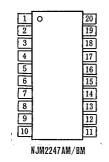
JRC

VIDEO COLOR SUPERIMPOSER

GENERAL DESCRIPTION

NJM2247 A/B is the multi-functional color superimposer IC for video base band (Y. R-Y, B-Y). Various type of Y, R-Y, B-Y output signals can be made by the digital controlled signals. The signal control at the base band, made it possible on operation with less external parts, as well as for non adjustment on opertaion.

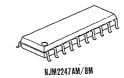

FEATURES

- 5V Single Power Supply
- 8 Types Color Superimposer •
- Burst Flag Insert Function •
- Y Inversion, C Inversion Function
- NTSC/PAL Matching •
- Non Operational Adjustment •
- . Less External Parts
- . Package Outline DMP20
- Bipolar Technology

RECOMMENDED INPUT CONDITIONS

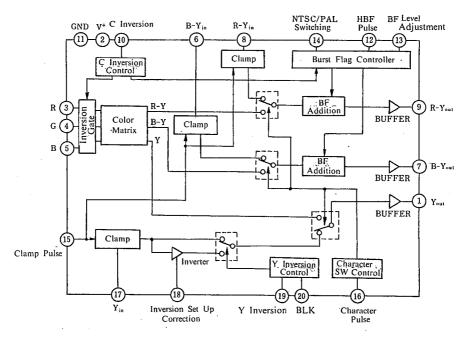
- Y Signal " 0.7 Vр-р .
- R-Y Signal 1.0 VP-P .
- B-Y Signal 0.7 Vp-p
- Control Voltage
- Low Level 0~0.25 V
- High Level 4.75~5V

PIN CONFIGURATION



PIN FUNCTION

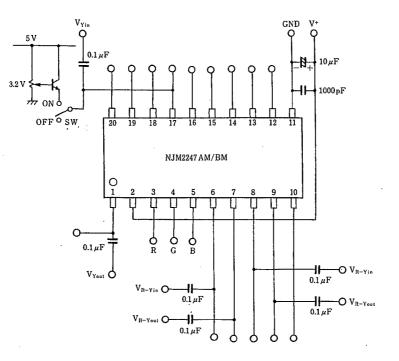
- FU	A PONCIN	JIN .	
1.	Yout	11.	GND
2.	V+	12.	HBF Pulse
3.	R	13.	BF
4.	G	14.	NTSC/PAL Switching
5.	в	15.	Clamp Pulse
6.	$B - Y_{ln}$	16.	Character Pulse
7.	B-Yout	17.	Y _{In}
8.	$R - Y_{in}$	18.	Inversion Set up Correcti
9.	R-Y _{out}	19.	Y Inversion
10.	C Inversion	120.	BLK Pulse


PACKAGE OUTLINE

Correction

-5-137

BLOCK DIAGRAM



CONTROL PIN CHARACTERISTICS

(V⁺=5V)

PIN NO. PIN FUNCTIONS		THRESHOLD LEVEL(V)		SINK/SOURCE CURRENT(µA)	
PIN NO.	PINFUNCTIONS	LOW	HIGH	0V	5V
3	R				
4	G	0.7	0.8	- 500	500
5	В				
3					
4	(at C Inversion)	2.5	2.6	- 100	100
5					
10	C Inversion	3.5	4.5	-200	400
12	HBF Pulse	0.5	2.0	-2	1
14	NTSC/PAL	0.7	0.8	. 0	150
15	Clamp Pulse	2.5	2.8	-2	0
16	Character Pulse	0.5	0.9	-0.5	0
19	Y Inversion	0.4	0.8	-0.5	0
20	BLK Pulse	0.4	0.8	-0.5	0

TEST CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25℃) PARAMETER SYMBOL UNIT RATINGS V۲ 8 ν Supply Voltage Pp mW Power Dissipation 300 °C Operating Temperature Range Topr -20~+75 °C $-40 \sim +125$ Storage Temperature Range Tstg

ELECTRICAL CHARACTERISTICS

CONTROL PINS PARAMETERS SYMBOLS TEST CONDITIONS MIN. TYP. MAX. UNIT 34500246692 NJM2247A 12 16.5 22 mΑ Operating Current 0 0 0 0 0 0 0 0 0 0 0 Icc NJM2247B 12 18.5 26 mA Terminal Sink Current 1 I17 00000000000 $V_{17} = 2.5 V$ 0 10 μA Terminal Sink Current 2 I6 00000000000 $V_6 = 3.0 V$ 0 _ 6 μA Terminal Sink Current 3 I8 0000000000 V8=3.0 V 0 ----6 μA Terminal Voltage I Vı 0000005000 1.68 ____ 1.92 v Terminal Voltage 2 V_{7} 0000005000 2.18 _ 2.42 v Terminal Voltage 3 ٧o 0000005000 2.18 -----2.42 v Terminal Voltage 4 V12 0000005000 0.23 ____ 0.37 V Terminal Voltage 5 V18 0000005000 1.68 _ 1.92 v Y Non Inversion Voltage Gain Gyp 0000000000 $V(Y_{in}) = 1 V_{P-P}$, 1 MHz, SW = ON-0.5 0 0.5 dB Frequency Characteristics 0000000000 GEVP $G_{YP(6 MHz)} - G_{YP(1 MHz)}$, SW = 0, SW = ON-10 1 dB Differential Gain DGp 0000000000 $V_{(Yin)} = 1 V_{P-P}$, Staircase, SW = ON-3 n 3 % DP_P Differential Phase 00000000000 $V_{(Yin)} = 1 V_{P-P}$, Staircase, SW = ON -3 0 3 deg Y Inversion Voltage Gain 000000055 Gyn $V_{(Yin)} = 0.6 V_{P-P}, 1 MHz, SW = ON$ -2.3 -1.3 0.3 dB Frequency Characteristics 0000000055 GEYN $G_{YN(6 MHz)} - G_{YN(1 MHz)}$, SW = ON-2 -0.1 1 dB Differential Gain DGN 000000055 $V_{(Yin)}=0.5 V_{P-P}$, Staircase, SW=ON -8 8 % Differential Phase DPp 0000000055 $V_{(Yin)}=0.5 V_{P-P}$, Staircase, SW=ON - 3 0 3 deg 0000005055 (1) Voltage; a, BLN=a-b Inversion Black Level BLN 0.59 0.68 0.77 v (1) Voltage; b, BLN=a-b 0000005000 Inversion BLK BLK 0000005050 (1) Voltage; c, BLK = c - bv -0.10 0.1 R-Y Voltage Gain GR-Y 0000005000 $V_{(R-Yin)} = 1 V_{P-P}, 1 MHz$ dB -0.50 0.5 0000005000 (9) Voltage ; d, BF_{RP}=e-d BFRP Burst Level Non Inversion 135 150 165 mV 0000505000 (9) Voltage ; e, BF_{RP}=e−d BFRN Burst Level Inversion 0005505000 (9) Voltage; f, $BF_{RN} = f - d$ -165 - 150 -135 mV B-Y 0000005000 Voltage Gain GB-Y $V_{(B-Yin)} = 1 V_{P-P}, 1 MHz$ -0.5 0 0.5 dВ 0000055000 ⑦ Voltage ; g, BF_{BP}=g−h Burst Level Non Inversion BFBP 135 150 165 mν 0000555000 ⑦ Voltage ; h, BF_{BP}=g−h Burst Level Inversion BFBN 0005555000 (7) Voltage ; i, BF_{BN}=g-i -165-150 -135 mΫ

5 - 140

 $(V^{+}=5V, Ta=25^{\circ}C)$

■ NJM2247A ELECTRICAL CHARACTERISTICS (CONTINUED)

(V*=5V, Ta=25°C)

PARAMET	ERS	SYMBOLS	CONTROL PINS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
	2.10		345000056690					
aracter Output	Level 1							
Non Inversion								
White	Y	Mpwy	5550005500	(1) Voltage; A, $M_{PWY} = A - V_1$	482	530	583	mV
	R-Y	Mpwr	5550005500	9 Voltage; B, MPWR=B-V9	-14	0	14	mV
	B - Y	Mpwb	5550005500	\bigcirc Voltage; C, M _{PWB} = C - V ₇	-12	0	12	mV
Yellow	Y	Мруу	5500005500	(1) Voltage; A, $M_{PYY} = A - V_1$	427	470	517	mV
	R – Y	Mpyr	5500005500	(9) Voltage; B, $M_{PYR}=B-V_9$	22	42	62	mV
	B - Y	Мрув	5500005500	\bigcirc Voltage; C, M _{PYB} =C-V ₇	- 206	-186	-166	mV
Cyan	Y	Мрсу	0550005500	(1) Voltage; A, $M_{PCY} = A - V_1$	335	370	410	mV
	R - Y	Mpcr	0550005500	(9) Voltage; B, $M_{PCR} = B - V_9$	- 289	-266	-243	mV
	B - Y	Мрсв	0550005500	\bigcirc Voltage; C, MPCB=C-V7	40	63	87	mV
Green	Y	Мрбу	0500005500	(1) Voltage; A, $M_{PGY} = A - V_1$	285	313	334	mV
	R - Y	Mpgr	0500005500	(9) Voltage; B, $M_{PGR} = B - V_9$	-243	-224	- 205	mV
	B-Y	Мрдв	0500005500	\bigcirc Voltage; C, MPGB=C-V7	- 145	-123	-105	mV
Magenta	Y	Мрму	5050005500	(1) Voltage; A, $M_{PMY} = A - V_1$	198	218	240	mV
Ũ	R - Y	Mpmr	5050005500	(9) Voltage; B, $M_{PMR} = B - V_9$	205	224	243	mV
	B - Y	Мрмв	5050005500	() Voltage; C, MPMB=C-V7	105	123	145	mV
Red	Y	Mpry	5000005500	(1) Voltage; A, $M_{PRY} = A - V_1$	145	160	176	mV
	R - Y	Mprr	5000005500	(9) Voltage; B, $M_{PRR} = B - V_9$	243	266	289	mV
	B-Y	Mprb	5000005500	\bigcirc Voltage; C, MPRB=C-V7	- 87	-63	- 40	mV
Blue	Y	Мрву	0050005500	(1) Voltage; A, $M_{PBY} = A - V_1$	40	58	76	mV
	R-Y	Mpbr	0050005500	(9) Voltage; B, $M_{PBR}=B-V_9$	-62	42	-22	mV
	B - Y	Мрвв	0050005500	O Voltage; C, MPBB=C-V7	166	186	206	mV
Black	Y	Мрру	0000005500	(1) Voltage; A, $M_{PPY} = A - V_1$	- 20	0	20	mV
	R-Y	Mppr	0000005500	(9) Voltage; B, $M_{PPR} = B - V_9$	14	0	14	mV
	B - Y	Мррв	0000005500	\bigcirc Voltage; C, MPPB=C-V7	-12	0	12	mV
haracter Output	Level 2							
Inversion								
White	Y	MNWY	5555005500	(1) Voltage; A, $M_{NWY} = A - V_1$	482	530	583	mV
	$\mathbf{R} - \mathbf{Y}$	MNWR	5555005500	(9) Voltage; B, $M_{NWR} = B - V_9$	-14	0	14	mV
	B-Y	MNWB	5555005500	\bigcirc Voltage; C, M _{NWB} = C - V ₇	-12	0	12	mV
Yellow	Y	MNYY	5505005500	(1) Voltage; A, $M_{NYY} = A - V_1$	427	470	517	mV
	R - Y	MNYR	5505005500	(9) Voltage; B, $M_{NYR} = B - V_9$	-62	-42	- 22	mV
	B - Y	Mnyb	5505005500	\bigcirc Voltage; C, M _{NYB} =C-V ₇	166	186	206	mV
Cyan	Y	MNCY	0555005500	(1) Voltage; A, $M_{NCY} = A - V_1$	335	370	410	mV
	R - Y	MNCR	0555005500	(9) Voltage; B, $M_{NCR} = B - V_9$	243	266	289	mV
	B - Y	Мисв	0555005500	\bigcirc Voltage; C, M _{NCB} = C - V ₇	- 87	-63	-40	mV
Green	Y	Mngy	0505005500	(1) Voltage; A, $M_{NGY} = A - V_1$	285	313	334	mV
	R – Y	Mngr	0505005500	(9) Voltage; B, $M_{NGR} = B - V_9$	205	224	243	mV
	B - Y	Mngb	0505005500	(7) Voltage; C, M _{NGB} = C - V ₇	105	123	145	mV
Magenta	Y	Mnmy	5055005500	(1) Voltage; A, $M_{NMY} = A - V_1$	198	218	240	mV
	$\mathbf{R} - \mathbf{Y}$	MNMR	5055005500	(9) Voltage; B, $M_{NMR} = B - V_9$	-243	- 224	- 205	mV
	B - Y	MNMB	5055005500	\bigcirc Voltage; C, M _{NMB} = C - V ₇	-145	-123	-105	mV
Red	Y	MNRY	5005005500	(1) Voltage; A, $M_{NRY} = A - V_1$	145	160	176	mV
	$\mathbf{R} - \mathbf{Y}$	MNRR	5005005500	(9) Voltage; B, $M_{NRR} = B - V_9$	- 289	- 266	- 243	mV
	B - Y	MNRB	5005005500	(7) Voltage; C, M _{NRB} = C - V ₇	40	63	87	mV
Blue	Y	MNBY	0 0 5 5 0 0 5 5 0 0	(1) Voltage; A, $M_{NBY} = A - V_1$	40	58	76	mV
	R - Y	Mnbr	0055005500	(9) Voltage; B, $M_{NBR} = B - V_9$	22	42	62	mV
	B - Y	Mnbb	0055005500	\bigcirc Voltage; C, M _{NBB} =C-V ₇	-206	-186	-166	mV
Black	Y	MNPY	0005005500	(1) Voltage; A, $M_{NPY} = A - V_1$	- 20	0	20	mV
	R - Y	MNPR	0005005500	(9) Voltage; B, $M_{NPR} = B - V_9$	-14	0	14	mV
	B-Y	MNPB	0005005500	\bigcirc Voltage; C, M _{NPB} =C-V ₇	-12	0	12	mV

5

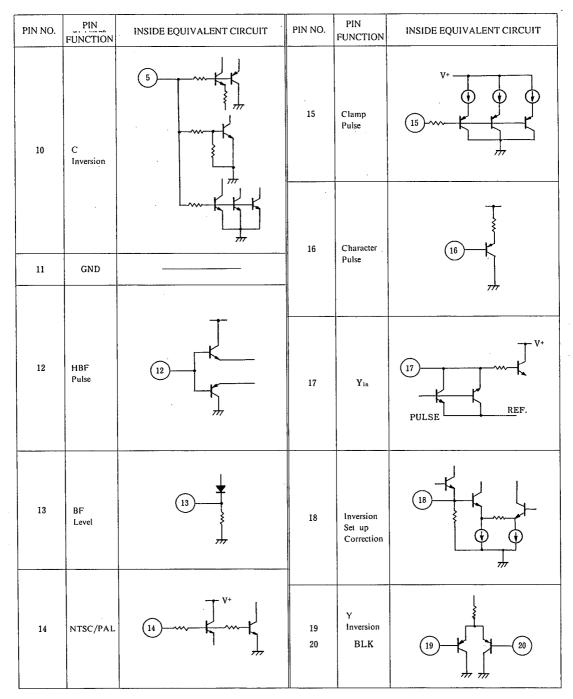
-New Japan Radio Co.,Ltd.—

■ NJM2247B ELECTRICAL CHARACTERISTICS (CONTINUED)

(V+=5V, Ta=25°)

PARAMET	EDS	SYMBOLS	CONTROL PINS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
PARAMET	ЕКО	3 I MIDOL3	34500066602					
Character Output	Level 1							
C Non Inversion								
White	Y	MPWY	5550005500	(1) Voltage; A, $M_{PWY} = A - V_1$	630	700	770	mV
	$\mathbf{R} - \mathbf{Y}$	Mpwr	5550005500	(9) Voltage; B, $M_{PWR} = B - V_9$	-14	0	14	mV
	B-Y	Мрув	5550005500	\bigcirc Voltage; C, M _{PWB} =C-V ₇	-12	0	12	mV
Yellow	Y	Mpyy	5500005500	(1) Voltage; A, $M_{PYY} = A - V_1$	472	525	578	mV
	R-Y	Mpyr	5500005500	(9) Voltage; B, $M_{PYR} = B - V_9$	13	33	53	mV
	B-Y	Мрув	5500005500	\bigcirc Voltage; C, MPYB=C-V7	-165	-146	-127	mV
Cyan	Y	Мрсч	0550005500	(1) Voltage; A, $M_{PCY} = A - V_1$	409	455	501	mV
	$\mathbf{R} - \mathbf{Y}$	Mpcr	0550005500	(9) Voltage; B, $M_{PCR} = B - V_9$	- 232	- 209	-186	mV
	B – Y	Мрсв	0550005500	\bigcirc Voltage; C, M _{PCB} =C-V ₇	28	50	72	тV
Green	Y	Мрсу	0500005500	(1) Voltage; A, $M_{PGY} = A - V_1$	252	280	308	mV
	$\mathbf{R} - \mathbf{Y}$	Mpgr	0500005500	(9) Voltage; B, $M_{PGR} = B - V_9$	- 197	-176	- 155	mV
	B - Y	Мрсв	0500005500	(7) Voltage; C, MPGB = C - V7	-117	- 97	-77	mV
Magenta	Y	Мрму	5050005500	(1) Voltage; A, $M_{PMY} = A - V_1$	378	420	462	mV
	$\mathbf{R} - \mathbf{Y}$	Mpmr	5050005500	(9) Voltage; B, $M_{PMR} = B - V_9$	155	176	197	mV
	$\mathbf{B} - \mathbf{Y}$	Мрмв	5050005500	$@Voltage; C, M_{PMB} = C - V_7$	77	97	117	mV
Red	Y	Mpry	5000005500	(1) Voltage; A, $M_{PRY} = A - V_1$	220	245	270	mV
	$\mathbf{R} - \mathbf{Y}$	Mprr	5000005500	(9) Voltage; B, $M_{PRR} = B - V_9$	186	209	232	mV
	B - Y	Mprb	5000005500	(7) Voltage; C, M _{PRB} =C-V ₇	-72	- 50	-28	mV
Blue	Y	Мрву	0050005500	(1) Voltage; A, $M_{PBY} = A - V_1$	156	175	194	mV
	R - Y	Mpbr	0050005500	(9) Voltage; B, $M_{PBR} = B - V_9$	-53	- 33	-13	mV
	B - Y	Мрвв	0050005500	(7) Voltage; C, M _{PBB} =C-V ₇	127	146	165	mV
Black	Y	Мрру	0000005500	(1) Voltage; A, $M_{PPY} = A - V_1$	-20	0	20	mV
	R-Y	, Mppr	0000005500	(9) Voltage; B, $M_{PPR} = B - V_9$	-14	0	14	mV
	B - Y	Мррв	0000005500	\bigcirc Voltage; C, MPPB=C-V7	-12	0	12	mV
Character Output	Level 2							
C Inversion					c0.0	700	770	mV
White	Y	Mnwy	5555005500	(1) Voltage; A, $M_{NWY} = A - V_1$	630	700	770 14	m V m V
	R - Y	Mnwr	5555005500	(9) Voltage; B, $M_{NWR} = B - V_9$	-14	0	14	mV mV
V 11	B-Y	MNWB	5555005500	\bigcirc Voltage; C, M _{NWB} =C-V ₇	12	525	578	m V m V
Yellow	Y	MNYY	5505005500	(1) Voltage; A, $M_{NYY} = A - V_1$	472 	-33	-13	mV
	R-Y	MNYR	5505005500	(9) Voltage; B, $M_{NYR} = B - V_9$	127	146	165	mV
C	B-Y	Мнув	5505005500	$\bigcirc Voltage; C, M_{NYB} = C - V_7$		455	501	mV
Cyan	Y	MNCY	0555005500	(1) Voltage; A, $M_{NCY} = A - V_1$	409	209	232	mV
	R-Y	MNCR	0555005500	(9) Voltage; B, $M_{NCR}=B-V_9$ (7) Voltage; C, $M_{NCB}=C-V_7$	186 	- 50	- 28	mV
Caraa	B - Y	MNCB	0555005500	(1) Voltage; A, $M_{NGY} = A - V_1$	252	280	308	mV
Green	Ү R-Y	MNGY	0505005500	(1) Voltage; A , $M_{NGY} = A = V_1$ (9) Voltage; B , $M_{NGR} = B - V_9$	155	176	197	mV
	R-I B-Y	Mngr Mngb	0505005500	\bigcirc Voltage; C, MNGB=C-V7	77	97	117	mV
Magenta		MNGB	5055005500	(1) Voltage; A, $M_{NMY} = A - V_1$		420	462	mV
wiagenta	R-Y	1	5055005500	(a) Voltage; B, $M_{NMR} = B - V_9$	-197	-176	-155	mV
	B-Y	Mnmr Mnmb	5055005500	\bigcirc Voltage; C, MNMR=D V9 \bigcirc Voltage; C, MNMB=C-V7	-117	-97	-77	mV
Bad				(1) Voltage; A, $M_{NRY} = A - V_1$	220	245	270	mV
Red	Y D V	MNRY	5005005500	(a) Voltage; B, $M_{NRR}=B-V_9$	-232	- 209	-186	mV
	R – Y B – Y	MNRR MNRB	5005005500	\bigcirc Voltage; C, MNRR=D V9 \bigcirc Voltage; C, MNRB=C-V7	28	50	72	mV
Dina	в-т Ү		0055005500	(1) Voltage; A, $M_{NBY} = A - V_1$	156	175	194	mV
Blue		MNBY MNDD	0055005500	(1) Voltage; A, MNBY $=$ A $=$ V1 (9) Voltage; B, MNBR $=$ B $=$ V9	130	33	53	mV
	R-Y R-V	MNBR		\bigcirc Voltage; C, MNBB=C-V7	-165	-146	- 127	mV
	B-Y	MNBB MNDB	0055005500	$\bigcirc Voltage; C, MNBB=C=V7$ $\bigcirc Voltage; A, MNPY=A-V1$	- 105	0	20	mV
Black	Y P_V	MNPY	0005005500	(1) Voltage; A, $MNPY = A = V1$ (9) Voltage; B, $MNPR = B - V_9$	→ <u>14</u>	0	14	mV
	R-Y P-V	MNPR MNPB	0005005500	\bigcirc Voltage; C, MNPR = D = VS \bigcirc Voltage; C, MNPB = C - V7	-12	0	12	mV
	B - Y	MINPB	000000000000	wonage, o, mapp=0=vy	14		1.0	

-New Japan Radio Co.,Ltd.-


5-142-

EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	Yout	V+ 1 + 777	6	B-Yin	6 V+ PULSE
2	V+				
3	R		7	B–Yout	₹
4	G		8	R-Y _{in}	B V+ REF. PULSE
5	В		9	R – Yout	₹

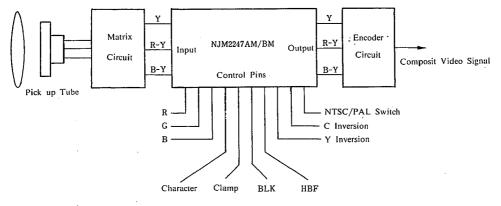
5

EQUIVALENT CIRCUIT

INFORMATIONS

Following four points are the outstanding function of the NJM2247A/B. These functions are to go through three input (Y, R-Y, B-Y) signals control by ten control pins.

1. Color Superimpose


DC level of each equivalent colors shall be supplied to Y, R-Y and B-Y inputs.

- 2. Burst Flag Insertion
 - 150 mV burst flag shall be added to R-Y, B-Y input signals.
 - Burst flag is selected by the NTSC/PAL switch.
- 3. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees. The color phase of the imposed character shall not be altered. This function shall be proceeded when inverting the burst flag, and at the same time, the imposed character level shall be inverted too.

4. Y Inversion

It is the brightness level inversion. The imposed character color shall not be changed. This function shall be proceeded the switching Y signal output to the inverter side.

New Japan Radio Co., Ltd.

APPLICATION NOTES

I/O Explanation

٠	Supply Voltage	V+	5V	2
		GND		\bigcirc
٠	Input Signals	Y	0.7 Vр.р	0
		R-Y	1.0 Vp-p	8
		B-Y	0.7 Vp.p	6
٠	Output Signals	Y	0.7 Vp.p	Ũ
		R-Y	1.0 Vp-p	9
		B-Y	0.7 Vp-p	7

5 - 145

APPLICATION NOTES

```
I/O Explanation

 Control Pin Low=0V, HIGH=5V

R(3)
        Superimposed color adjustment
G④
ВŚ
Clamp Pulse
Character Pulse 16
                      Y, R-Y, B-Y signal process pulse input
HBF Pulse
               0
BLK Pulse
               60
C Inversion 10
               ]
                 Color difference, brightness inverting pin
Y Inversion (19
NTS/PAL Switch
```

 Adjusting Pin (Normally open → non adjustment) BF level ① Burst flag insert level adjusting pin. Inversion set up correction ③ Y inversion signal level adjusting pin.

1. Input Signal

Superimposed color level shall be determined by the following standard signal level.

- Y 0.7V_{P-P}
- R-Y 1.0V_{P-P}
- B-Y 0.7V_{P-P}

The character output standard level on the specification shall be determined through calculation out of 75 % of superimposed color level.

(In order to avoide the clipping of the encoding signal, the character output level is determined to lower level)The character output level converting expression

The basic expression

 $\begin{array}{l} E_{R}-E_{Y} = 0.70E_{R}-0.59E_{G}-0.11E_{B}\\ E_{B}-E_{Y} = -0.30E_{R}-0.59E_{G}+0.89E_{B}\\ E_{Y} = 0.30E_{R}+0.59E_{G}+0.11E_{B} \end{array}$

From standard level and practical input level, each color signal level imposed in R-Y, B-Y and Y signals are as in the following.

$$\begin{split} V_{R\cdot Y} &= 0.75 \times 1 \left[V_{P\cdot P} \right] \times E_{R\cdot Y} / 1.4 \\ &= 0.375 E_R - 0.316 E_G - 0.059 E_B \\ V_{B\cdot Y} &= 0.75 \times 0.7 \left[V_{P\cdot P} \right] \times E_{B\cdot Y} / 1.78 \\ &= -0.088 E_R - 0.174 E_G + 0.263 E_B \\ V_Y &= 0.158 E_R + 0.310 E_G + 0.058 E_B \\ (E_R, E_G, E_B | \sharp, LOW 0, HIGH 1) \end{split}$$

2. Clamp Pulse

During the interval of blanking, input the pulse through clamp pulse pin @ the blanking level (0 level) of input signal (Y, R-Y, B-Y) is to be fixed at the bias point within the IC.

Note) The pulse width of clamp pulse shall be set more than A version 6 μ s and B version 3 μ s. (see figure 2)

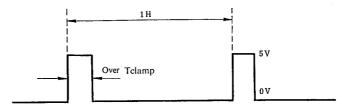


Fig. 2 Clamp Pulse Width

New Japan Radio Co., Ltd.

3. Character Color Adjustment

Superimposed color adjustment of the character can be determined in eight different colors, by choosing R, G, B input levels.

	<u>, 10 ()</u>	U V, 111	
R	G	В	COLOR
5	5	5	White
5	5	0	Yellow
0	5	. 5	Cyan
0	5	0	Green
5	0	5	Magenta
5	0	0	Red
0	0	5	blue
0	0	0	Black

(LOW 0V, HIGH 5V)

Character Color Selecting Code

4. Character Insertion

Pulse informations from outside character generater shall be given input at the character pulse pin ⁽⁶⁾. During the period of pulse process, the selected color level shall be inserted into each Y, R-Y, B-Y.

5. Burst Flag Insertion

Inputting burst period pulse at the HBF pin 0, the burst flag (150mV) can be inserted in the B-Y, R-Y signals. At the same time, by putting NTSC/PAL switch 0, the burst flag can be altered to NTSC or PAL system.

	NTSC/PAL SWITCH		
	LOW 0V (PAL)	HIGH 5V (NTSC)	
R-Y Signai	+150 mV	non insertion	
B-Y Signal	-150 mV	-150 mV	

Burst	Flag	Inserting
Duisi	i iag	msennig

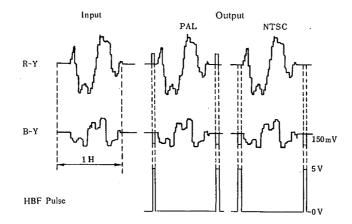


Fig.3 Burst Flag Inserting Example

New Japan Radio Co., Ltd.

E

6. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees setting C inversion pin (1). It is applied that the reference signal (burst flag) shall be inverted into one hundred and eighty degrees at the time of de-coding.

Superimposed character color do not change at the picture inversion.

	C INVERSIO	ON PIN ()
	LOW DV	HIGH 5 V
Burst	Non Inversion	Inversion

С	Inversion	Form
~		i onn

7. Y Inversion

The brightness of the picture shall be inverted by setting Y inversion pin (). It is that Y signal shall be inverted by the inverter, and then blanking period signal shall be adjusted to the black level with blanking pulse.

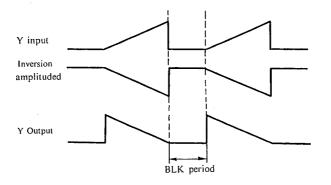


Figure 4. Y Inversion Output Example

	Y INVERSION PIN (9	
	LOW OV	HIGH 5V
Y output	Non inversion	Inversion

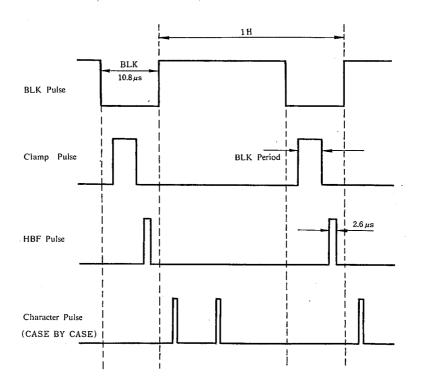
Y Inversion Form

8. Adjusting pin

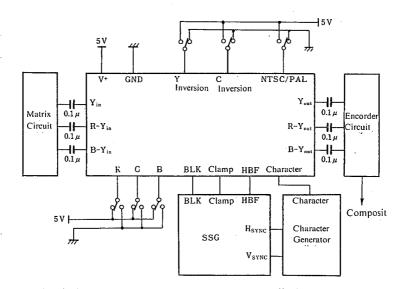
5-148

(1) BF Level Pin 🛈

It is the burst flag minor adjusting pin. The burst level shall be adjusted at the open voltage, 0.3V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled at 135 to 165 mV (burst level) on specification.


(2) Inversion Set Up Correction Pin 🚯

It is the minor adjusting pin of Y inversion signal level. The inverting black level shall be adjusted at the open voltage, 1.8 V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled with 0.59 to 0.77 V (inverting black level) on specification.


-New Japan Radio Co.,Ltd.

9. Pulse Timing

The pulse input timing should be proceeded as in the following.

TYPICAL APPLICATION

-New Japan Radio Co., Ltd.

5-149

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.