

# MSM10S0000 0.8 µm Sea of Gates Family 3-V and 5-V Applications

December 1997



#### TRADEMARKS

DAZIX and Advansys are trademarks of Intergraph, Inc. IKOS is a trademark of IKOS Systems, Inc. Mentor Graphics, Parade and Idea are trademarks of Mentor Graphics Corporation Synopsys is a registered trademark of Synopsys, Inc. Sun is a registered trademark of Sun Microsystems, Inc. ValidSIM, RapidSIM, Valid GED, Verilog, Veritool, Verifault, Testscan and Amadeus are trademarks of Cadence Design System, Inc. VIEWLogic and Workview are trademarks of Viewlogic Systems, Inc. SPARC is a registered trademark of SPARC International, Inc., based on technology developed by Sun Microsystems, Inc.

The information contained herein can change without notice owing to product and/or technical improvements.

Please make sure before using the product that the information you are referring to is up-to-date.

The outline of action and examples of application circuits described herein have been chosen as an explanation of the standard action and performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual circuit and assembly designs.

OKI assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters outside the specified maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges, including but not limited to operating voltage, power dissipation, and operating temperature.

The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g.,office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property or death or injury to humans. Such applications include, but are not limited to: traffic control, automotive, safety, aerospace, nuclear power control, and medical, including life support and maintenance.

Certain parts in this document may need governmental approval before they can be exported to certain countries. The purchaser assumes the responsibility of determining the legality of export of these parts and will take appropriate and necessary steps, at their own expense, for export to another country.

Copyright 1996 OKI SEMICONDUCTOR

OKI Semiconductor reserves the right to make changes in specifications at anytime and without notice. This information furnished by OKI Semiconductor in this publication is believed to be accurate and reliable. However, no responsibility is assumed by OKI Semiconductor for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of OKI.

# Oki Semiconductor MSM10S0000

0.8 µm Sea of Gates Family for 3-V and 5-V Applications

# DESCRIPTION

The Oki MSM10S0000 Sea of Gates (SOG) family is a high-performance, high-density semicustom product using Oki's scalable, 0.8  $\mu$ m drawn (0.6  $\mu$ m effective), two-layer metal, polysilicide, dual-well process which has been adapted for logic from Oki's proven high volume 4- and 16-Meg DRAM manufacturing process.

The MSM10S0000 features a wide operating range, from 2.7 to 5.5 V, timing driven layout, and clock skew less than 1.0 ns. Also featured is speed/density logic permitting optimized critical paths with high-speed logic functions and reduced total chip power and cell area for noncritical paths with high-density logic. Additionally the MSM10S0000 has both memory and high-performance, high-density mega macrocells like universal asynchronous receiver/transmitters (UARTs) and 82Cxx. Other features include typical gate delays under 300 ps and flip-flop toggle rates over 500 MHz. Usable two input gate equivalent circuit density exceeds 100k gates.

## FEATURES

- 0.8 µm drawn two-metal CMOS
- 7 sizes from 11k to 225k total gates
- Up to 840 configurable I/O cells
- Clock tree macrocells with  $\leq 1$  ns clock skew (FO = 2,000 at 70 MHz)
- Usable density from 4k to >80k gates (maximum random logic)
- · Slew rate controlled outputs
- + I/Os may be  $V_{SS}$  ,  $V_{DD}$  , CMOS, TTL, 3-state, 2 to 48 mA
- ESD 4 kV, latchup >200 mA
- ATVG using scan macros

- Compatible with Oki's MSM91S000 0.8 μm Customer Structured Array (CSA) products
- JTAG-Boundary Scan, small computer system interface (SCSI) and RTC cells in development
- Supports most popular EWS: Cadence, DAZIX, IKOS, Mentor Graphics, Synopsys, Valid and VIEWLogic
- Timing driven layout for speed enhanced net and path control
- Efficient standard product library of 82Cxx, UART and multiport memories
- 3-V version for low power

| Part Number | Raw Gates | Typical Usable Gates<br>Logic Only | No. of I/O Cells | No. of Configurable I/O Pads (Wire<br>Bond) |
|-------------|-----------|------------------------------------|------------------|---------------------------------------------|
| MSM10S0050  | 5,148     | 2,214                              | 144              | 72                                          |
| MSM10S0110  | 10,864    | 3,693                              | 200              | 100                                         |
| MSM10S0210  | 21,330    | 7,252                              | 272              | 136                                         |
| MSM10S0300  | 30,268    | 10,291                             | 320              | 160                                         |
| MSM10S0570  | 57,018    | 19,386                             | 432              | 216                                         |
| MSM10S0980  | 98,020    | 33,326                             | 560              | 280                                         |

#### MSM10S0000 FAMILY

## **ARRAY ARCHITECTURE**

The primary components of a 0.8 µm SOG circuit include:

- I/O base cells
- Configurable I/O pads for V<sub>DD</sub>, V<sub>SS</sub> or I/O
- +  $V_{DD}$  and  $V_{SS}$  pads dedicated to wafer probing
- · Separate power bus for output buffers
- · Separate power bus for internal core logic and input buffers
- Core base cells contain n-channel and p-channel pairs, arranged in column of gates
- · Isolated gate structure for reduced input capacitance and increased routing flexibility

Each array has 16 dedicated corner pads for power and ground use during wafer probing. There are four pads per corner. The arrays also have separate power rings for the internal core functions ( $V_{DDC}$  and  $V_{SSC}$ ) and the output drive transistors ( $V_{DDO}$  and  $V_{SSO}$ ) as shown in Figure 1.



Figure 1. MSM10S0000 Array Architecture

# **ELECTRICAL CHARACTERISTICS**

## Absolute Maximum Ratings<sup>[1]</sup>

| Parameter                         | Symbol           | Condition                          | Value                        | Unit |
|-----------------------------------|------------------|------------------------------------|------------------------------|------|
| Power supply voltage              | V <sub>DD</sub>  |                                    | -0.5 to +6.5                 | V    |
| Input voltage                     | VI               |                                    | -0.5 to V <sub>DD</sub> +0.5 | V    |
| Output voltage                    | V <sub>0</sub>   | T <sub>j</sub> = 25°C<br>Vcc = 0 V | -0.5 to V <sub>DD</sub> +0.5 | V    |
| Output current per I/O base cell  | I <sub>O</sub>   | 122 - 0 1                          | -16 to +16                   | mA   |
| Current per power PAD             | I <sub>PAD</sub> |                                    | -90 to +90                   | mA   |
| Storage temperature               |                  |                                    | -65 to +150                  | °C   |
| ESD voltage (MIL-STD-883C 3015.7) |                  |                                    | 4000                         | V    |
| Input/output latch-up current     |                  |                                    | ±200                         | mA   |

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Recommended Operating Conditions (V<sub>SS</sub> = 0 V)

|                                                      |                 | Rated Value |      |      |      |
|------------------------------------------------------|-----------------|-------------|------|------|------|
| Parameter                                            | Symbol          | Min.        | Тур. | Max. | Unit |
| Power supply voltage                                 | V <sub>DD</sub> | 2.7         | 3.3  | 3.6  | V    |
|                                                      |                 | 4.5         | 5.0  | 5.5  | V    |
| Operating temperature                                | T <sub>a</sub>  | -40         | +25  | +85  | °C   |
| Input rise/fall time (normal type) <sup>[1][2]</sup> | trA, tfA        | -           | 2    | 500  | ns   |
|                                                      | trB, tfB        | -           | 2    | 500  | ns   |
| Input rise/fall time (Schmitt Trigger type) [3] [4]  | trC, tfC        | -           | -    | 60   | μs   |
|                                                      | trD, tfD        | -           | -    | 200  | μs   |

1. trA, tfA – TTL interface normal input buffer

2. trB, tfB - CMOS interface normal input buffer

3. trC, tfC – TTL interface Schmitt Trigger input buffer

4. trD, tfD – CMOS interface Schmitt Trigger input buffer

### Operating Range (V<sub>SS</sub> = 0 V)

| Parameter                            | Symbol           | Rated Value  | Unit |
|--------------------------------------|------------------|--------------|------|
| Supply voltage                       | V <sub>DD</sub>  | 2.7 to 5.5   | V    |
| Ambient temperature                  | Ta               | -40 to +85   | °C   |
| Oscillation frequency <sup>[1]</sup> | f <sub>OSC</sub> | 30 k to 50 M | Hz   |

1. Oscillator macrocells supported for V<sub>DD</sub> = 4.5 to 5.5 V.

3

| Parameter                       | Symbol           | Condition                                              | Min.                 | Typ. <sup>[1]</sup> | Max.                 | Unit |
|---------------------------------|------------------|--------------------------------------------------------|----------------------|---------------------|----------------------|------|
| "H" level input voltage         | V <sub>IH</sub>  | TTL input                                              | 1.8                  | -                   | V <sub>DD</sub> +0.5 | V    |
|                                 |                  | CMOS input                                             | 0.7xV <sub>DD</sub>  | -                   | V <sub>DD</sub> +0.5 | V    |
| "L" level input voltage         | V <sub>IL</sub>  | TTL input                                              | -0.5                 | -                   | 0.5                  | V    |
|                                 |                  | CMOS input                                             | -0.5                 | -                   | 0.3xV <sub>DD</sub>  | V    |
| TTL level Schmitt Trigger input | V <sub>t+</sub>  | -                                                      | -                    | 1.3                 | 1.8                  | V    |
| threshold voltage               | V <sub>t-</sub>  | -                                                      | 0.5                  | 1                   | -                    | V    |
|                                 | ΔVT              | V <sub>t+</sub> - V <sub>t-</sub>                      | 0.1                  | 0.3                 | -                    | V    |
| CMOS level Schmitt Trigger      | V <sub>t+</sub>  | -                                                      | -                    | 2                   | 0.76xV <sub>DD</sub> | V    |
| input threshold voltage         | V <sub>t-</sub>  | -                                                      | 0.24xV <sub>DD</sub> | 1                   | -                    | V    |
|                                 | ΔVT              | V <sub>t+</sub> - V <sub>t-</sub>                      | 0.1xV <sub>DD</sub>  | 1                   | -                    | V    |
| "H" level output voltage        | V <sub>OH</sub>  | I <sub>OH</sub> = 1, 2, 4, 6, 8, 12 mA                 | 2.2                  | -                   | -                    | V    |
| "L" level output voltage        | V <sub>OL</sub>  | I <sub>OL</sub> = 1, 2, 4, 6, 8 mA                     | -                    | -                   | 0.3                  | V    |
|                                 |                  | I <sub>OL</sub> = 12 or 24 mA                          | -                    | -                   | 0.4                  | V    |
| "H" level input current         | I <sub>IH</sub>  | V <sub>IH</sub> = V <sub>DD</sub>                      | -                    | 0.01                | 1                    | μΑ   |
|                                 |                  | $V_{IH} = V_{DD}$ (50 k $\Omega$ pull down)            | 5                    | 35                  | 120                  | μA   |
| "L" level input current         | IIL              | V <sub>IL</sub> = V <sub>SS</sub>                      | -1                   | -0.01               | -                    | μA   |
|                                 |                  | $V_{IL} = V_{SS} (50 \text{ k}\Omega \text{ pull up})$ | -120                 | -35                 | -5                   | μA   |
|                                 |                  | $V_{IL} = V_{SS} (3 \text{ k}\Omega \text{ pull up})$  | -2                   | 55                  | 120                  | mA   |
| 3-state output leakage current  | IOZ <sub>H</sub> | V <sub>OH</sub> = V <sub>DD</sub>                      | -                    | 0.01                | 1                    | μA   |
|                                 | IOZL             | $V_{OL} = V_{SS}$                                      | -1                   | -0.01               | -                    | μΑ   |
|                                 |                  | $V_{OL} = V_{SS}$ (50 k $\Omega$ pull up)              | -120                 | -35                 | -5                   | μΑ   |
|                                 |                  | $V_{OL} = V_{SS}$ (3 k $\Omega$ pull up)               | -2                   | 55                  | 12                   | mA   |
| Stand-by current                | I <sub>DDS</sub> | Output open $V_{IH} = V_{DD}, V_{IL} = V_{SS}$         | -                    | 0.1                 | 10                   | μΑ   |

# DC Characteristics (V<sub>DD</sub> = 2.7 to 3.6 V, V<sub>SS</sub> = 0 V, T<sub>j</sub> = -40° to +85°C)

1. Typical condition is  $V_{DD}$  = 3.0 V and  $T_j$  = 25°C. Typical process.

| Parameter                                   |                                           | Driving Type                        | Condition                                                                    | Rated<br>Value <sup>[1] [2]</sup> | Unit |
|---------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------------------------------------|-----------------------------------|------|
| Internal gate delay times                   | Inverter<br>2-input NAND<br>2-input NOR   | 1x<br>1x<br>1x                      | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>Output loading:<br>FO = 1, L = 0 mm | 0.31<br>0.47<br>0.52              | ns   |
|                                             | Inverter                                  | 1x<br>2x<br>4x                      |                                                                              | 0.87<br>0.67<br>0.46              | ns   |
|                                             | 2-input NAND                              | 1x<br>2x<br>4x                      | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>Output loading:                     | 1.04<br>0.70<br>0.54              | ns   |
|                                             | 2-input NOR                               | 1x<br>2x<br>4x                      | FO = 2, L = 2 mm<br>L = Metal length                                         | 1.29<br>0.92<br>0.93              | ns   |
| Flip-flop (FD1A)                            | Delay time:<br>Set-up time:<br>Hold time: | CLK1 to Q<br>D to CLK1<br>CLK1 to D |                                                                              | 2.45<br>2.60<br>0.7               | ns   |
| Toggle frequency of flip-flop               |                                           |                                     | FO = 1, L = 0 mm                                                             | 327                               | MHz  |
| Input buffer delay times                    | TTL input                                 |                                     | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>FO = 2, L = 2 mm                    | 1.27                              | ns   |
|                                             | CMOS input                                |                                     | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>FO = 2, L = 2 mm                    | 0.93                              | ns   |
| Output buffer delay times                   | Push-pull                                 | 4 mA<br>8 mA<br>16 mA<br>24 mA      | CL = 20 pF<br>CL = 50 pF<br>CL = 100 pF<br>CL = 150 pF                       | 3.15<br>3.21<br>3.37<br>3.82      | ns   |
| Output buffer transition time<br>(10 - 90%) | Push-pull                                 | Rising<br>Falling                   | CL = 150 pF<br>Buffer type: 24 mA                                            | 6.01<br>5.75                      | ns   |
|                                             | Push-pull with slew rate control          | Rising<br>Falling                   |                                                                              | 9.70<br>9.13                      | ns   |

# AC Characteristics ( $V_{DD}$ = 3.3 V, $V_{SS}$ = 0 V, $T_j$ = 25°C)

1. For the purpose of this table, rated value is calculated as an average of the LH and HL delay times of each macro type.

2. Typical process.

|                                 |                  | Rated Value                                           |                      |                    |                      |      |
|---------------------------------|------------------|-------------------------------------------------------|----------------------|--------------------|----------------------|------|
| Parameter                       | Symbol           | Condition                                             | Min                  | Typ <sup>[1]</sup> | Max                  | Unit |
| "H" level input voltage         | V <sub>IH</sub>  | TTL input                                             | 2.2                  | -                  | V <sub>DD</sub> +0.5 | V    |
|                                 |                  | CMOS input                                            | 0.7xV <sub>DD</sub>  | -                  | V <sub>DD</sub> +0.5 | V    |
| "L" level input voltage         | V <sub>IL</sub>  | TTL input                                             | -0.5                 | -                  | 0.8                  | V    |
|                                 |                  | CMOS input                                            | -0.5                 | -                  | 0.3xV <sub>DD</sub>  | V    |
| TTL level Schmitt Trigger input | V <sub>t+</sub>  | -                                                     | -                    | 1.7                | 2.2                  | V    |
| threshold voltage               | V <sub>t-</sub>  | -                                                     | 0.8                  | 1.3                | -                    | V    |
|                                 | $\Delta VT$      | V <sub>t+</sub> - V <sub>t-</sub>                     | 0.2                  | 0.4                | -                    | V    |
| CMOS level Schmitt Trigger      | V <sub>t+</sub>  | -                                                     | -                    | 3.1                | 0.76xV <sub>DD</sub> | V    |
| input threshold voltage         | V <sub>t-</sub>  | -                                                     | 0.24xV <sub>DD</sub> | 1.8                | -                    | V    |
|                                 | $\Delta VT$      | V <sub>t+</sub> - V <sub>t-</sub>                     | 0.6                  | 1.3                | -                    | V    |
| "H" level output voltage        | V <sub>OH</sub>  | I <sub>OH</sub> = 2, 4, 8, 12, 16, 24 mA              | 3.7                  | -                  | -                    | V    |
| "L" level output voltage        | V <sub>OL</sub>  | I <sub>OL</sub> = 2, 4, 8, 12, 16 mA                  | -                    | -                  | 0.4                  | V    |
|                                 |                  | I <sub>OL</sub> = 24 or 48 mA                         | -                    | -                  | 0.5                  | V    |
| "H" level input current         | IIH              | $V_{IH} = V_{DD}$                                     | -                    | 0.01               | 10                   | μA   |
|                                 |                  | $V_{IH} = V_{DD}$ (50 k $\Omega$ pull down)           | 20                   | 100                | 250                  | μA   |
| "L" level input current         | Ι <sub>ΙL</sub>  | $V_{IL} = V_{SS}$                                     | -10                  | -0.01              | -                    | μA   |
|                                 |                  | $V_{IL} = V_{SS}$ (50 k $\Omega$ pull up)             | -250                 | -100               | -20                  | μA   |
|                                 |                  | $V_{IL} = V_{SS} (3 \text{ k}\Omega \text{ pull up})$ | -5                   | -1.6               | -0.5                 | mA   |
| 3-state output leakage current  | IOZ <sub>H</sub> | $V_{OH} = V_{DD}$                                     | -                    | 0.01               | 10                   | μA   |
|                                 | IOZL             | V <sub>OL</sub> = V <sub>SS</sub>                     | -10                  | -0.01              | -                    | μA   |
|                                 |                  | $V_{OL}$ = $V_{SS}$ (50 k $\Omega$ pull up)           | -250                 | -100               | -20                  | μΑ   |
|                                 |                  | $V_{OL} = V_{SS} (3 \text{ k}\Omega \text{ pull up})$ | -5                   | -1.6               | -0.5                 | mA   |
| Stand-by current <sup>[2]</sup> | I <sub>DDS</sub> | Output open $V_{IH} = V_{DD}, V_{IL} = V_{SS}$        | -                    | 0.1                | 100                  | μΑ   |

# DC Characteristics (V<sub>DD</sub> = 4.5 to 5.5 V, V<sub>SS</sub> = 0 V, T<sub>j</sub> = -40° to +85°C)

1. Typical condition is  $V_{DD}$  = 5.0 V and T<sub>j</sub> = 25°C. Typical process.

2. RAM/ROM should be in powerdown mode.

| AC Characteristics ( $V_{DD}$ = 5 V, $V_{SS}$ = 0 V, $T_j$ = | 25°C) |
|--------------------------------------------------------------|-------|
|--------------------------------------------------------------|-------|

| Paramet                                  | er                                        | Driving Type                        | Condition                                                                    | Rated<br>Value <sup>[1] [2]</sup> | Unit |
|------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------------------------------------|-----------------------------------|------|
| Internal gate delay times                | Inverter<br>2-input NAND<br>2-input NOR   | 1x<br>1x<br>1x                      | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>Output loading:<br>FO = 1, L = 0 mm | 0.20<br>0.31<br>0.34              | ns   |
|                                          | Inverter                                  | 1x<br>2x<br>4x                      |                                                                              | 0.57<br>0.44<br>0.30              | ns   |
|                                          | 2-input NAND                              | 1x<br>2x<br>4x                      | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>Output loading:                     | 0.68<br>0.46<br>0.35              | ns   |
|                                          | 2-input NOR                               | 1x<br>2x<br>4x                      | FO = 2, L = 2 mm<br>L = Metal length                                         | 0.84<br>0.60<br>0.61              | ns   |
| Flip-flop (FD1A)                         | Delay time:<br>Set-up time:<br>Hold time: | CLK1 to Q<br>D to CLK1<br>CLK1 to D |                                                                              | 1.60<br>1.70<br>0.0               | ns   |
| Toggle frequency of flip-flop            |                                           |                                     | FO = 0, L = 0 mm                                                             | 500                               | MHz  |
| Input buffer delay times                 | TTL input                                 |                                     | Input tr/tf = V <sub>DD</sub> /1.0 ns<br>FO = 2, L = 2 mm                    | 0.83                              | ns   |
|                                          | CMOS input                                |                                     | input tr/tf = V <sub>DD</sub> /1.0 ns<br>FO = 2, L = 2 mm                    | 0.61                              | ns   |
| Output buffer delay times                | Push-pull                                 | 4 mA<br>8 mA<br>16 mA<br>24 mA      | CL = 20 pF<br>CL = 50 pF<br>CL = 100 pF<br>CL = 150 pF                       | 2.06<br>2.10<br>2.20<br>2.50      | ns   |
| Output buffer transition time (10 - 90%) | Push-pull                                 | Rising<br>Falling                   | CL = 150 pF                                                                  | 3.93<br>3.76                      | ns   |
|                                          | Push-pull with slew rate<br>control       | Rising<br>Falling                   | Buffer type: 24 mA                                                           | 6.34<br>5.97                      | ns   |

1. For the purpose of this table, Rated Value is calculated as an average of the LH and HL delay times of each macro type.

2. Typical process.

■ MSM10S0000 ■

#### **Timing Variation**

Delay variations due to process and operating conditions (temperature and voltage) form the total circuit delay factor described by the relationship:

$$\delta = \delta T \times \delta V \times \delta P$$

Values for  $\delta T$  and  $\delta V$  are shown in Figure 2 and Figure 3



Figure 2.  $\delta V$  vs  $V_{DD}$  Characteristics



Figure 3.  $\delta T$  vs T<sub>i</sub> Characteristics

# OKI MACRO LIBRARY (3 V / 5 V)



#### **Clock Tree Driver Macrocells**

Oki offers clock tree driver macrocells which guarantee skew time less than 1 ns. Oki's advanced layout software uses a dynamic driver placement and sub-trunk allocation procedure to optimize clock tree implementation. Oki's clock skew management scheme is described in detail in OkiOki's Clock Skew Management Application Note

#### Features

- Clock skew <1.0 ns
- Automatic fanout balancing
- Dynamic sub-trunk allocation
- Single clock driver logic symbol

- Single level clock driver
- Automatic branch length minimization
- Dynamic driver placement



Figure 4. Oki's Clock Tree Structure

#### **Slew Rate Control Output Driver Macrocells**

#### Features

- Reduce simultaneous switching noise
- Reduce output ringing noise

#### Method

- Split the output transistors into two sets
- Drive the first set; then after it switches and passes the threshold, turn on the next set of transistors.

#### **Available Cells**

• All outputs with 8 mA or more are slew rate capable



Figure 5. Slew Rate Control Output Buffer

# AUTOMATIC TEST VECTOR GENERATION (ATVG)

- Increase fault coverage  $\geq 95\%$
- Cadence Testscan software
- Traces and reports scan chains
- Checks for rule violations
- Generates complete fault reports
- Multiple scan chains allowed





#### **Design Process**

The following figure illustrates the overall IC design process, also indicating the three main interface points between external design houses and Oki ASIC Application Engineering.



- Oki's Circuit Data Check program (CDC) verifies logic design rules
  Oki's Link to Synthesis Floorplanning toolset (LSF) transfers post-floorplanning timing for resynthesis
- [3] Oki's Test Data Check program (TDC) verifies test vector rules
- [4] Oki's Test Pattern Language (TPL)
- [5] Alternate Customer-Oki design interfaces available in addition to standard level 2
  [6] Standard design process includes fault simulation

# **OKI ADVANCED DESIGN CENTER CAD TOOLS**

Oki's advanced design center CAD tools include support for the following:

- Floorplanning for front-end simulation and back-end layout control
- Clock tree structures improve first-time silicon success by eliminating clock skew problems
- JTAG Boundary scan support
- Power calculation which predicts circuit

| Design | Kits |
|--------|------|
|--------|------|

| Vendor                                                      | Platform                                          | Operating System <sup>[1]</sup>            | Vendor Software/Revision <sup>[1]</sup>                                                                                 | Description                                                                                                                                      |
|-------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Cadence                                                     | HP9000, 7xx<br>IBM RS6000<br>Sun <sup>® [2]</sup> | HP-UX<br>AIX<br>SunOS, Solaris             | Composer™<br>Verilog™<br>Veritime™<br>Verifault™<br>Synergy™<br>Concept™ [3]<br>Leapfrog™                               | Design capture<br>Simulation<br>Timing analysis<br>Fault grading<br>Design synthesis<br>Design capture<br>VHDL simulation                        |
| IKOS                                                        | HP9000, 7xx,<br>Sun <sup>[2]</sup>                | HP-UX, SunOS, Solaris                      | NSIM<br>Gemini/Voyager                                                                                                  | Simulation                                                                                                                                       |
| Mentor Graphics™                                            | HP9000, 7xx<br>Sun <sup>[2]</sup>                 | HP-UX<br>SunOS, Solaris                    | IDEA <sup>™</sup><br>QuickVHDL<br>QuickSim II™<br>QuickPath™<br>QuickFault™<br>QuickGrade™<br>AutoLogic™<br>DFT Advisor | Design capture<br>VHDL simulation<br>Logic simulation<br>Timing analysis<br>Fault grading<br>Fault grading<br>Design synthesis<br>Test synthesis |
| Synopsys<br>(Interface to<br>Mentor Graphics,<br>VIEWLogic) | IBM RS6000<br>HP9000, 7xx<br>Sun <sup>[2]</sup>   | AIX<br>HP-UX<br>SunOS, Solaris             | Design Compiler™<br>HDL/VHDL Compiler™<br>Test Compiler™<br>VSS™                                                        | Compilation<br>Design synthesis<br>Test synthesis<br>VHDL simulation                                                                             |
| Model Technology,<br>Inc. (MTI)                             | HP9000, 7xx<br>Sun <sup>[2]</sup><br>PC           | HP-UX<br>SunOS, Solaris.<br>Win95/NT™      | V-System                                                                                                                | VHDL Simulation                                                                                                                                  |
| VIEWLogic                                                   | PC<br>Sun <sup>[2]</sup>                          | Windows™, Windows<br>NT™<br>SunOS, Solaris | Workview Office™<br>Powerview™<br>Vantage Optium<br>Motive<br>ViewSim™ with VSO                                         | Design capture<br>Simulation<br>VHDL simulation<br>Timing analysis<br>Design synthesis<br>Simulation                                             |

1. Contact Oki Application Engineering for current software versions.

2. Sun or Sun-compatible.

3. Sun and HP platform only.

# **PACKAGE OPTIONS**

### MSM10S0000 Family

|         | MSM10S                                                                                                              | 0050 | 0110 | 0210  | 0300               | 0570            | 0980             |
|---------|---------------------------------------------------------------------------------------------------------------------|------|------|-------|--------------------|-----------------|------------------|
| r       | No. I/O Pads <sup>[1]</sup>                                                                                         | 72   | 100  | 136   | 160                | 216             | 280              |
| Package | Pins                                                                                                                |      |      |       |                    |                 |                  |
| QFP     | 44<br>60<br>80<br>100<br>128<br>136<br>144<br>160<br>176 <sup>[2]</sup><br>208 <sup>[2]</sup><br>240 <sup>[2]</sup> | •    | •    | •     | •<br>•<br>•<br>[3] | •<br>• [4]<br>• | •<br>•<br>•<br>• |
| TQFP    | 44<br>64<br>80<br>100<br>144                                                                                        | • •  | •    | • • • | • • •              | • •             | •                |
| PLCC    | 44<br>68<br>84                                                                                                      |      | •    | •••   | •••                | •               |                  |
| C-PGA   | 88<br>132<br>176<br>208                                                                                             |      | •    | •     | •                  | •               | •                |

1. You can use I/O pads for input, output, bi-directional, power, or ground.

2. 0.5-mm lead pitch.

3. 0.65-mm lead pitch.

4. 0.65-mm and 0.5-mm lead pitch.

• = Available now.

O = Under development.

#### ■ MSM10S0000 ■ ---

Notes:

Notes:



#### Northwest Area

785 N. Mary Avenue Sunnyvale, CA 94086 Tel: 408/720-8940 Fax: 408/720-8965

#### Southwest Area

2302 Martin Street Suite 250 Irvine, CA 92715 Tel: 714/752-1843 Fax: 714/752-2423

#### North Central Area

17177 N. Laurel Park Drive Suite 433 Livonia, MI 48152 Tel: 313/464-7200 Fax: 313/464-1724

#### South Central Area

2007 N. Collins Blvd. Suite 303 Richardson, TX 75080 Tel: 214/690-6868 Fax: 214/690-8233

#### **Northeast Area**

138 River Road Shattuck Office Center Andover, MA 01810 Tel: 508/688-8687 Fax: 508/688-8896

#### Southeast Area

1590 Adamson Parkway Suite 220 Morrow, GA 30260 Tel: 404/960-9660 Fax: 404/960-9682

#### OKI WEB SITE:

http://www.okisemi.com

OKIFAX SERVICE: Call toll free 1-800-OKI-6994

Oki Stock No: 010394-003



#### **Corporate Headquarters**

785 N. Mary Avenue Sunnyvale, CA 94086-2909 Tel: 408/720-1900 Fax: 408/720-1918