector Current - Continuous	I _C	500	mAdc
		Four Transistors Equal Power	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.0	Watts mW/°C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	2.4 19.2	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

SO-16 CASE 751B STYLE 4

MARKING DIAGRAM

 MMPQ2222A
 = Specific Device Code

 A
 = Assembly Location

 WL
 = Wafer

 Lot
 Y
 = Year

 WW
 = Work

Week ORDERING INFORMATION

Device Package		Shipping	
MMPQ2222A	SO-16	48 Units/Rail	

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	- 1				
Collector – Emitter Breakdown Voltage (Note 1) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _(BR) CBO	75	-	-	Vdc
Emitter – Base Breakdown Voltage ($I_B = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0 -	- -	- -	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$	Ісво	-	- -	50 10	nAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	I _{EBO}		-	100	nAdc
ON CHARACTERISTICS					
DC Current Gain (Note 1) $ (I_C = 100 \ \mu\text{A}, \ V_{CE} = 10 \ V) $ $ (I_C = 1.0 \ \text{mA}, \ V_{CE} = 10 \ V) $ $ (I_C = 10 \ \text{mA}, \ V_{CE} = 10 \ V) $ $ (I_C = 150 \ \text{mA}, \ V_{CE} = 10 \ V) $ $ (I_C = 500 \ \text{mA}, \ V_{CE} = 10 \ V) $ $ (I_C = 150 \ \text{mA}, \ V_{CE} = 1.0 \ V) $	h _{FE}	35 50 75 100 40 50	HOUSE OF THE PROPERTY OF THE P	- 300 -	-
Collector – Emitter Saturation Voltage (Note 1) $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{CE(sat)}	Mile	MA	0.3 1.0	Vdc
Base – Emitter Saturation Voltage (Note 1) $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{BE(sat)}	41 <u>0</u>	- -	1.2 2.0	Vdc
DYNAMIC CHARACTERISTICS	V.O. Q				
Current – Gain – Bandwidth Product (Note 1) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T O	200	350	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C_{ob}	-	4.5	-	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ib}	-	17	-	pF
SWITCHING CHARACTERISTICS	•				
Turn–On Time $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	t _{on}	_	25	-	ns
Turn–Off Time ($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc}$)	t _{off}	_	250	-	ns

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

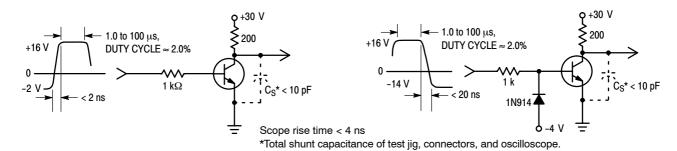


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

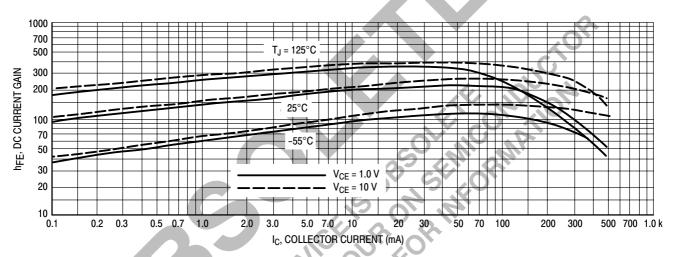


Figure 3. DC Current Gain

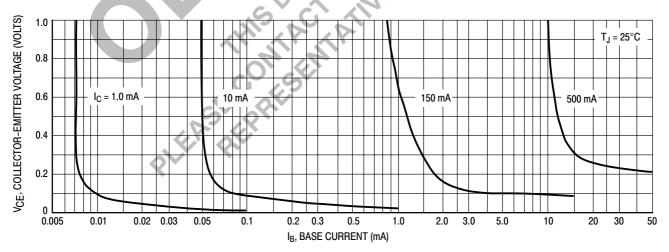


Figure 4. Collector Saturation Region

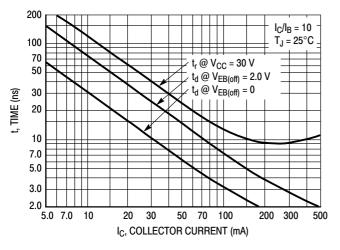


Figure 5. Turn - On Time

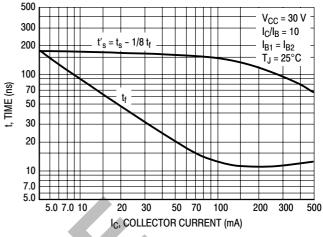


Figure 6. Turn - Off Time

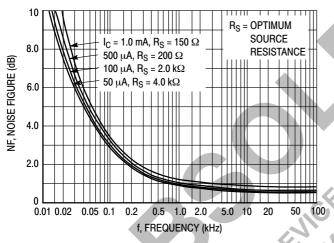


Figure 7. Frequency Effects

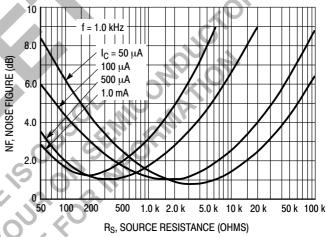


Figure 8. Source Resistance Effects

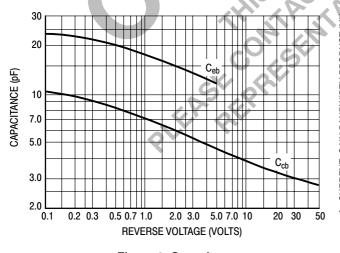


Figure 9. Capacitances

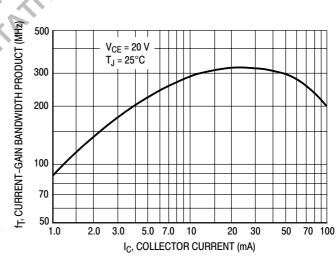
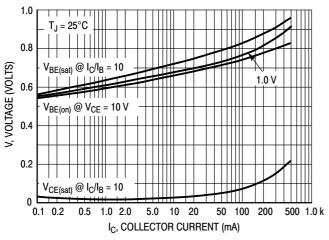
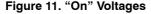
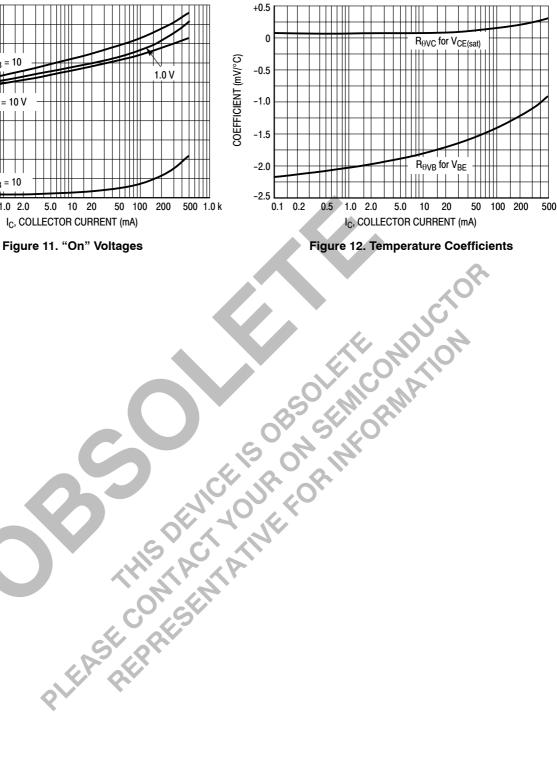
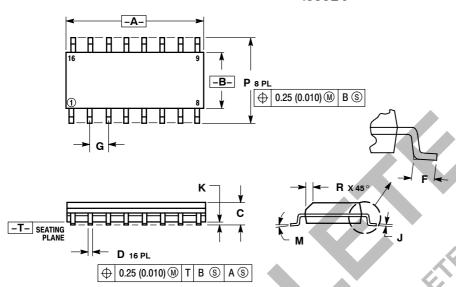





Figure 10. Current-Gain Bandwidth Product

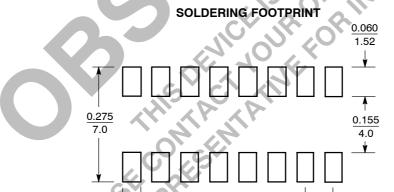


PACKAGE DIMENSIONS

SO-16 CASE 751B-05 **ISSUE J**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.


 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
_ R_	0.25	0.50	0.010	0.019

STYLE 4:

- COLLECTOR, DYE #1
 - COLLECTOR, #1 COLLECTOR, #2

 - COLLECTOR, #2
 - COLLECTOR, #3 COLLECTOR, #3
 - 5. 6. 7. COLLECTOR, #4
 - COLLECTOR, #4
 - 9 BASE, #4
- EMITTER, #4 10.
- BASE, #3
- EMITTER, #3 12. BASE, #2 13.
- EMITTER, #2
- 15. BASE, #1
- EMITTER, #1

0.024 0.050 inches 0.6 1.270 mm

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative