LOW VOLTAGE DUAL POWER AMPLIFIER

GENERAL DESCRIPTION

The NJM2096 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2096 is suitable to small radio and head-phone stereo. The NJM2096 is resemble to the NJM2076, but two amplifiers are the same.

FEATURES

Low Operating Voltage

(1.0V min)

Minimum external components

Low Operating Current

Package Outline

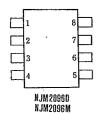
DIP8, DMP8, SIP9

Bipolar Technology

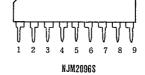
APPLICATION

Head-phone Stereo, Portable Radio, Portable TV, Hand-carry Tele-communication Set.

■ PACKAGE OUTLINE


NJM 2096 D

NJM 2096 S


NJM 2096 M

PIN CONFIGURATION

PIN FUNCTION

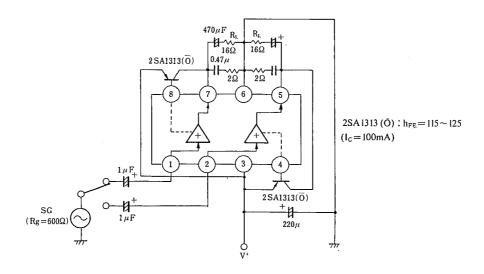
- 1. Non-Inverting Amp. Input (A)
- 2. Non-Inverting Amp. Input (B)
- 3. V+
- 4. Base (B)
- 5. (B) Output
- 6. GND 7. (A) Output
- 8. Base (A)

PIN FUNCTION

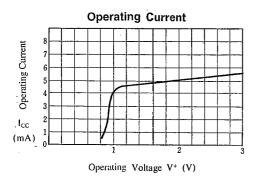
- 1. V+
- 2. Base (B)
- 3. (B) Output
- 4. Power GND
- 5. GND
- 6. (A) Output
- 7. Base (A)
- 8. Non-Inverting Amp. Input (A)
- 9. Non-Inverting Amp. Input (B)

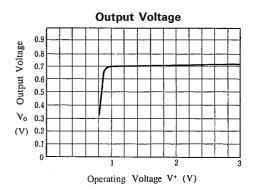
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

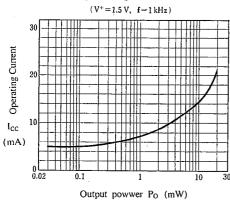

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	4.5	V
Power Dissipation	PD	(DIP8) 500	
		(SIP9) 500	mW
		(DMP8) 300	
Maximum Input Signal	V _{IN}	200	mVrms
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

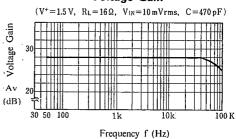

 $(Ta=25^{\circ}C, V^{*}=1.5V, R_{L}=16\Omega)$

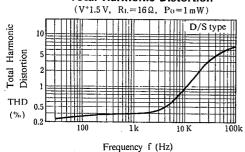

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	. I _{ee}	V _{IN} =Open	_	4.7	7	mA
Maximum Output Power	Pol	THD=10% D&S	15	20	l — '	mW
•		М	15	17.5	l —	mW
Max. Output Power at Low Supply Voltage	Po	THD= 10% , V ⁺ = 1.0 V	_	3	-	mW
Voltage Gain	Av	V _{IN} =10mVrms	26.5	28	29.5	dB
Total Harmonic Distortion	THD	P _O =imW	-	0.4	0.8	%
Ripple Rejection Ratio	RR	$Rg=0\Omega$, $V_r=30$ m V rms. $F_r=1$ k Hz	25	35	—	dB
Input Resistance	RIN		25	33	43	kΩ
Output Noise Voltage	V _{NO}	Rg=0Ω, A Curve	-	40	150	μ٧
Output Pin Voltage	Vo (DC)		0.62	0.70	0.77	v
Voltage Difference between Two Output Pins	$\Delta V_0(DC)$		-	-	50	mV

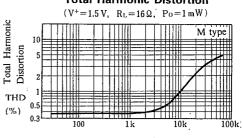
■ TEST CIRCUIT



TYPICAL CHARACTERISTICS

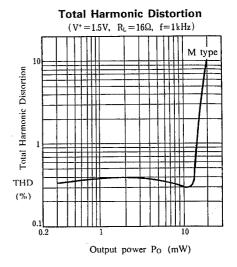



Operating Current


Voltage Gain

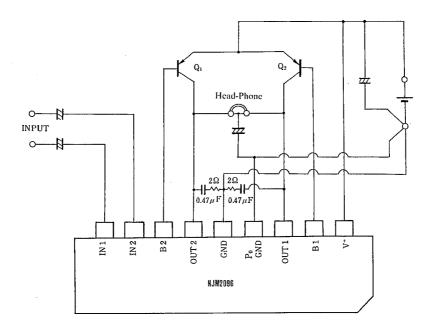
Total Harmonic Distortion

Total Harmonic Distortion



Frequency f (Hz)

■ TYPICAL CHARACTERISTICS


Total Harmonic Distortion $(V^+ = 1.5V, \ R_L = 16\Omega, \ f = 1kHz)$

Output power Po (mW)

■ TYPICAL APPLICATION

Stereo Head-Phone

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation voltage.

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 2Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$. $\tan\delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set.

DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low.

SIP: Two terminals (Power GND, GND)are connected at one point on PCB.

NJM2096

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.