
New Product

MSS1P3 & MSS1P4

Vishay General Semiconductor

Surface Mount Schottky Barrier Rectifiers

 PRIMARY CHARACTERISTICS

 $I_{F(AV)}$ 1.0 A

 V_{RRM} 30 V, 40 V

 I_{FSM} 25 A

 V_F at I_F = 1.0 A
 0.41 V

 T_J max.
 150 °C

TYPICAL APPLICATIONS

For use in low voltage high frequency inverters, freewheeling, dc-to-dc converters, and polarity protection applications.

FEATURES

- Very low profile typical height of 0.68 mm
- Ideal for automated placement
- Low forward voltage drop, low power losses
 COMPLIANT
 COMPLIANT
- High efficiency
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
- Halogen-free

MECHANICAL DATA

Case: MicroSMP

Molding compound meets UL 94V-0 flammability rating.

Base P/N-E3 - RoHS compliant, commercial grade

Base $\ensuremath{\text{P/N-M3}}$ - halogen-free and RoHS compliant, commercial grade

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD22-B102

E3 and M3 suffix meets JESD 201 class 1A whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	MSS1P3	MSS1P4	UNIT	
Device marking code		13	14		
Maximum repetitive peak reverse voltage	V _{RRM}	30	40	V	
Maximum average forward rectified current (Fig. 1)	I _{F(AV)}	1.0		А	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	25		А	
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 150		°C	

HALOGEN

FREE

MSS1P3 & MSS1P4

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS ($T_A = 25 \degree C$ unless otherwise noted)							
PARAMETER	TEST C	ONDITIONS	SYMBOL	TYP.	MAX.	UNIT	
Maximum instantaneous forward voltage ⁽¹⁾	I _F = 0.5 A I _F = 1.0 A	T _J = 25 °C	V _F	0.41 0.48	- 0.55	V	
	I _F = 0.5 A I _F = 1.0 A	T _J = 125 °C		0.32 0.41	- 0.46		
Maximum reverse current (2)	rated V _R	T _J = 25 °C T _J = 125 °C	I _R	8.5 4.5	200 15	μA mA	
Typical junction capacitance	4.0 V, 1 MH	4.0 V, 1 MHz		50	-	pF	

Notes:

(1) Pulse test: 300 µs pulse width, 1 % duty cycle

(2) Pulse test: Pulse width \leq 40 ms

THERMAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)						
PARAMETER	SYMBOL	BOL MSS1P3 MSS1P4		UNIT		
Typical thermal resistance ⁽¹⁾	${f R}_{ heta JA} \ {f R}_{ heta JL} \ {f R}_{ heta JL}$	125 30 40		°C/W		

Note:

(1) Thermal resistance from junction to ambient and junction to lead mounted on P.C.B. with 6.0 x 6.0 mm copper pad areas

 $R_{\theta JL}$ is measured at the terminal of cathode band. $R_{\theta JC}$ is measured at the top center of the body

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
MSS1P4-E3/89A	0.006	89A	4500	7" diameter plastic tape and reel		
MSS1P4-M3/89A	0.006	89A	4500	7" diameter plastic tape and reel		

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

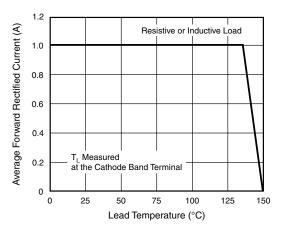


Figure 1. Maximum Forward Current Derating Curve

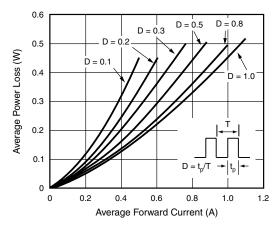


Figure 2. Forward Power Loss Characteristics

MSS1P3 & MSS1P4

Vishay General Semiconductor

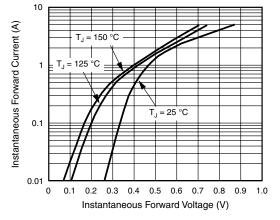


Figure 3. Typical Instantaneous Forward Characteristics

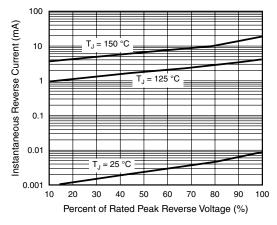


Figure 4. Typical Reverse Characteristics

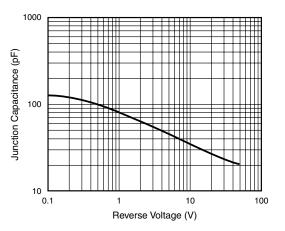


Figure 5. Typical Junction Capacitance

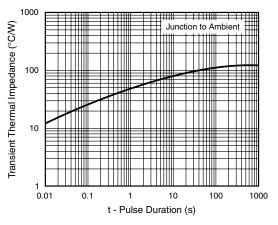
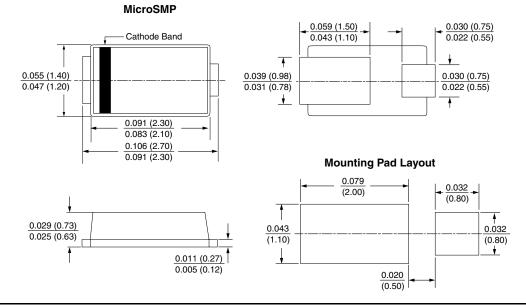



Figure 6. Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

For technical questions within your region, please contact one of the following: PDD-Americas@vishay.com, PDD-Asia@vishay.com, PDD-Europe@vishay.com

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.