=

VIDEO SUPER INPOSER WITH Y-C MIXER

■ GENERAL DESCRIPTION

The NJM2509 is video super imposer, including Y/C mix circuit. Y-signal input terminal have sink-chip clamp function and it is applied to fixed DC level of video signal.

Impose voltage is fixed internally to white level and black level, and includes 6dB amplifier.

■ PACKAGE OUTLINE

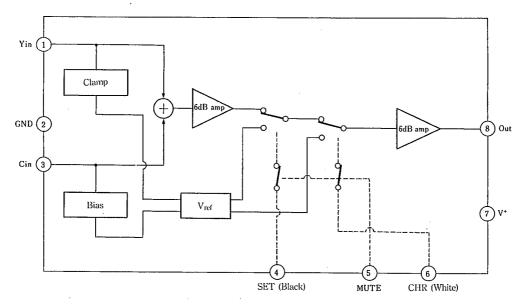
NJM2509V

■ FEATURES

- Internal Y/C Mix Circuit
- Internal Clamp Circuit (Y Signal), Bias Circuit (C Signal)
- Impose voltage fixed internally to white level and black level.
- Internal 6dB AMP. (Input:0.5V_{P-P}, Output:1.0V_{PP})
- Package Outline
- SSOP8
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage


V+

4.5~5.1V

APPLICATION

• Video Camera

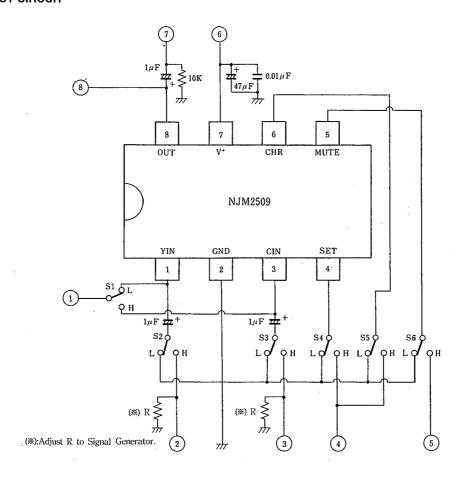
■ BLOCK DIAGRAM

NJM2509V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	· V+	7.0	V
Power Dissipation	PD	250	mW
Operating Temperature Range	Topr	-20~+75	, ℃
Storage Temperature Range	Tstg	-40~+125	°C


■ ELECTRICAL CHARACTERISTICS

(V+=4.8V, Ta=25°C, RL=10k Ω)

PARAMETER SYMI		TEST CONDITION		TYP.	MAX.	UNIT
Operating Current	Icc		5.3	7.0	8.7	mA
Clamp Voltage	V _{emp}		2.4	2.5	2.6	ν
Bias Voltage	V _{bias}		2.4	2.5	2.6	V
Voltage Gain	Gv	V _{out} /V _{in} 100kHz, 0.5V _{P-P} Sine Wave	6.0	6.3	6.8	dB
Frequency Characteristic	Gı	$0.5V_{P-P}$ Sine Wave v_0 (I0MHz)/ v_0 (I00kHz)	-0.7	一0.2	+0.3	dB
Background Voltage	V _{set}	From Pedestal Level	5.0	15.0	20.0	IRE
CHR. VOLTAGE	V _{chr}	From Pedestal Level	65.0	75.0	85.0	IRE
Input Resistance	Rin	Input Cin	1 —	30		kΩ
Differential Gain	DG	0.5V _{P-P} , 10 STEP Stair wave	_	<u> </u>	3.0	deg
Differential Phasa	DP	0.5V _{P-P} , 10 STEP Stair wave	_	<u> </u>	3.0	%
BACKGROUND	Veh	BACKGROUND SW:ON	2.4			V
Switch Change Voltage	Vel	BACKGROUND SW:OFF	-	_	0.8	V
CHR MUTE	VehMUTE	CHRMUTE SW:ON	2.4	-	l —	v
Switch Change Voltage	V _{el} MUTE	CHRMUTE SW:OFF	_	· —	0.8	v
Crosstalk I	CTI	C _{in} →BACKGROUND VOLTAGE (※1)		-50	-	dB
Crosstalk 2	CT2	C _{in} →CHR VOLTAGE (※2)		-50		dB
Crosstalk 3	CT3	Y _{in} →BACKGROUND VOLTAGE (※1)	-	-50	_	dB
Crosstalk 4	CT4	Y _{in} →CHR VOLTAGE (※2)	_	-50	_	dB

*I. Crosstalk:4.43MHz. 0.5VPP Sine wave, Vout/Vin

■ TEST CIRCUIT

■ TERMINAL EXPLANATION

 $(V^*=4.8V, Ta=25^{\circ}C)$

- 1-1	TERIMINAL LAPLANATION (V =4.0V, 1d-23 C							
PIN NO.	UNIT	FUNCTION	EQUIVALENT CIRCUIT	: PIN NO.	UNIT	FUNCTION	EQUIVALENT CIRCUIT	
1	YIN	Input:2.5V clamp 0.5Vpp Y-signal or Compozitto signal	V+ 500 500 1	5	MUTE	Ckaractor signal ON/OFF Switch Hi Charactor signal OFF Charactor Signal ON	30k \$\ \\$30k \\ 26k \\$26k \\ \\$777 \\ 777 \\	
2	GND	GROUND .		6	CHR	Charactor signal Input pin Hi White level Lo Composit signal	9 k \$	
3	CIN	Input:2.5V Bias, 0.5Vpp C-signal	70µF	7	V+	Supply Voltage		
4	SET	Character signal Input Pin Hi Black level Lo Composit signal	4 19k ≹ 9 k ≹	8	OUT	Output-IVpp Composit signal, Impose Voltage	V ⁺	

NJM2509

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.