DESCRIPTION

The NE/SA5090 addressable relay driver is a high-current latched driver, similar in function to the 9934 address decoder. The device has 8 open-collector Darlington power outputs, each capable of 150 mA load current. The outputs are turned on or off by respectively loading a logic " 1 " or logic " 0 " into the device data input. The required output is defined by a 3-bit address. The device must be enabled by a CE input line which also serves the function of further address decoding. A common clear input, CLR, turns all outputs off when a logic " 0 " is applied. The device is packaged in a 16-pin plastic or Cerdip package.

FEATURES

- 8 high-current outputs
- Low-loading bus-compatible inputs
- Power-on clear ensures safe operation
- Will operate in addressable or demultiplex mode
- Allows random (addressed) data entry
- Easily expandable
- Pin-compatible with 9334 (Siliconix or Fairchild)

PIN CONFIGURATION

D1, N Packages

NOTE:

1. SOL - Released in Large SO package only.

APPLICATIONS

- Relay driver
- Indicator lamp driver
- Triac trigger
- LED display digit driver
- Stepper motor driver

BLOCK DIAGRAM

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1-3$	$\mathrm{~A}_{0}-\mathrm{A}_{2}$	A 3-bit binary address on these pins defines which of the 8 output latches is to receive the data.
$4-7,9-12$	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	The 8 device outputs.
13	D	The data input. When the chip is enabled, this data bit is transferred to the defined output such that: "1" turns output switch "ON" "0" turns output switch "OFF"
14	CE	The chip enable. When this input is low, the output latches will accept data. When CE goes high, all outputs will retain their existing state, regardless of address of data input condition.
15	CLR	The clear input. When CLR goes low all output switches are turned "OFF". The high data input will override the clear function on the addressed latch.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
$16-$ Pin Plastic Small Outline Large (SOL) Package	0 to $+70^{\circ} \mathrm{C}$	NE5090D	0171 B
16-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5090N	0406 C
$16-$-in Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5090N	0406 C
$16-$ Pin Plastic Small Outline Large (SOL) Package	-40 to $+85^{\circ} \mathrm{C}$	SA5090D	0171 B

TRUTH TABLE

NOTES:

X=Don't care condition
$\mathrm{Q}_{\mathrm{N}-1}=$ Previous output state
L=Low voltage level/"ON" output state
$\mathrm{H}=\mathrm{High}$ voltage level/"OFF" output state

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7	V
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +15	V
$\mathrm{V}_{\text {OUT }}$	Output voltage	0 to +30	V
IGND	Ground current	500	mA
lout	Output current Each output	200	mA
P_{D}	Maximum power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { still-air })^{1}$ N package D package	$\begin{aligned} & 1712 \\ & 1315 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
T_{A}	Ambient temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead soldering temperature (10sec. max)	300	${ }^{\circ} \mathrm{C}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:

F package at $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $13.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified. ${ }^{1}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
$\begin{aligned} & \mathrm{v}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{IL}} \\ & \hline \end{aligned}$	Input voltage High Low		2.0		0.8	V
$\mathrm{V}_{\text {OL }}$	Output voltage Low	$\mathrm{I}_{\mathrm{OL}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over temperature		1.05	$\begin{aligned} & 1.30 \\ & 1.50 \end{aligned}$	V
$\begin{array}{\|l} I_{\mathrm{IH}} \\ I_{\mathrm{LL}} \end{array}$	Input current High Low	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & <1.0 \\ & -3.0 \end{aligned}$	$\begin{gathered} 10 \\ -250 \end{gathered}$	$\mu \mathrm{A}$
${ }^{\text {OHH}}$	Leakage current	$\mathrm{V}_{\text {OUT }}=28 \mathrm{~V}$,		5	250	$\mu \mathrm{A}$
$\begin{aligned} & \mathrm{I}_{\mathrm{CCL}} \\ & \mathrm{I}_{\mathrm{CCH}} \end{aligned}$	Supply current All outputs low All outputs high	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		$\begin{aligned} & 35 \\ & 22 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	mA
P_{D}	Power dissipation	No output load			315	mW

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=100 \mathrm{MA}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$.

SYMBOL	PARAMETER	TO	FROM	MIN	TYP	MAX	UNIT
tplH tpHL	Propagation delay time Low-to-high ${ }^{1}$ High-to-low ${ }^{1}$	Output	$\overline{C E}$		$\begin{aligned} & 900 \\ & 130 \end{aligned}$	$\begin{gathered} 1800 \\ 260 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Low-to-high ${ }^{2}$ High-to-low ${ }^{2}$	Output	Data		$\begin{array}{r} \hline 920 \\ 130 \\ \hline \end{array}$	$\begin{array}{r} \hline 1850 \\ 260 \\ \hline \end{array}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Low-to-high ${ }^{3}$ High-to-low ${ }^{3}$	Output	Address		$\begin{aligned} & \hline 900 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 260 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Low-to-high ${ }^{4}$ High-to-low ${ }^{4}$	Output	CLR		920	1850	ns
Switching setup requirements							
$\mathrm{t}_{\mathrm{S}(\mathrm{H})}$	Setup time high Setup time low	Chip enable Chip enable	High data Low data	$\begin{aligned} & 40 \\ & 50 \end{aligned}$			ns
$\mathrm{t}_{\text {S(A) }}$	Address setup time	Chip enable	Address	40			ns
$\mathrm{t}_{\mathrm{H}(\mathrm{H})}$	Hold time high Hold time low	Chip enable Chip enable	High data Low data	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$			ns
tpw(E)	Chip enable pulse width ${ }^{1}$			40			ns

NOTES:

1. See Turn-On and Turn-Off Delays, Enable-to-Output and Enable Pulse Width timing diagram.
2. See Turn-On and Turn-Off Delays, Data-to-Output timing diagram.
3. See Turn-On and Turn-Off Delays, Address-to-Output timing diagram.
4. See Turn-Off Delay, Clear-to-Output timing diagram.
5. See Setup and Hold Time, Data-to-Enable timing diagram.
6. See Setup Time, Address-to-Enable timing diagram.

FUNCTIONAL DESCRIPTION

This peripheral driver has latched outputs which hold the input date until cleared. The NE5090 has active-Low, open-collector outputs, all of which are cleared when power is first applied. This device is identical to the NE590, except the outputs can withstand 28 V .

Addressable Latch Function

Any given output can be turned on or off by presenting the address of the output to be set or cleared to the three address pins, by holding the "D" input High to turn on the selected output, or by holding it Low to turn off, holding the CLR input High, and bringing the CE input Low. Once an output is turned on or off, it will remain so until addressed again, or until all outputs are cleared by bringing the CLR input Low while holding the CE input High.

Demultiplexer Operation

By holding the CLR and CE inputs Low and the "D" input High, the addressed output will remain on and all other outputs will be off.

High Current Outputs

The obvious advantage of this device over other drivers such as the 9334 and N74LS259 is the fact that the outputs of the NE5090 are each capable of 200 mA and 28 V . It must be noted, however, that the total power dissipation would be over 2.5 W if all 8 outputs were on together and carrying 200mA each. Since the total power dissipation is limited by the package to 1 W , and since power dissipation due to supply current is 0.25 W , the total load power dissipation by the device is limited to 0.75 W at room temperature, and decreases as ambient temperature rises.

The maximum die junction temperature must be limited to $165^{\circ} \mathrm{C}$, and the temperature rise above ambient and the junction temperature are defined as:

$$
\begin{aligned}
& T_{R}=\theta_{J A} \times P_{D} \\
& T_{J}=T_{A}+t_{R}
\end{aligned}
$$

where

For example, if we are using the NE5090 in a plastic package in an application where the ambient temperature is never expected to rise above $50^{\circ} \mathrm{C}$, and the output current at the 8 outputs, when on, are $100,40,50,200,15,30,80$, and 10 mA , we find from the graph of output voltage vs load current that the output voltages are expected to be about $0.92,0.75,0.78,1.04,0.5,0.7,0.9$, and 0.4 V , respectively. Total device power due to these loads is found to be 473.5 mW . Adding the 200 mW due to the power supply brings total device power dissipation to 723.5 mW . The thermal resistances are $83^{\circ} \mathrm{C}$,per W for plastic packages and $100^{\circ} \mathrm{C}$ per W for Cerdips. Using the equations above we find:

```
Plastic TR=83\times0.7235=60}\mp@subsup{}{}{\circ}\textrm{C
Plastic TJ=50+60=100 C
Cerdip TR=100\times0.7235=72.4}\mp@subsup{}{}{\circ}\textrm{C
Cerdip TJ=50+72.4=122.4*
```

Thus we find that T_{J} for either package is below the $165^{\circ} \mathrm{C}$ maximum and either package could be used in this application. The graphs of total load power vs ambient temperature would also give us this same information, although interpreting the graphs would not yield the same accuracy.

TIMING DIAGRAMS

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CHARACTERISTICS

