MSM5299A
80-DOT LCD SEGMENT DRIVER

GENERAL DESCRIPTION

The MSM5299A is a dot matrix LCD segment driver LSI which is fabricated using CMOS low power metal gate technology. This LSI consists of an 80-bit bidirectional shift register, 80-bit latch, 80 -bit level shifter and 80 -bit 4 -level driver.
It receives the display data, which is transferred in 4-bit parallel from a microcomputer or LCD controller LSI such as MSM6255, then outputs the LCD driving waveform to the LCD.

FEATURES

- Supply voltage : 4.5 to 5.5 V
- LCD driving voltage : 8 to 28 V
- Applicable LCD duty $: 1 / 64$ to $1 / 256$
- LCD Output : 80
- The 4 -bit parallel data processing has improved the transfer speed to $1 / 4$ that of the conventional serial transfer, thereby achieving low power consumption
- Can be interfaced with the LCD controller LSI MSM6255
- Applicable common diriver : MSM5298A (68 outputs)
- Package options:

100-pin plastic QFP (QFP100-P-1420-0.65-K) (Product name : MSM5299AGS-K)
100-pin plastic QFP (QFP100-P-1420-0.65-BK) (Product name : MSM5299AGS-BK)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

NC : No connection

100-Pin Plastic QFP

Note: The abbreviated part number "M5299A" is imprinted on the package surface.

ABSOLUTE MAXIMUM RATINGS

		($\mathrm{V}_{\text {ss }}=0 \mathrm{~V}$)		
Parameter	Symbol	Condition	Rating	Unit
Supply Voltage (1)	Vdd	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +6	V
Supply Voltage (2)	VLCD	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}{ }^{* 1}$	0 to 30	V
Input Voltage	V_{1}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	TSTG	-	-55 to +150	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}$

RECOMMENDED OPERATING CONDITIONS

$\left(\mathrm{V}_{S S}=0 \mathrm{~V}\right)$				
Parameter	Symbol	Condition	Range	Unit
Supply Voltage (1)	V_{DD}	-	4.5 to 5.5	V
Supply Voltage (2)	$\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	${ }^{* 1}$	8 to 28
Operating Temperature	$\mathrm{T}_{\text {Op }}$	-	V	

${ }^{*} 1 \quad \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}$

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
"H" Input Voltage	$\mathrm{V}_{\mathrm{IH}}{ }^{*} 1$	-	$0.8 \mathrm{~V}_{\text {D }}$	-	$V_{D D}$	V
"L" Input Voltage	VIL *1	-	$\mathrm{V}_{\text {S }}$	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
"H" Input Current	$\mathrm{VIH}^{*} 1$	$V_{I H}=V_{D D}, V_{D D}=5.5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
"H" Input Current	$\mathrm{V}_{\text {IL }}{ }^{*} 1$	$V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
"H" Output Voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{*} 2$	$\mathrm{I}_{0}=-0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	$V_{D D}-0.4$	-	-	V
"L" Output Voltage	VOL *2	$\mathrm{I}_{0}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-	0.4	V
ON Resistance	Ron *4	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=23 \mathrm{~V} \\ & \left\|\mathrm{~V}_{\mathrm{N}}-\mathrm{V}_{0}\right\|=0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	-	2	4	k Ω
Stand-by Current	IdDSBY	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=26 \mathrm{~V}, \text { No load } \quad * 5 \end{aligned}$	-	-	200	$\mu \mathrm{A}$
Supply Current (1)	$\mathrm{I}_{\text {D1 } 1}$	$\begin{aligned} & f_{C P}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=26 \mathrm{~V} \text {, No load } \quad * 6 \end{aligned}$	-	-	3	mA
Supply Current (2)	Iv	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=26 \mathrm{~V} \text {, No load } \quad{ }^{*} 7 \end{aligned}$	-	-	± 100	$\mu \mathrm{A}$
Input Capacitance	C_{1}	$f=1 \mathrm{MHz}$	-	5	-	pF

*1 Applicable to LOAD, CP, $\mathrm{D}_{0}-\mathrm{D}_{3}, \overline{\mathrm{EL}}, \overline{\mathrm{ER}}, \mathrm{SHL}, \mathrm{DF}, \overline{\mathrm{DISP} \text { OFF }}$
*2 Applicable to EL, $\overline{\mathrm{ER}}$.
${ }^{*} 3 \mathrm{~V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{4}=\frac{13}{15}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V}_{3}=\frac{2}{15}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$
*4 Applicable to O_{1} to O_{80}.
*5 Display data $1010 \cdots \cdots \cdot \mathrm{f}_{\mathrm{DF}}=40 \mathrm{~Hz}$, Current from V_{DD} to V_{SS} when the display data is not processing.
*6 Display data $1010 \cdots \cdots \cdot \mathrm{f}_{\mathrm{DF}}=40 \mathrm{~Hz}$, Current from V_{DD} to V_{SS} when the display data is processing.
*7 Display data $1010 \cdots \cdots \cdot f_{\mathrm{DF}}=40 \mathrm{~Hz}$, Current on $\mathrm{V}_{1}, \mathrm{~V}_{3}$ and V_{4}.

Switching Characteristics

$$
\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20 \text { to }+75^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)
$$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Clock Frequency	f_{CP}	DUTY $=50 \%$	-	-	3.4	MHz
Clock, Load Pulse Width	t_{W}	-	100	-	-	ns
Clock Pulse Rise/Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	-	50	ns
Data Set-up Time	$\mathrm{t}_{\text {DSU }}$	-	50	-	-	ns
Data Hold Time	$\mathrm{t}_{\text {DHD }}$	-	80	-	-	ns
Load Set-up Time	$\mathrm{t}_{\text {LSU }}$	-	90	-	-	ns
Load \rightarrow Clock Time	$\mathrm{t}_{\text {LC }}$	-	200	-	-	ns
Propagation Delay Time	$\mathrm{t}_{\text {PHL }}$	-	-	-	224	ns
$\overline{\text { ER, }} \overline{\text { EL Set-up Time }}$	$\mathrm{t}_{\text {ESU }}$	-	70	-	-	ns

FUNCTIONAL DESCRIPTION

Pin Functional Description

- $\overline{E R}, \overline{E L}$

Pin	Input/Output	SHL	Description
$\overline{\mathrm{ER}}$	Input		Input pin to ENABLE F/F of MSM5299A.

When single MSM5299A is used, $\overline{\mathrm{ER}}(\overline{\mathrm{EL}})$ should be set at "L" level.
When a cascade connection is required, set the $\overline{\mathrm{ER}}(\overline{\mathrm{EL}})$ pin of the first MSM5299A at "L" level and connect the $\overline{\mathrm{EL}}(\overline{\mathrm{ER}})$ pin of the first MSM5299A to the $\overline{\mathrm{ER}}(\overline{\mathrm{EL}})$ pin of the second MSM5299A, then connect the $\overline{\mathrm{EL}}(\overline{\mathrm{ER}})$ pin of the second MSM5299A to the $\overline{\mathrm{ER}}(\overline{\mathrm{EL}})$ pin of the third MSM5299A.

- CP

Clock pulse input pin for the 4 -bit parallel shift register. The data is shifted to 4×20-bit shift register at the falling edge of the clock pulse. The clock pulse is activated when the ENABLE F / F is set and is deactivated when the ENABLE F/F is not set.

- SHL

Input pin to switch the input or output of pins $\overline{\mathrm{ER}}$ and $\overline{\mathrm{EL}}$, and the shift direction of the 4-bit parallel bidirectional shift register.
The shift direction of the 4-bit parallel data, the correspondence of the data D_{0} to D_{3} to the driver outputs O_{1} to O_{80}, and the input and output state of pins $\overline{\mathrm{ER}}$ and $\overline{\mathrm{EL}}$ are shown in the table below.

SHL	ER	EL	Shift direction
L	Input	Output	$\begin{aligned} & D_{0} \rightarrow 0_{1} \rightarrow 0_{5} \cdots \cdots-0_{77} \\ & D_{1} \rightarrow 0_{2} \rightarrow 0_{6} \cdots \cdots=0_{78} \\ & D_{2} \rightarrow 0_{3} \rightarrow 0_{7} \cdots \cdots 0_{79} \\ & D_{3} \rightarrow 0_{4} \rightarrow 0_{8} \cdots \cdots-0_{80} \end{aligned}$
H	Output	Input	$\begin{aligned} & \mathrm{D}_{0} \rightarrow 0_{80} \rightarrow 0_{76} \cdots \cdots=0_{4} \\ & \mathrm{D}_{1} \rightarrow 0_{79} \rightarrow 0_{75} \cdots \cdots-0_{3} \\ & \mathrm{D}_{2} \rightarrow 0_{78} \rightarrow 0_{74} \cdots \cdots 0_{2} \\ & \mathrm{D}_{3} \rightarrow 0_{77} \rightarrow 0_{73} \cdots \cdots-0_{1} \end{aligned}$
\uparrow \uparrow end data start data			

- $D_{0}, D_{1}, D_{2}, D_{3}$

Display data input pins for 4×20-bit shift register. The display data is clocked into the shift register at the falling edge of the clock pulse. The combinations of D_{0} to D_{3} level, $D F$ signal level, display data output level and the display on the LCD panel are described on the table below.

$\mathbf{D}_{\mathbf{0}}$ to $\mathbf{D}_{\mathbf{3}}$	DF	Display data output level	Display on the LCD
L	L	Nonselect level $\left(\mathrm{V}_{3}\right)$	OFF
H	L	Select level $\left(\mathrm{V}_{1}\right)$	ON
L	H	Nonselect level $\left(\mathrm{V}_{4}\right)$	OFF
H	H	Select level $\left(\mathrm{V}_{\mathrm{EE}}\right)$	ON

- LOAD

The signal for latching the shift register contents is input to this pin. The display data stored in the shift register is latched at the falling edge of the load pulse.

- DF

Synchronous signal input pin for alternate signal for LCD driving.

- $\mathbf{V}_{\mathrm{DD}}, \mathbf{V}_{\mathbf{S S}}$

Supply voltage pins, V_{DD} should be 4.5 to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{SS}}$ is a ground pin $\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

- $\mathbf{V}_{1}, \mathbf{V}_{3}, \mathbf{V}_{4}, \mathrm{~V}_{\mathrm{EE}}$

Bias supply voltage pin to drive the LCD. Use an external bias voltage supply for driving the LCD.

- $\mathrm{O}_{1}-\mathrm{O}_{80}$

Display data output pins, which correspond to the respective latch contents. One of V_{1}, V_{3}, V_{4} and $V_{\text {EE }}$ is selected as a display driving voltage source according to the combination of the latched data level and DF signal. Refer to the Truth Table.
The outputs O_{1} to O_{80} are connected to the segment side of the LCD panel.

- DISP OFF

Input pin to control outputs of O_{1} to $\mathrm{O}_{80} . \mathrm{V}_{1}$ level is output from O_{1} to O_{80} pins during "L" level input. Refer to the Truth Table.

Truth Table

DF	Latched data	DISP OFF	LCD driver output $\left(\mathbf{0}_{\mathbf{1}}\right.$ - $\left.\mathbf{O}_{\mathbf{8 0}}\right)$
L	L	H	V_{3}
L	H	H	V_{1}
H	L	H	V_{4}
H	H	H	V_{EE}
X	X	L	V_{1}

X : Don't care

NOTES ON USE

Note the following when turning power on and off:
The LCD drivers of this IC require a high voltage. For this reason, if a high voltage is applied to the LCD drivers with the logic power supply floating, excess current flows. This may damage the IC. Be sure to carry out the following power-on and power-off sequences:

When turning power on:
First $V_{D D} O N$, next $V_{E E}, V_{4}, V_{3}, V_{1} O N$. Or both $O N$ at the same time.
When turning power off:
First $V_{E E}, V_{4}, V_{3}, V_{1}$ OFF, next $V_{D D}$ OFF. Or both OFF at the same time.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

