DUAL GENERAL PURPOSE OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

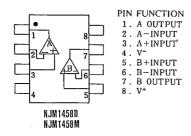
The NJM1458 is a monolithic pair of Internally Compensated High Performance Amplifiers, constructed using the New JRC Planar epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of "latch-up" make the NJM1458 ideal for use as voltage followers. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier and general feedback applications.

The NJM1458 is short-circuit protected and require no external components for frequency compensation. The internal 6 dB/octabe roll-off insures stability in closed loop applications. For single amplifier performance, see the NJM741 data sheet.

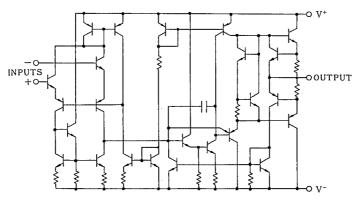
FEATURES

Operating Voltage

(+3V~+18V)


Output Short-Circut Protection

Package Outline


DIP8, DMP8

Bipolar Technology

■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ PACKAGE OUTLINE

N.IM1458D

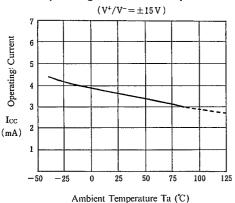
NJM1458M

■ ABSOLUTE MAXIMUM RATINGS

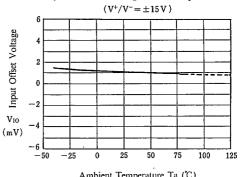
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT V	
Supply Voltage	V*/V-	±18		
Input Voltage	V _{Ic}	±15	V	
Differential Input Voltage	Vib	±30	V	
Power Dissipation	Po	(DIP8) 500	mW	
		(DMP8) 300	mW	
Operating Temperature Range	Topr	-40 ∼+85	°C	
Storage Temperature Range	T _{stg}	-40~+I25	°C	

(note) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage.

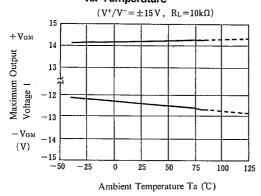

■ ELECTRICAL CHARACTERISTICS

 $(Ta = 25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

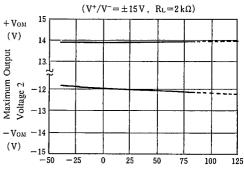

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s ≤10kΩ	_	2.0	6.0	mV
Input Offset Current	I _{IO}		_	5	200	пA
Input Bias Current	ÌB		_	30	500	nA
Input Resistance	R _{IN}		0.3	1.0	 	МΩ
Large signal Voltage Gain	A_V	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	86	106		dB
Maximum Output Voltage Swing 1	V _{OM1}	R _L ≥10kΩ	±12	±14		v
Maximum Output Voltage Swing 2	V_{OM2}	$R_L \ge 2k\Omega$	±10	±13	—	v
Input Common Mode Voltage Range	V_{ICM}		±12	±13		v
Common Mode Rejection Ratio	CMR	$R_{S} \leq 10k\Omega$	70	90	—	dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	76.5	90	—	dB
Operating Current	Icc		_	3.3	5.7	mA
Slew Rate	SR	$R_{L} \ge 2k\Omega$, $A_{V} = 1$	-	0.5	_	V/μs
Channel Separation	CS	f=1kHz	-	98		dB

■ TYPICAL CHARACTERISTICS

Operating Current vs. Temperature



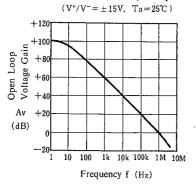
Input Offset Voltage vs. Temperature



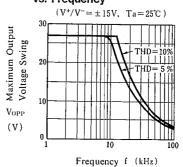
Ambient Temperature Ta (°C)

Maximum Output Voltage 1 vs. Temperature

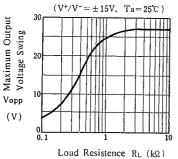
Maximum Output Voltage 2 vs. Temperature

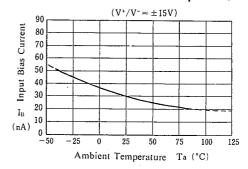


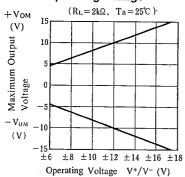
Ambient Temperature Ta (°C)

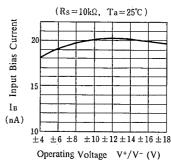

1

TYPICAL CHARACTERISTICS


Open Loop Frequency Response


Maximum Output Voltage Swing vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance


Input Bias Current vs. Temperature

Maximum Output Voltage Swing vs. Operating Voltage

Input Bias Current vs. Operating Voltage

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.