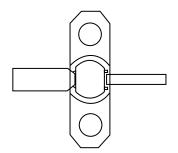


Cascadable Silicon Bipolar MMIC Amplifier

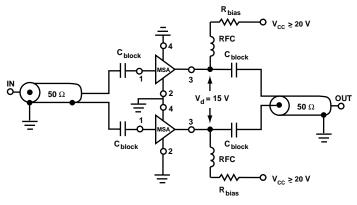
Technical Data

MSA-1023

Features


- High Output Power: +27 dBm Typical $P_{1 dB}$ at 1.0 GHz
- Low Distortion: 37 dBm Typical IP₃ at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Hermetic, Metal/Beryllia Stripline Package
- Impedance Matched to 25 Ω for Push-Pull Configurations

Description


The MSA-1023 is a high performance, medium power silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, BeO flange package for good thermal characteristics. This MMIC is designed for use in a push-pull configuration in a 25 Ω system. The MSA-1023 can also be used as a single-ended amplifier in a 50 Ω system with slightly reduced performance. Typical applications include narrow and broadband RF amplifiers in industrial and military systems.

The MSA-series is fabricated using HP's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

230 mil BeO Flange Package

Typical Push-Pull Biasing Configuration

MSA-1023 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Current	425 mA		
Power Dissipation ^[2,3]	7.0W		
RF Input Power	+25dBm		
Junction Temperature	200°C		
Storage Temperature	-65 to 200°C		

Thermal Resistance^[2,4]:

 $\theta_{jc} = 15^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 66.7 mW/°C for $T_{\rm C} > 95$ °C.

4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I_{d} = 325 mA, Z_{0} = 25 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 1.0 GHz	dB	7.5	8.5	9.5
ΔG_P	Gain Flatness	f = 0.1 to 2.0 GHz	dB		± 0.6	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		2.5	
VOUD	Input VSWR	f = 0.1 to 2.0 GHz			2.0:1	
VSWR	Output VSWR	f = 0.1 to 2.0 GHz			2.8:1	
NF	25Ω Noise Figure	f = 1.0 GHz	dB		7.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	25.0	27.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		37.0	
tD	Group Delay	f = 1.0 GHz	psec		250	
Vd	Device Voltage		V	13.5	15.0	16.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-18.0	

Notes:

1. The recommended operating current range for this device is 150 to 400 mA. Typical performance as a function of current is on the following page.

2. Referenced from 10 MHz gain (G_P).

S₁₁ S_{21} S_{12} S_{22} Freq. GHz Mag Ang dB Mag Ang dB Mag Ang Mag Ang k -99 0.001 .40 -12115.35.85-17.9.128 22 .42 0.69 149 0.005 .51 -1678.5 2.67-15.9.160 .45 -1611.05 1566 0.010 -174 7.52.36.162 3 .52 166 -15.8.45 -1711.16 0.025 .52 -1787.2 2.28 172-15.8.162 .45 -1771.20 1 .52 179 7.12.26 173 -1791.21 0.050 -15.8.161 -1.45 2.25 1.21 .53 176 7.0 170 -15.8.161 -3 179 0.100 .45 2.25 1.21 0.200 .53 1727.0163-15.8.161 -5 .46 174 0.400 .51 164 7.02.24 146 -15.8.161 -11 .46 170 1.227.0 2.24 1.23 0.600 .48 157 130 -16.0.159 -16.45 165 0.800 .45 151 7.02.23 113 -16.1.157 -21.44 161 1.24 .42 146 7.02.23 95 .155 -26157 1.24 1.000 -16.2.44 .38 2.22 1.24 144 6.9 78 -16.4.151 -31 155 1.200.44 .35 2.20 61 1.24 1.400 145 6.8 -16.7.146 -36 .45 154 1.600 .34 149 6.6 2.1544 -17.0.141 -41 .46 153 1.22.36 6.3 2.07 19 -17.3150 1.800 152.136 -45.49 1.18 2.000 .39 153 5.91.97 11 -17.7.130 -49.62 148 1.13.51 148 4.6 1.69-24 -18.3-52.52 2.500.121 140 .91 .60 .127 .70 128 3.000 133 3.0 1.41 -57-17.9-57.59

MSA-1023 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 325 mA$)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

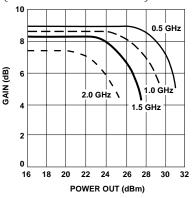
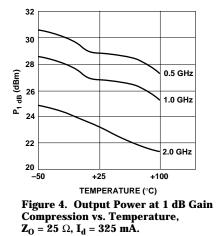



Figure 1. Typical Gain vs. Power Out, $Z_0 = 25^{\circ}\Omega$, $I_d = 325$ mA.

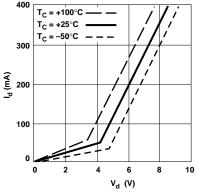
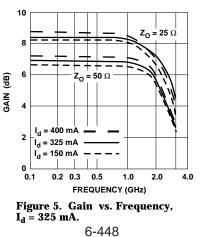



Figure 2. Device Current vs. Voltage.

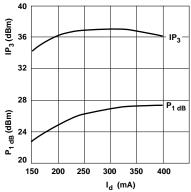


Figure 3. Output Power at 1 dB Gain Compression, Third Order Intercept Point vs. Current, $Z_0 = 25\Omega$, f = 1.0 GHz.

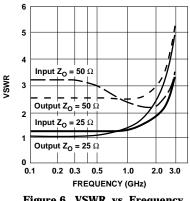
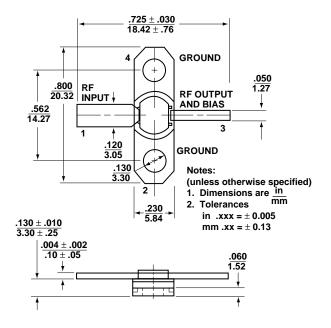



Figure 6. VSWR vs. Frequency, $I_d = 325 \text{ mA}.$

230 mil BeO Flange Package

