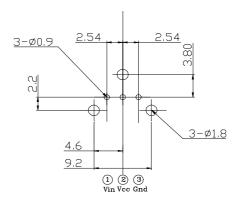

Features

- 1.Uni-directional data transmission using plastic fiber
- 2.Signal transmission speed
 - :MAX. 8 Mbps (NRZ signal)
- 3. Operating voltage: 4.75 to 5.25 V
- 4.TTL and high speed C-MOS LOGIC IC compatible


Outline Dimensions

Recommended drilling as viewd from the soldering face

 $@TA=25^{\circ}C$

NOTES:

Tolerance is ±0.3mm unless otherwise noted.

Absolute Maximum Ratings

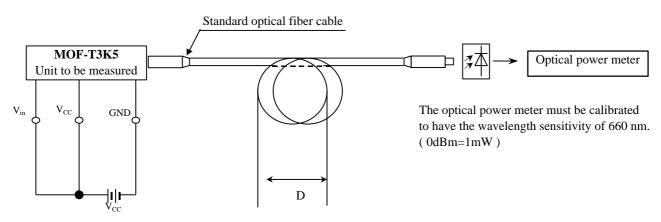
iaxiiiiaiii itatiiigo			C 111-25 C
Parameter	Symbol	Rating	Unit
Supply voltage	V_{cc}	-0.5 to + 7.0	V
Input voltage	V_{in}	-0.5 to Vcc +0.5	V
Operating temperature	T_{opr}	-20 to +70	°C
Storage temperature	T_{stg}	-30 to +80	°C
Soldering temperature *1	T_{sol}	260	°C

^{*1} For 5s (2 times or less)

REV: A1

UNI Unity Opto Technology Co., Ltd.

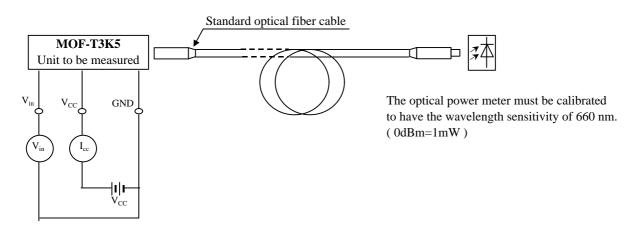
09/11/2001


Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	V_{cc}	4.75	5.0	5.25	V
Operating transfer rate	T			8	Mbps

Electro-Optical Characteristics

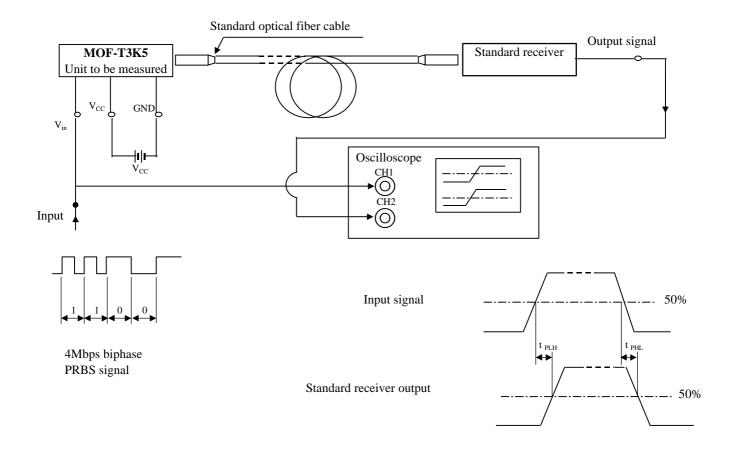
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	$\lambda_{ m p}$		630	660	690	nm
Optical power output coupling with fiber	P_{c}	Refer to Fig. 1	-21	-18	-15	dBm
Dissipation current	I_{cc}	Refer to Fig. 2		8	13	mA
High level input voltage	V_{iH}	Refer to Fig. 2	2.1		V_{cc}	V
Low level input voltage	V_{iL}	Refer to Fig. 2			0.8	V
Low High delay time	t_{pLH}	Refer to Fig. 3		120		ns
High Low delay time	t_{pHL}	Refer to Fig. 3		120		ns
Pulse width distortion	$\Delta_{ m tw}$	Refer to Fig. 3	-25		+25	ns


Fig. 1 Measuring Method of Optical Output Coupling with Fiber

Notes (1)Vcc=5.0V (State of operating)

(2)To bundle up the standard fiber optic cable, make it into a loop with the diameter D=10cm or more.

Fig. 2 Measuring Method of Intput Voltage and Supply Current


Input conditions and judgement method

mpan communication for general means at					
Conditions	Judgement method				
V _{in} =2.1V or more	-21dBm<=Pc<=-15dBm, Icc=13mA or less				
V _{in} =0.8V or less	Pc<=-36dBm, Icc=13mA or less				

Note: V_{cc}=5.0V (State of operating)

UNI Unity Opto Technology Co., Ltd. KEV : A1

Fig.3 Measuring Method of Pulse Response

Test item

Test item	Symbol	Test condition
Low High pulse delay time	t _{PLH}	Refer to the above prescriptions
High Low pulse delay time	t _{PHL}	Refer to the above prescriptions
Pulse width distortion	Δtw	Δtw=t _{PHL} - t _{PLH}

Notes (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.

- (2) Vcc=5.0 V (State of operating)
- (3) The probe for the oscilloscope must be more than 1M and less than 10pF.

REV: A1