

RADIATION HARDENED HIGH POWER OP-AMP

106RH

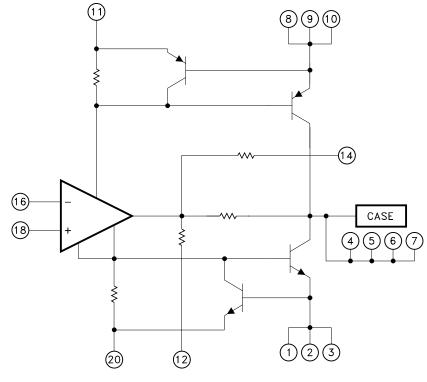

MIL-PRF-38534 CERTIFIED

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:

- Total Dose Rated to 100K Rad
- High Output Current 2 Amps Peak
- Low Power Consumption-Class C Design
- Programmable Current Limit
- Rad Hard Design
- Output Short Circuit Capability
- Replacement for MSK0021FP
- Available as SMD #TBD



DESCRIPTION: MSK106RH

The MSK 106RH is a Radiation Hardened Class C power operational amplifier. This amplifier offers large output currents, making it an excellent choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK 106RH is packaged in a 20 pin hermetic metal flatpack that is available with straight or gull wing leads.

1

EQUIVALENT SCHEMATIC

PIN-OUT INFORMATION

1	ISC-	20	-VCC	
2	ISC-	19	NC	
3	ISC-	18	+ VIN	
4	VOUT	17	NC	
5	VOUT	16	-VIN	
6	VOUT	15	NC	
7	VOUT	14	Compensation	
8	ISC+	13	NC	
9	ISC+	12	GND	
10	ISC+	11	+VCC	
CASE IS ALSO VOUT				

TYPICAL APPLICATIONS

- Servo Amplifier Audio Amplifier
- Motor Driver
 Programmable Power Supply

ABSOLUTE MAXIMUM RATINGS

$\pm Vcc$	Supply Voltage ±22V	Tst	Storage Temperature Range65° to +150°C
lout	Peak Output Current	TLD	Lead Temperature Range 300°C
VIN	Differential Input Voltage ±30V		(10 Seconds)
VIN	Common Mode Input Voltage $\cdots \cdots \pm 15V$	TJ	Junction Temperature
Rтн	Thermal Resistance 6.0°C/W	Tc	Case Operating Temperature Range
	Junction to Case (@ 125°C)		Military Versions (K/H/E)55°C to +125°C
			Industrial Versions40°C to +85°C

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions ®	Group A	Military (5)			Industrial 4			
. aramotor		Subgroup	Min.	Тур.	Max.	Min.	Typ.	Max.	Units
STATIC				•					
Supply Voltage Range ②		-	±5	±15	±22	±5	±15	±22	V
0: 10 1	VIN = OV	1	-	±1.7	±3.5	-	±1.7	±4.0	mA
Quiescent Current	VIN = OV	2,3	-	-	± 7.5	-	-	-	mA
Power Consumption ②	VIN = OV	1,2,3	-	75	225	-	75	225	mW
INPUT									
leaved Officed Voltage	VIN = OV	1	-	±0.5	±3.0	-	±0.5	±5.0	mV
Input Offset Voltage		2,3	-	±2.0	±5.0	-	-	-	mV
	VcM = 0V	1	-	±100	±500	-	±150	±500	nA
Input Bias Current	Either Input	2, 3	-	±0.4	±2.0	-	-	-	μΑ
Innut Offact Current	Vcm = 0V	1	-	± 2.0	± 100	-	± 2.0	± 300	nA
Input Offset Current	VCM = UV	2,3	-	-	± 300	-	-	-	nA
Input Capacitance ③	F = DC	-	-	3	-	-	3	-	рF
Input Resistance ②	F = DC	-	0.3	1.0	-	0.3	1.0	-	MΩ
Common Mode Rejection Ratio	F = 10Hz VcM = ±10V	4	70	90	-	70	90	-	dB
Common wode nejection natio		5,6	70	90	-	-	-	-	dB
Power Supply Rejection Ratio	$Vcc = \pm 5V \text{ to } \pm 15V$	1	80	95	-	80	95	-	dB
1 ower oupply nejection natio		2,3	80	-	-	-	-	-	dB
Input Noise Voltage ③	F = 10Hz to $10KHz$	-	-	5	-	-	5	-	μVRMS
OUTPUT									
	$RL = 100\Omega$ F = 100Hz	4	± 13.5	±14	-	±13.0	± 14	-	V
Output Voltage Swing		5,6	± 13.5	±14	-	-	-	-	V
	$RL = 10\Omega$ F = 100Hz	4	± 11	±12	-	±10.5	±12	-	V
Output Short Circuit Current	$Rsc = 0.5\Omega$ $Vout = MAX$	4	0.8	1.2	1.6	0.7	1.2	1.7	Α
Output Short Circuit Current	$Rsc = 5\Omega$ $Vout = GND$	4	50	150	250	50	150	250	mA
Settling Time ③	0.1% 2V step	-	-	4	-	-	4	-	μS
TRANSFER CHARACTERISTICS									
Slew Rate	Vout = $\pm 10V$ RL = 10Ω	4	1.2	1.6	-	1.2	1.6	-	V/μS
Open Loop Voltage Gain	$F = 10Hz$ $RL = 1K\Omega$	4	100	105	-	100	105	-	dB
Open Loop Voltage Galfi		5,6	88	96	-	-	-	-	dB
Transition Times	1V to 2V P Rise and Fall	4	-	0.3	1.0	-	0.3	1.2	μS
Overshoot	1V to 2V P Small Signal		-	5	20	-	5	20	%

NOTES:

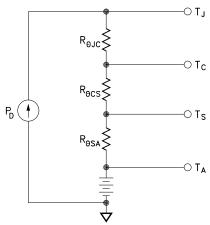
- (1) Unless otherwise specified, $\pm Vcc = \pm 15V$, Cc = 3000pF.
- 2 Guaranteed by design but not tested.
- Typical parameters are representative of actual device performance but are for reference only.
- (4) Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.
- Military grade devices (K/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.

Subgroup 1, 4 TA = TC = +25 °C

Subgroup 2, 5 TA = TC = +125 °C

Subgroup 3, 6 $TA = TC = -55^{\circ}C$

- 6 Reference DSCC SMD TBD for electrical specifications for devices purchased as such.
- Subgroup 5 and 6 testing available upon request.
- 8 For complete radiation test data, consult "MSK 106RH Total Dose Test Report".


2

APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

Governing Equation:

$$T_J = P_D X (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$$

Where

TJ = Junction Temperature PD = Total Power Dissipation

 $R_{\theta JC}$ = Junction to Case Thermal Resistance $R_{\theta SA}$ = Case to Heat Sink Thermal Resistance $R_{\theta SA}$ = Heat Sink to Ambient Thermal Resistance

TC = Case Temperature
TA = Ambient Temperature
TS = Sink Temperature

Example:

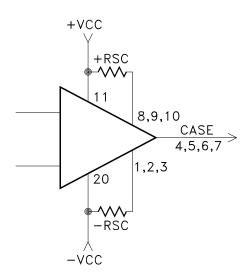
In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 10 ohm load for 1 amp of output current. For a worst case analysis we will treat the 1 amp peak output current as a D.C. output current. The power supplies are $\pm\,15$ VDC.

1.) Find Power Dissipation

PD = [(quiescent current) X (+Vcc - (Vcc))] + [(Vs - Vo) X IOUT] = (3.5 mA) X (30V) + (5V) X (1A)= 0.1W + 6W= 6.1W

- 2.) For conservative design, set $T_J = +125$ °C.
- 3.) For this example, worst case TA = +25 °C.
- 4.) R $_{\theta JC} = 6.0 \,^{\circ} \text{C/W}$
- 5.) Rearrange governing equation to solve for Resa:

 $R_{\theta SA} = (T_J - T_A) / P_D - (R_{\theta JC}) - (R_{\theta CS})$ = $(125^{\circ}C - 25^{\circ}C) / 6.1W - (6.0^{\circ}C/W) - (0.15^{\circ}C/W)$ = $10.2^{\circ}C/W$

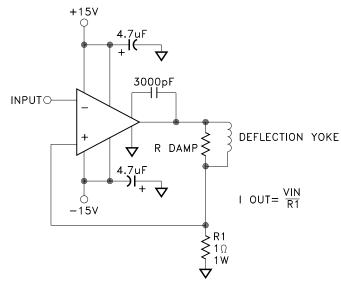

The heat sink in this example must have a thermal resistance of no more than $10.2\,^{\circ}\text{C/W}$ to maintain a junction temperature of less than $+125\,^{\circ}\text{C}$.

CURRENT LIMIT

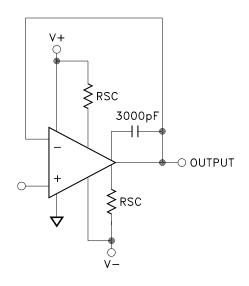
The MSK 106RH has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

$$Rsc = \frac{0.7}{Isc}$$

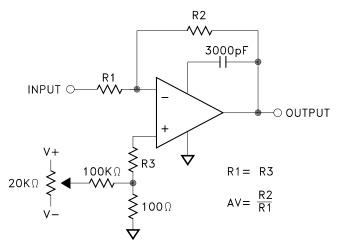
Current Limit Connection

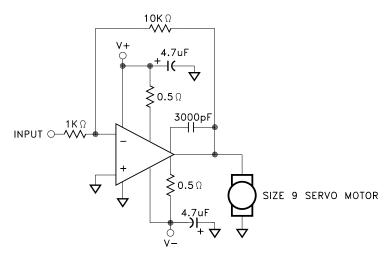


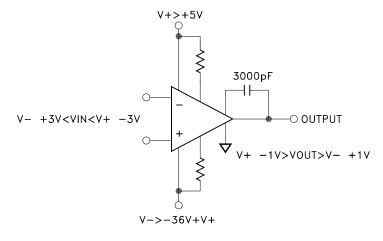
See "Application Circuits" in this data sheet for additional information on current limit connections.


POWER SUPPLY BYPASSING

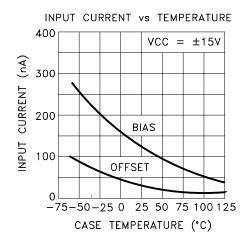
Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. It is also a good practice with high power op-amps, such as the MSK 106RH, to place a 30-50 microfarad capacitor with a low effective series resistance, in parallel with the other two power supply decoupling capacitors. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.

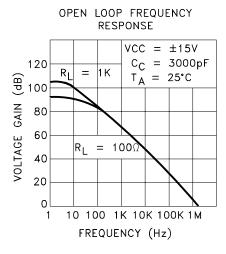

APPLICATION CIRCUITS

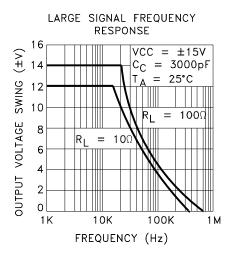

CRT DEFLECTION YOKE DRIVER

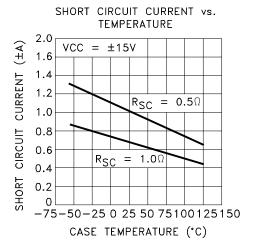

UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING

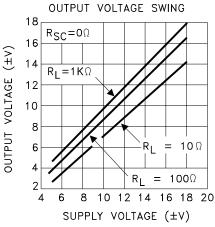
OFFSET VOLTAGE NULL CIRCUIT

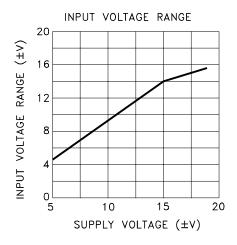


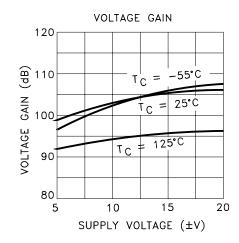

DC SERVO AMPLIFIER

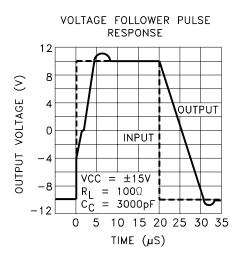


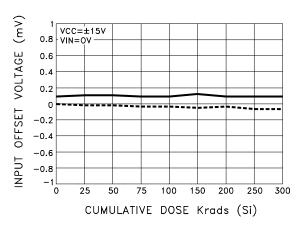

NON SYMMETRICAL SUPPLIES

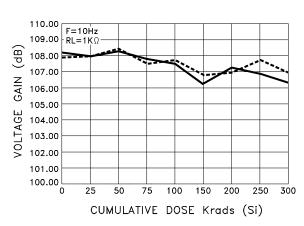

TYPICAL PERFORMANCE CURVES



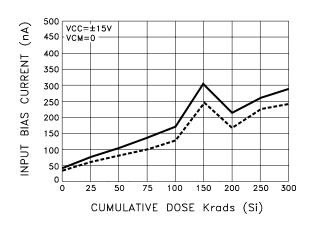


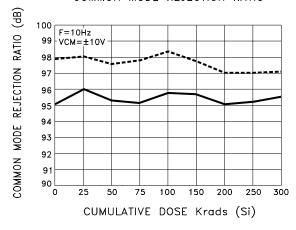


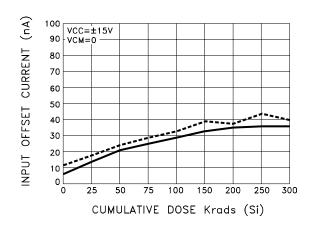


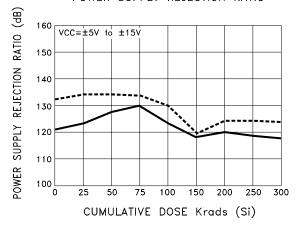


RADIATION PERFORMANCE CURVES

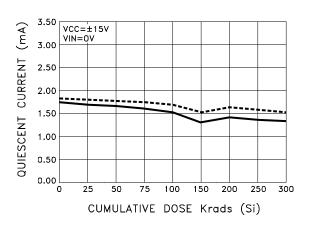

INPUT OFFSET VOLTAGE

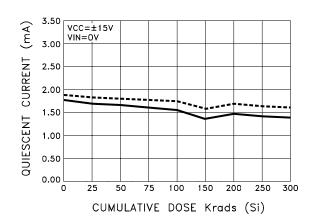

VOLTAGE GAIN


INPUT BIAS CURRENT

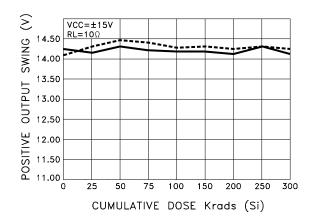

COMMON MODE REJECTION RATIO

INPUT OFFSET CURRENT

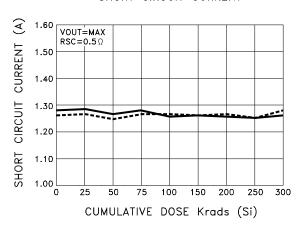

POWER SUPPLY REJECTION RATIO

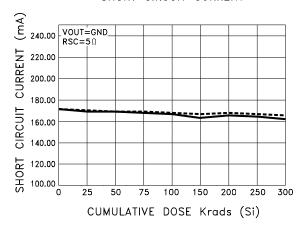

---- AVERAGE BIASED
---- AVERAGE UNBIASED

RADIATION PERFORMANCE CURVES CONT'D

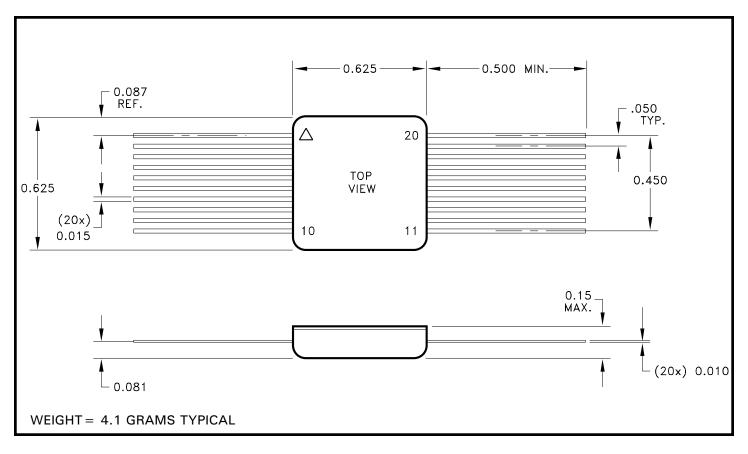

POSITIVE QUIESCENT CURRENT


NEGATIVE QUIESCENT CURRENT


POSITIVE OUTPUT SWING


NEGATIVE OUTPUT SWING

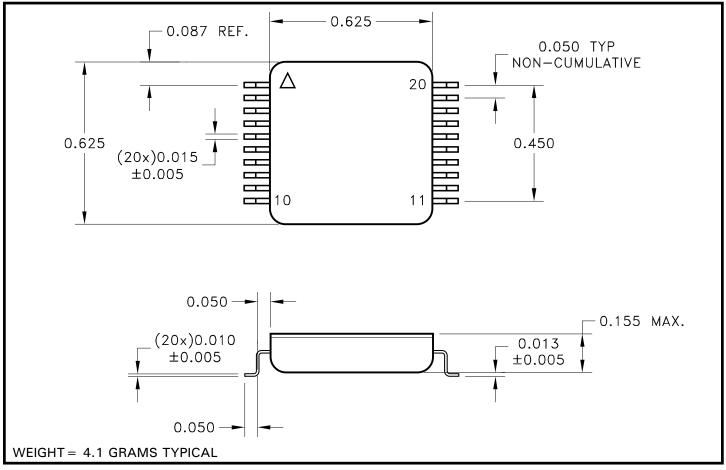
SHORT CIRCUIT CURRENT


SHORT CIRCUIT CURRENT

AVERAGE BIASED
---- AVERAGE UNBIASED

7

MECHANICAL SPECIFICATIONS CONTINUED



NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK106RH	INDUSTRIAL
MSK106E RH	EXTENDED RELIABILITY
MSK106H RH	MIL-PRF-38534 CLASS H
MSK106K RH	MIL-PRF-38534 CLASS K
SMD TBD	TBD

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK106RHG	INDUSTRIAL
MSK106E RHG	EXTENDED RELIABILITY
MSK106H RHG	MIL-PRF-38534 CLASS H
MSK106K RHG	MIL-PRF-38534 CLASS K
SMD TBD	TBD

M.S. Kennedy Corp.

4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 Fax (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.

Contact MSK for MIL-PRF-38534 Class H, Class K and Appendix G (radiation) status.